Search results for: self-differentiated dendritic cells
510 Effect of Serine/Threonine Kinases on Autophagy Mechanism
Authors: Ozlem Oral, Seval Kilic, Ozlem Yedier, Serap Dokmeci, Devrim Gozuacik
Abstract:
Autophagy is a degradation pathway, activating under stress conditions. It digests macromolecules, such as abnormal proteins and long-lived organelles by engulfing them and by subsequent delivery of the cargo to lysosomes. The members of the phospholipid-dependent serine/threonine kinases, involved in many signaling pathways, which are necessary for the regulation of cellular metabolic activation. Previous studies implicate that, serine/threonine kinases have crucial roles in the mechanism of many diseases depend on the activated and/or inactivated signaling pathway. Data indicates, the signaling pathways activated by serine/threonine kinases are also involved in activation of autophagy mechanism. However, the information about the effect of serine/threonine kinases on autophagy mechanism and the roles of these effects in disease formation is limited. In this study, we investigated the effect of activated serine/threonine kinases on autophagic pathway. We performed a commonly used autophagy technique, GFP-LC3 dot formation and by using microscopy analyses, we evaluated promotion and/or inhibition of autophagy in serine/threonine kinase-overexpressed fibroblasts as well as cancer cells. In addition, we carried out confocal microscopy analyses and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. Based on the shRNA-library based screening, we identified autophagy-related proteins affected by serine/threonine kinases. We further studied the involvement of serine/threonine kinases on the molecular mechanism of newly identified autophagy proteins and found that, autophagic pathway is indirectly controlled by serine/threonine kinases via specific autophagic proteins. Our data indicate the molecular connection between two critical cellular mechanisms, which have important roles in the formation of many disease pathologies, particularly cancer. This project is supported by TUBITAK-1001-Scientific and Technological Research Projects Funding Program, Project No: 114Z836.Keywords: autophagy, GFP-LC3 dot formation assay, serine/threonine kinases, shRNA-library screening
Procedia PDF Downloads 292509 Evaluation of κ -Carrageenan Hydrogel Efficiency in Wound-Healing
Authors: Ali Ayatic, Emad Mozaffari, Bahareh Tanhaei, Maryam Khajenoori, Saeedeh Movaghar Khoshkho, Ali Ayati
Abstract:
The abuse of antibiotics, such as tetracycline (TC), is a great global threat to people and the use of topical antibiotics is a promising tact that can help to solve this problem. Antibiotic therapy is often appropriate and necessary for acute wound infections, while topical tetracycline can be highly efficient in improving the wound healing process in diabetics. Due to the advantages of drug-loaded hydrogels as wound dressing, such as ease of handling, high moisture resistance, excellent biocompatibility, and the ability to activate immune cells to speed wound healing, it was found as an ideal wound treatment. In this work, the tetracycline-loaded hydrogels combining agar (AG) and κ-carrageenan (k-CAR) as polymer materials were prepared, in which span60 surfactant was introduced inside as a drug carrier. The Field Emission Scanning Electron Microscopes (FESEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were employed to provide detailed information on the morphology, composition, and structure of fabricated drug-loaded hydrogels and their mechanical properties, and hydrogel permeability to water vapor was investigated as well. Two types of gram-negative and gram-positive bacteria were used to explore the antibacterial properties of prepared tetracycline-contained hydrogels. Their swelling and drug release behavior was studied using the changing factors such as the ratio of polysaccharides (MAG/MCAR), the span60 surfactant concentration, potassium chloride (KCl) concentration and different release media (deionized water (DW), phosphate-buffered saline (PBS), and simulated wound fluid (SWF)) at different times. Finally, the kinetic behavior of hydrogel swelling was studied. Also, the experimental data of TC release to DW, PBS, and SWF using various mathematical models such as Higuchi, Korsmeyer-Peppas, zero-order, and first-order in the linear and nonlinear modes were evaluated.Keywords: drug release, hydrogel, tetracycline, wound healing
Procedia PDF Downloads 80508 Pathogenic Candida Biofilms Producers Involved in Healthcare Associated Infections
Authors: Ouassila Bekkal Brikci Benhabib, Zahia Boucherit Otmani, Kebir Boucherit, A. Seghir
Abstract:
The establishment of intravenous catheters in hospitalized patient is an act common in many clinical situations. These therapeutic tools, from their insertion in the body, represent gateways including fungal germs prone. The latter can generate the growth of biofilms, which can be the cause of fungal infection. Faced with this problem, we conducted a study at the University Hospital of Tlemcen in the neurosurgery unit and aims to isolate and identify Candida yeasts from intravenous catheters. Then test their ability to form biofilms. Materials and methods: 256 patient hospitalized in surgery of the hospital in west Algeria were submitted to this study. All samples were taken from peripheral venous catheters implanted for 72 hours or more days. A total of 31 isolates of Candida species were isolated. MIC and SMIC are determined at 80% inhibition by the test XTT tetrazolium measured at 490 nm. The final concentrations of antifungal agent being between 0.03 and 16 mg / ml for amphotericin B and from 0.015 to 8 mg / mL caspofungin. Results: 31 Candida species isolates from catheters including 14 Candida albicans and 17 Candida non albicans . 