Search results for: delay tolerant networks
1017 An Institutional Mapping and Stakeholder Analysis of ASEAN’s Preparedness for Nuclear Power Disaster
Authors: Nur Azha Putra Abdul Azim, Denise Cheong, S. Nivedita
Abstract:
Currently, there are no nuclear power reactors among the Association of Southeast Asian Nations (ASEAN) member states (AMS) but there are seven operational nuclear research reactors, and Indonesia is about to construct the region’s first experimental power reactor by the end of the decade. If successful, the experimental power reactor will lay the foundation for the country’s and region’s first nuclear power plant. Despite projecting confidence during the period of nuclear power renaissance in the region in the last decade, none of the AMS has committed to a political decision on the use of nuclear energy and this is largely due to the Fukushima nuclear power accident in 2011. Of the ten AMS, Vietnam, Indonesia and Malaysia have demonstrated the most progress in developing nuclear energy based on the nuclear power infrastructure development assessments made by the International Atomic Energy Agency. Of these three states, Vietnam came closest to building its first nuclear power plant but decided to delay construction further due to safety and security concerns. Meanwhile, Vietnam along with Indonesia and Malaysia continue with their nuclear power infrastructure development and the remaining SEA states, with the exception of Brunei and Singapore, continue to build their expertise and capacity for nuclear power energy. At the current rate of progress, Indonesia is expected to make a national decision on the use of nuclear power by 2023 while Malaysia, the Philippines, and Thailand have included the use of nuclear power in their mid to long-term power development plans. Vietnam remains open to nuclear power but has not placed a timeline. The medium to short-term power development projection in the region suggests that the use of nuclear energy in the region is a matter of 'when' rather than 'if'. In lieu of the prospects for nuclear energy in Southeast Asia (SEA), this presentation will review the literature on ASEAN radiological emergency and preparedness response (EPR) plans and examine ASEAN’s disaster management and emergency framework. Through a combination of institutional mapping and stakeholder analysis methods, which we examine in the context of the international EPR, and nuclear safety and security regimes, we will identify the issues and challenges in developing a regional radiological EPR framework in the SEA. We will conclude with the observation that ASEAN faces serious structural, institutional and governance challenges due to the AMS inherent political structures and history of interstate conflicts, and propose that ASEAN should either enlarge the existing scope of its disaster management and response framework or that its radiological EPR framework should exist as a separate entity.Keywords: nuclear power, nuclear accident, ASEAN, Southeast Asia
Procedia PDF Downloads 1531016 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 981015 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigatedKeywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc
Procedia PDF Downloads 851014 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 3851013 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 4821012 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.Keywords: low light image enhancement, deep learning, convolutional neural network, image processing
Procedia PDF Downloads 851011 An as-If Ritual and Its Discontents: Everyday Life of North Korean Migrant Women in South Korea
Authors: Sojung Kim
Abstract:
This paper explores how the Partition of Korea is absorbed into everyday life through North Korean migrant women’s rituals for traditional holidays in Korea. In national holidays called myungjul, Koreans traditionally visit their paternal ancestor’s hometowns to hold jesa, the rites for the ancestors, at the graves and home. Due to the physical gaps in the kinship networks, marked by the kin left behind in North Korea, North Korean migrants gather among themselves in the neighborhood in South Korea as if they make the myungjul ritual of the family gatherings. This impossibility of the proper practice of the rites insinuates the violence of the Partition refracted into the family relations between those in the