21 strains of all the isolates were able to form biofilms. In their form of Planktonic cells, all isolates are 100% susceptible to antifungal agents tested. However, in their state of biofilms, more isolates have become tolerant to the tested antifungals. Conclusion: Candida yeasts isolated from intravascular catheters are considered an important virulence factor in the pathogenesis of infections. Their involvement in catheter-related infections can be disastrous for their potential to generate biofilms. They survive high concentrations of antifungal where treatment failure. Pending the development of a therapeutic approach antibiofilm related to catheters, their mastery is going through: -The risk of infection prevention based on the training and awareness of medical staff, -Strict hygiene and maximum asepsis, and -The choice of material limiting microbial colonization.Keywords: candida, biofilm, hospital, infection, amphotericin B, caspofungin
Procedia PDF Downloads 323507 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Apoptotic Factors
Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli
Abstract:
Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of the most important side effects of MTX. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), is known to exert anti-inflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of PIO against MTX-induced nephropathy. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with PIO (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (1-30 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-PIO interaction was assessed. PIO treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with PIO. Collectively, PIO abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.Keywords: methotrexate, pioglitazone, endothelium, kidney
Procedia PDF Downloads 312506 Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer
Authors: You-Lin Wu, Yi-Hsing Sung, Shih-Hung Lin, Jing-Jenn Lin
Abstract:
Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure.Keywords: ferroelectricity, hysteresis, polystyrene, resistance switching, ZnO nanorods
Procedia PDF Downloads 311505 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics
Authors: Titus A. Beu
Abstract:
Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.
Procedia PDF Downloads 119504 The Anti-Bladder Cancer Effects Exerted by Hyaluronan Nanoparticles Encapsulated Heteronemin Isolated from Hippospongia Sp.
Authors: Kuan Yin Hsiao, Shyh Ming Kuo, Yi Jhen Wu, Chin Wen Chuang, Chuen-Fu Lin, Wei-qing Yang, Han Hsiang Huang
Abstract:
Anti-tumor effects of natural products, like compounds from marine sponges and soft corals, have been investigated for decades. Polymeric nanoparticles prepared from biodegradable and biocompatible molecules, such as Hyaluronan (HA), Chitosan (CHI) and gelatin have been widely studied. Encapsulation of anti-cancer therapies by the biopolymeric nanoparticles in drug delivery system is potentially capable of improving the therapeutic effects and attenuating their toxicity. In the current study, the anti-bladder cancer effects of heteronemin extracted from the sponge Hippospongia sp. with or without HA and CHI nanoparticle encapsulation were assessed and evaluated in vitro. Results showed that IC50 (half maximal inhibitory concentration) of heteronemin toward T24 human bladder cancer cell viability is approximately 0.18 µg/mL. Both plain and HA nanoparticles-encapsulated heteronemin at 0.2 and 0.4 µg/mL significantly reduced T24 cell viability (P<0.001) while HA nanoparticles-encapsulated heteronemin showed weaker viability-inhibitory effects on L929 fibroblasts compared with plain heteronemin at the identical concentrations. HA and CHI nanoparticles-encapsulated heteronemin exhibited significantly stronger inhibitory effects against migration of T24 human bladder cancer cell than those exerted by plain heteronemin at the same concentrations (P<0.001). The flow cytometric results showed that 0.2 µg/mL HA and CHI nanoparticles-encapsulated heteronemin induced higher early apoptosis rate than that induced by plain heteronemin at the same concentration. These results show that HA and CHI nanoparticle encapsulation is able to elevate anti-migratory and apoptosis-inducing effects exerted by heteronemin against bladder cancer cells in vitro. The in vivo anti-bladder cancer effects of the compound with or without HA/CHI nanoparticle encapsulation will be further investigated and examined using murine tumor models. The data obtained from this study will extensively evaluate of the anti-bladder cancer effects of heteronemin as well as HA/CHI-encapsulated heteronemin and pave a way to develop potential bladder cancer treatment.Keywords: heteronemin, nanoparticles, hyaluronan, chitosan, bladder cancer
Procedia PDF Downloads 456503 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Fas Production
Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli
Abstract:
Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of its most important side effects. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone, is known to exert antiinflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of pioglitazone against MTX-induced endothelial impairment. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with pioglitazone (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (0.001-10 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-pioglitazone interaction was assessed. Pioglitazone treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with pioglitazone. Collectively, pioglitazone abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.Keywords: methotrexate, pioglitazone, endothelium, kidney
Procedia PDF Downloads 499502 A Review on Bioremediation of Waste Effluent Associated with Pulp and Paper Industry
Authors: Adamu Muhammed Tukur
Abstract:
Pulp and paper industry is one of the fastest growing industries due to an increased demand in paper products. For it to satisfy this ever increasing demand, it adopts new technological innovations some of which are proved to affect our environment negatively. Global consumption of paper has increased by 400% in the last four decades and this suggests that more research is required to assess the impact of industrial effluents to our environment and public health. Paper products are generally biodegradable, however, the processes involved in its production which involve the use of mainly bleaching agents and other non-biodegradable substances pose serious problem to the environment. There are more than 250 chemicals released in paper mill waste and some are xenobiotics. Different methods such as physical and chemical methods can be adopted for the remediation of the effluents but are proved to be costly and not safe to the environment. On the other hand, biological method is shown to be less costly and environmentally friendly. Microorganisms and their enzymes have shown a promising future for bioremediation of effluents related to paper mill. Many studies prove that one of the major pollutants in the paper mill effluent is phenol especially its chlorinated derivatives. Pentachlorophenol is extremely hazardous to living cells and therefore need to be removed from the environment. Microorganisms including bacteria and fungi have the potential to degrade phenolic compounds e.g. Bacillus stearothermiphilus, Pseudomonas putida, Coricus versicolor, Sphingomonas chlorophenolica, Fusarium sp, Bacillus subtilis and P. aeroginosa. Enzymes used for the degradation include phenol hydrooxylase, polyphenoloxylase, laccase, peroxidase among others. Lignin is another important pollutant and is resistant to microbial degradation but it has been proved that certain bacteria and fungi like can degrade it. Among the fungi white-rot fungi like Fomes lividus and Trametes vesicolor are the most important bioremediators. This review focused on use of microorganism to reduce or eradicate pollutants released from the paper industry. It can serve as a review for further research to be conducted especially in the field of Biotechnology.Keywords: bioremediation, pulp and paper, pentachlorophenol, environment
Procedia PDF Downloads 326501 Collagen Hydrogels Cross-Linked by Squaric Acid
Authors: Joanna Skopinska-Wisniewska, Anna Bajek, Marta Ziegler-Borowska, Alina Sionkowska
Abstract:
Hydrogels are a class of materials widely used in medicine for many years. Proteins, such as collagen, due to the presence of a large number of functional groups are easily wettable by polar solvents and can create hydrogels. The supramolecular network capable to swelling is created by cross-linking of the biopolymers using various reagents. Many cross-linking agents has been tested for last years, however, researchers still are looking for a new, more secure reactants. Squaric acid, 3,4-dihydroxy 3-cyclobutene 1,2- dione, is a very strong acid, which possess flat and rigid structure. Due to the presence of two carboxyl groups the squaric acid willingly reacts with amino groups of collagen. The main purpose of this study was to investigate the influence of addition of squaric acid on the chemical, physical and biological properties of collagen materials. The collagen type I was extracted from rat tail tendons and 1% solution in 0.1M acetic acid was prepared. The samples were cross-linked by the addition of 5%, 10% and 20% of squaric acid. The mixtures of all reagents were incubated 30 min on magnetic stirrer and then dialyzed against deionized water. The FTIR spectra show that the collagen structure is not changed by cross-linking by squaric acid. Although the mechanical properties of the collagen material deteriorate, the temperature of thermal denaturation of collagen increases after cross-linking, what indicates that the protein network was created. The lyophilized collagen gels exhibit porous structure and the pore size decreases with the higher addition of squaric acid. Also the swelling ability is lower after the cross-linking. The in vitro study demonstrates that the materials are attractive for 3T3 cells. The addition of squaric acid causes formation of cross-ling bonds in the collagen materials and the transparent, stiff hydrogels are obtained. The changes of physicochemical properties of the material are typical for cross-linking process, except mechanical properties – it requires further experiments. However, the results let us to conclude that squaric acid is a suitable cross-linker for protein materials for medicine and tissue engineering.Keywords: collagen, squaric acid, cross-linking, hydrogel
Procedia PDF Downloads 388500 Management of Autoimmune Diseases with Ayurveda
Authors: Simmi Chopra
Abstract:
In the last few years, there has been a surge of Autoimmune diseases that have become more like an epidemic all over the world. The reasons vary from stress, insufficient sleep, smoking, genetics, environmental pollution, adulterated foods, and a diet full of “the deadly white,” which is white sugar and white flour. Most of the people diagnosed with these diseases are given steroids, opioids, supplements, or elimination diets to manage their lives, but most of them continue suffering to varying degrees. On the other hand, Ayurveda can help manage autoimmune problems effectively. Ayurveda is a 5000 years old holistic medical system from India that has an individualistic approach where health problems are looked at from the lens of balancing body and mind and by targeting the root cause of the problem. A combination of diet and lifestyle according to Ayurvedic principles, Ayurvedic herbal formulations and Ayurvedic therapies can help in the management of autoimmune and other chronic diseases. Panchkarma, which is an intense six weeks detox method, helps balance our body and mind, and has been very effective in managing autoimmune problems. The paper will introduce the basic concepts of Ayurveda and describe the terminologies- doshas, agni and ama. The paper will discuss the importance of diet and lifestyle according to the individual’s imbalance in the three functional parameters - doshas, which govern every aspect of our body and mind, our cells and tissues. The significance of agni, which can be correlated to digestive strength and ama, which can be correlated to toxins that are formed in our body leading to health problems, will be outlined. The Ayurvedic pathophysiology of autoimmune diseases will be discussed with emphasis on Rheumatoid arthritis, Multiple sclerosis and Psoriasis. Ayurvedic management will be discussed for these autoimmune conditions. As Ayurveda is an individualistic system, one protocol will not work for everyone. Therefore, case studies with Ayurvedic protocols for the above autoimmune disease will be presented. Conclusion: Ayurveda can help in managing as well as arresting the progression of autoimmune problems. Ayurveda is an ancient medical system, is much more needed today than ever. It is a tried and tested holistic system which has been practiced for the past many generations in India.Keywords: ayurveda, autoimmune, diseases, nutrition
Procedia PDF Downloads 66499 In vivo Antidiabetic and Antioxidant Potential of Pseudovaria macrophylla Extract
Authors: Aditya Arya, Hairin Taha, Ataul Karim Khan, Nayiar Shahid, Hapipah Mohd Ali, Mustafa Ali Mohd
Abstract:
This study has investigated the antidiabetic and antioxidant potential of Pseudovaria macrophylla bark extract on streptozotocin–nicotinamide induced type 2 diabetic rats. LCMS-QTOF and NMR experiments were done to determine the chemical composition in the methanolic bark extract. For in vivo experiments, the STZ (60 mg/kg/b.w, 15 min after 120 mg/kg/1 nicotinamide, i.p.) induced diabetic rats were treated with methanolic extract of Pseuduvaria macrophylla (200 and 400 mg/kg∙bw) and glibenclamide (2.5 mg/kg) as positive control respectively. Biochemical parameters were assayed in the blood samples of all groups of rats. The pro-inflammatory cytokines, antioxidant status and plasma transforming growth factor βeta-1 (TGF-β1) were evaluated. The histological study of the pancreas was examined and its expression level of insulin was observed by immunohistochemistry. In addition, the expression of glucose transporters (GLUT 1, 2 and 4) were assessed in pancreas tissue by western blot analysis. The outcomes of the study displayed that the bark methanol extract of Pseuduvaria macrophylla has potentially normalized the elevated blood glucose levels and improved serum insulin and C-peptide levels with significant increase in the antioxidant enzyme, reduced glutathione (GSH) and decrease in the level of lipid peroxidation (LPO). Additionally, the extract has markedly decreased the levels of serum pro-inflammatory cytokines and transforming growth factor beta-1 (TGF-β1). Histopathology analysis demonstrated that Pseuduvaria macrophylla has the potential to protect the pancreas of diabetic rats against peroxidation damage by downregulating oxidative stress and elevated hyperglycaemia. Furthermore, the expression of insulin protein, GLUT-1, GLUT-2 and GLUT-4 in pancreatic cells was enhanced. The findings of this study support the anti-diabetic claims of Pseudovaria macrophylla bark.Keywords: diabetes mellitus, Pseuduvaria macrophylla, alkaloids, caffeic acid
Procedia PDF Downloads 357498 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery
Authors: Thirupathi Thippani, Kothandaraman Ramanujam
Abstract:
Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery
Procedia PDF Downloads 234497 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain
Authors: Madiha El Awamie, Catherine Rees
Abstract:
Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.Keywords: antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative
Procedia PDF Downloads 340496 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide
Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama
Abstract:
The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.Keywords: carbon sphere, graphene oxide, reduction, layer by layer
Procedia PDF Downloads 141495 Multilayered Assembly of Gelatin on Nanofibrous Matrix for 3-D Cell Cultivation
Authors: Ji Un Shin, Wei Mao, Hyuk Sang Yoo
Abstract:
Electrospinning is a versatile tool for fabricating nano-structured polymeric materials. Gelatin hydrogels are considered to be a good material for cell cultivation because of high water swellability as well as good biocompatibility. Three-dimensional (3-D) cell cultivation is a desirable method of cell cultivation for preparing tissues and organs because cell-to-cell interactions or cell-to-matrix interactions can be much enhanced through this approach. For this reason, hydrogels were widely employed as tissue scaffolds because they can support cultivating cells and tissue in multi-dimensions. Major disadvantages of hydrogel-based cell cultivation include low mechanical properties, lack of topography, which should be enhanced for successful tissue engineering. Herein we surface-immobilized gelatin on the surface of nanofibrous matrix for 3-D cell cultivation in topographical cues added environments. Electrospun nanofibers were electrospun with injection of poly(caprolactone) through a single nozzle syringe. Electrospun meshes were then chopped up with a high speed grinder to fine powders. This was hydrolyzed in optimized concentration of sodium hydroxide solution from 1 to 6 hours and harvested by centrifugation. The freeze-dried powders were examined by scanning electron microscopy (SEM) for revealing the morphology and fibrilar shaped with a length of ca. 20um was observed. This was subsequently immersed in gelatin solution for surface-coating of gelatin, where the process repeated up to 10 times for obtaining desirable coating of gelatin on the surface. Gelatin-coated nanofibrils showed high waterswellability in comparison to the unmodified nanofibrils, and this enabled good dispersion properties of the modified nanofibrils in aqueous phase. The degree of water-swellability was increased as the coating numbers of gelatin increased, however, it did not any meaning result after 10 times of gelatin coating process. Thus, by adjusting the gelatin coating times, we could successfully control the degree of hydrophilicity and water-swellability of nanofibrils.Keywords: nano, fiber, cell, tissue
Procedia PDF Downloads 167494 Localisation of Fluorescently Labelled Drug-Free Phospholipid Vesicles to the Cartilage Surface of Rat Synovial Joints
Authors: Sam Yurdakul, Nick Baverstock, Jim Mills
Abstract:
TDT 064 (FLEXISEQ®) is a drug-free gel used to treat osteoarthritis (OA)-associated pain and joint stiffness. It contains ultra-deformable phospholipid Sequessome™ vesicles, which can pass through the skin barrier intact. In six randomized OA studies, topical TDT 064 was well tolerated and improved joint pain, physical function and stiffness. In the largest study, these TDT 064-mediated effects were statistically significantly greater than oral placebo and equivalent to celecoxib. To understand the therapeutic effects of TDT 064, we investigated the localisation of the drug-free vesicles within rat synovial joints. TDT 064 containing DiO-labelled Sequessome™ vesicles was applied to the knees of four 6-week-old CD® hairless rats (10 mg/kg/ joint), 2–3 times/day, for 3 days (representing the recommended clinical dose). Eighteen hours later, the animals and one untreated control were sacrificed, and the knee joints isolated, flash frozen and embedded in Acrytol Mounting Media™. Approximately 15 sections (10 µm) from each joint were analysed by fluorescence microscopy. To investigate whether the localisation of DiO fluorescence was associated with intact vesicles, an anti-PEG monoclonal antibody (mAb) was used to detect Tween, a constituent of Sequessome™ vesicles. Sections were visualized at 484 nm (DiO) and 647 nm (anti-PEG mAb) and analysed using inForm 1.4 (Perkin Elmer, Inc.). Significant fluorescence was observed at 484 nm in sections from TDT 064-treated animals. No non-specific fluorescence was observed in control sections. Fluorescence was detected as discrete vesicles on the cartilage surfaces, inside the cartilaginous matrix and within the synovial space. The number of DiO-labelled vesicles in multiple fields of view was consistent and >100 in sections from four different treated knees. DiO and anti-PEG mAb co-localised within the collagenous tissues in four different joint sections. Under higher magnification (40x), vesicles were seen in the intercellular spaces of the synovial joint tissue, but no fluorescence was seen inside cells. These data suggest that the phospholipid vesicles in TDT 064 localize at the surface of the joint cartilage; these vesicles may therefore be supplementing the phospholipid deficiency reported in OA and acting as a biolubricant within the synovial joint.Keywords: joint pain, osteoarthritis, phospholipid vesicles, TDT 064
Procedia PDF Downloads 443493 Large-Scale Screening for Membrane Protein Interactions Involved in Platelet-Monocyte Interactions
Authors: Yi Sun, George Ed Rainger, Steve P. Watson
Abstract:
Background: Beyond the classical roles in haemostasis and thrombosis, platelets are important in the initiation and development of various thrombo-inflammatory diseases. In atherosclerosis and deep vein thrombosis, for example, platelets bridge monocytes with endothelium and form heterotypic aggregates with monocytes in the circulation. This can alter monocyte phenotype by inducing their activation, stimulating adhesion and migration. These interactions involve cell surface receptor-ligand pairs on both cells. This list is likely incomplete as new interactions of importance to platelet biology are continuing to be discovered as illustrated by our discovery of PEAR-1 binding to FcεR1α. Results: We have developed a highly sensitive avidity-based assay to identify novel extracellular interactions among 126 recombinantly-expressed platelet cell surface and secreted proteins involved in platelet aggregation. In this study, we will use this method to identify novel platelet-monocyte interactions. We aim to identify ligands for orphan receptors and novel partners of well-known proteins. Identified interactions will be studied in preliminary functional assays to demonstrate relevance to the inflammatory processes supporting atherogenesis. Conclusions: Platelet-monocyte interactions are essential for the development of thromboinflammatory disease. Up until relatively recently, technologies only allow us to limit our studies on each individual protein interaction at a single time. These studies propose for the first time to study the cell surface platelet-monocyte interactions in a systematic large-scale approach using a reliable screening method we have developed. If successful, this will likely to identify previously unknown ligands for important receptors that will be investigated in details and also provide a list of novel interactions for the field. This should stimulate studies on developing alternative therapeutic strategies to treat vascular inflammatory disorders such as atherosclerosis, DVT and sepsis and other clinically important inflammatory conditions.Keywords: membrane proteins, large-scale screening, platelets, recombinant expression
Procedia PDF Downloads 151492 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors
Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis
Abstract:
In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method
Procedia PDF Downloads 135491 A Strategy to Oil Production Placement Zones Based on Maximum Closeness
Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes
Abstract:
Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone
Procedia PDF Downloads 329490 Gut Mycobiome Dysbiosis and Its Impact on Intestinal Permeability in Attention-Deficit/Hyperactivity Disorder
Authors: Liang-Jen Wang, Sung-Chou Li, Yuan-Ming Yeh, Sheng-Yu Lee, Ho-Chang Kuo, Chia-Yu Yang
Abstract:
Background: Dysbiosis in the gut microbial community might be involved in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). The fungal component of the gut microbiome, namely the mycobiota, is a hyperdiverse group of multicellular eukaryotes that can influence host intestinal permeability. This study therefore aimed to investigate the impact of fungal mycobiome dysbiosis and intestinal permeability on ADHD. Methods: Faecal samples were collected from 35 children with ADHD and from 35 healthy controls. Total DNA was extracted from the faecal samples, and the internal transcribed spacer (ITS) regions were sequenced using high-throughput next-generation sequencing (NGS). The fungal taxonomic classification was analysed using bioinformatics tools, and the differentially expressed fungal species between the ADHD and healthy control groups were identified. An in vitro permeability assay (Caco-2 cell layer) was used to evaluate the biological effects of fungal dysbiosis on intestinal epithelial barrier function. Results: The β-diversity (the species diversity between two communities), but not α-diversity (the species diversity within a community), reflected the differences in fungal community composition between ADHD and control groups. At the phylum level, the ADHD group displayed a significantly higher abundance of Ascomycota and significantly lower abundance of Basidiomycota than the healthy control group. At the genus level, the abundance of Candida (especially Candida albicans) was significantly increased in ADHD patients compared to the healthy controls. In addition, the in vitro cell assay revealed that C. albicans secretions significantly enhanced the permeability of Caco-2 cells. Conclusions: The current study is the first to explore altered gut mycobiome dysbiosis using the NGS platform in ADHD. The findings from this study indicated that dysbiosis of the fungal mycobiome and intestinal permeability might be associated with susceptibility to ADHD.Keywords: ADHD, fungus, gut–brain axis, biomarker, child psychiatry
Procedia PDF Downloads 113489 Covalent Binding of Cysteine to a Sol-Gel Material for Cadmium Biosorption from Aqueous Solutions
Authors: Claudiu Marcu, Cristina Paul, Adelina Andelescu, Corneliu Mircea Davidescu, Francisc Péter
Abstract:
Heavy metal pollution has become a more serious environmental problem in the last several decades as a result of its toxicity and insusceptibility to the environment. Methods for removing metal ions from aqueous solution mainly consist of physical, chemical and biochemical procedures. Biosorption is defined as the removal of metal or metalloid species, compounds and particulates from solution by a biological material. Biosorption represents a very attractive method for the removal of toxic metal ions from aqueous effluents because it uses the ability of various biomass to bind the metal ions without the risk of releasing other toxic chemical compounds into the environment. The problem with using biomass or living cells as biosorbents is that their regeneration/reuse is often either impossible or very laborious. One of the most common chelating group found in biosorbents is the thiol group in cysteine. Therefore, we immobilized cysteine using covalent binding using glutaraldehyde as a linker on a synthetic sol-gel support obtained using 3-amino-propyl-trimetoxysilane and trimetoxysilane as precursors. The obtained adsorbents were used for removal of cadmium from aqueous solutions and the removal capacity was investigated in relation to the composition of the sol-gel hybrid composite, the loading of the biomolecule and the physical parameters of the biosorption process. In the same conditions, the bare sol-gel support without cysteine had no Cd removal effect, while the adsorbent with cysteine had an adsorption capacity up to 25.8 mg Cd/g adsorbent at pH 2.0 and 119 mg Cd/g adsorbent at pH 6.6, depending on cadmium concentration and adsorption conditions. We used atomic adsorption spectrometry to assess the cadmium concentration in the samples after the biosorbtion process. The parameters for the Freundlich and Langmuir adsorption isotherms where calculated from plotting the results of the adsorption experiments. The results for cysteine immobilization show a good loading capacity of the sol-gel support which indicates it could be used to immobilize metal binding proteins and by doing so boosting the heavy metal adsorption capacity of the biosorbent.Keywords: biosorbtion, cadmium, cysteine covalent binding, sol-gel
Procedia PDF Downloads 294488 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties
Authors: Akbar Esmaeili, Mahnoosh Aliahmadi
Abstract:
This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.Keywords: nanocapsules, technolgy, biology, nano
Procedia PDF Downloads 40487 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks
Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev
Abstract:
One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.Keywords: channel estimation, inter-cell interference, pilot contamination attacks, wireless communications
Procedia PDF Downloads 217486 Resveratrol-Phospholipid Complex for Sustained Delivery of Resveratrol via the Skin for the Treatment of Inflammatory Diseases
Authors: Malay K. Das, Bhupen Kalita
Abstract:
The poor oral bioavailability of resveratrol (RSV) due to presystemic metabolism can be avoided via dermal route of administration. The hydrophilic-lipophilic nature of resveratrol-phospholipid complex (RSVPs) favors the delivery of resveratrol via the skin. The RSVPs embedded polymeric patch with moderate adhesiveness was developed for dermal application for sustained anti-inflammatory effect. The prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. The dermal flux of the optimized patch formulation was found to be at 4.28 ± 0.48 mg/cm2/24 h. The analysis of skin extract after permeation study revealed the presence of resveratrol, which confirmed the localization of RSVPs in the skin. The stability of RSVPs in the polymeric patch and the physiologic environment was confirmed by FE-SEM studies on the patches after drug release and skin permeation studies. The RSVPs particles released from the polymer matrix maintaining the structural integrity and permeate the keratinized horney layer of skin. The optimized patch formulation showed sustained anti-inflammatory effect (84.10% inhibition of inflammation at 24 h) in carrageenan-induced rat paw edema model compared to marketed diclofenac sodium gel (39.58% inhibition of inflammation at 24 h). The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained anti-inflammatory effect. Histological studies with phase contrast trinocular microscope suggested no alteration of skin integrity and no evidence of the presence of inflammatory cells after exposure to the permeants. The patch was found to be safe for skin application as evaluated by Draize method for skin irritation scoring in a rabbit model. These results suggest the therapeutic efficacy of the developed patch in both acute and chronic inflammatory diseases.Keywords: resveratrol-phospholipid complex, skin delivery, sustained anti-inflammatory effect, inflammatory diseases, dermal patch
Procedia PDF Downloads 230485 Exploring the Role of Immune-Modulators in Pathogen Recognition Receptor NOD2 Mediated Protection against Visceral Leishmaniasis
Authors: Junaid Jibran Jawed, Prasanta Saini, Subrata Majumdar
Abstract:
Background: Leishmania donovani infection causes severe host immune-suppression through the modulation of pathogen recognition receptors. Apart from TLRs (Toll Like Receptor), recent studies focus on the important contribution of NLR (NOD-Like Receptor) family member NOD1 and NOD2 as these receptors are capable of triggering host innate immunity. The aim of this study was to decipher the role of NOD1/NOD2 receptors during experimental visceral leishmaniasis (VL) and the important link between host failure and parasite evasion strategy. Method: The status of NOD1 and NOD2 receptors were analysed in uninfected and infected cells through western blotting and RT-PCR. The active contributions of these receptors in reducing parasite burden were confirmed by siRNA mediated silencing, and over-expression studies and the parasite numbers were calculated through microscopic examination of the Giemsa-stained slides. In-vivo studies were done by using non-toxic dose of Mw (Mycobacterium indicus pranii), Ara-LAM(Arabinoasylated lipoarabinomannan) along with MDP (Muramyl dipeptide) administration. Result: Leishmania donovani infection of the macrophages reduced the expression of NOD2 receptors whereas NOD1 remain unaffected. MDP, a NOD2-ligand, treatment during over-expression of NOD2, reduced the parasite burden effectively which was associated with increased pro-inflammatory cytokine generation and NO production. In experimental mouse model, Ara-LAM treatment increased the expression of NOD2 and in combination with MDP it showed active therapeutic potential against VL and found to be more effective than Mw which was already reported to be involved in NOD2 modulation. Conclusion: This work explores the essential contribution of NOD2 during experimental VL and mechanistic understanding of Ara-LAM + MDP combination therapy to work against this disease and highlighted NOD2 as an essential therapeutic target.Keywords: Ara-LAM (Arabinoacylated Lipoarabinomannan), NOD2 (nucleotide binding oligomerization receptor 2), MDP (muramyl di peptide), visceral Leishmaniasis
Procedia PDF Downloads 175484 Murine Pulmonary Responses after Sub-Chronic Exposure to Environmental Ultrafine Particles
Authors: Yara Saleh, Sebastien Antherieu, Romain Dusautoir, Jules Sotty, Laurent Alleman, Ludivine Canivet, Esperanza Perdrix, Pierre Dubot, Anne Platel, Fabrice Nesslany, Guillaume Garcon, Jean-Marc Lo-Guidice
Abstract:
Air pollution is one of the leading causes of premature death worldwide. Among air pollutants, particulate matter (PM) is a major health risk factor, through the induction of cardiopulmonary diseases and lung cancers. They are composed of coarse, fine and ultrafine particles (PM10, PM2.5, and PM0.1 respectively). Ultrafine particles are emerging unregulated pollutants that might have greater toxicity than larger particles, since they are more abundant and consequently have higher surface area per unit of mass. Our project aims to develop a relevant in vivo model of sub-chronic exposure to atmospheric particles in order to elucidate the specific respiratory impact of ultrafine particles compared to fine particulate matter. Quasi-ultrafine (PM0.18) and fine (PM2.5) particles have been collected in the urban industrial zone of Dunkirk in north France during a 7-month campaign, and submitted to physico-chemical characterization. BALB/c mice were then exposed intranasally to 10µg of PM0.18 or PM2.5 3 times a week. After 1 or 3-month exposure, broncho alveolar lavages (BAL) were performed and lung tissues were harvested for histological and transcriptomic analyses. The physico-chemical study of the collected particles shows that there is no major difference in elemental and surface chemical composition between PM0.18 and PM2.5. Furthermore, the results of the cytological analyses carried out show that both types of particulate fractions can be internalized in lung cells. However, the cell count in BAL and preliminary transcriptomic data suggest that PM0.18 could be more reactive and induce a stronger lung inflammation in exposed mice than PM2.5. Complementary studies are in progress to confirm these first data and to identify the metabolic pathways more specifically associated with the toxicity of ultrafine particles.Keywords: environmental pollution, lung affect, mice, ultrafine particles
Procedia PDF Downloads 239483 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner
Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally
Abstract:
International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion
Procedia PDF Downloads 223482 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries
Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez
Abstract:
Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS
Procedia PDF Downloads 128481 Inhalable Lipid-Coated-Chitosan Nano-Embedded Microdroplets of an Antifungal Drug for Deep Lung Delivery
Authors: Ranjot Kaur, Om P. Katare, Anupama Sharma, Sarah R. Dennison, Kamalinder K. Singh, Bhupinder Singh
Abstract:
Respiratory microbial infections being among the top leading cause of death worldwide are difficult to treat as the microbes reside deep inside the airways, where only a small fraction of drug can access after traditional oral or parenteral routes. As a result, high doses of drugs are required to maintain drug levels above minimum inhibitory concentrations (MIC) at the infection site, unfortunately leading to severe systemic side-effects. Therefore, delivering antimicrobials directly to the respiratory tract provides an attractive way out in such situations. In this context, current study embarks on the systematic development of lung lia pid-modified chitosan nanoparticles for inhalation of voriconazole. Following the principles of quality by design, the chitosan nanoparticles were prepared by ionic gelation method and further coated with major lung lipid by precipitation method. The factor screening studies were performed by fractional factorial design, followed by optimization of the nanoparticles by Box-Behnken Design. The optimized formulation has a particle size range of 170-180nm, PDI 0.3-0.4, zeta potential 14-17, entrapment efficiency 45-50% and drug loading of 3-5%. The presence of a lipid coating was confirmed by FESEM, FTIR, and X-RD. Furthermore, the nanoparticles were found to be safe upto 40µg/ml on A549 and Calu-3 cell lines. The quantitative and qualitative uptake studies also revealed the uptake of nanoparticles in lung epithelial cells. Moreover, the data from Spraytec and next-generation impactor studies confirmed the deposition of nanoparticles in lower airways. Also, the interaction of nanoparticles with DPPC monolayers signifies its biocompatibility with lungs. Overall, the study describes the methodology and potential of lipid-coated chitosan nanoparticles in futuristic inhalation nanomedicine for the management of pulmonary aspergillosis.Keywords: dipalmitoylphosphatidylcholine, nebulization, DPPC monolayers, quality-by-design
Procedia PDF Downloads 143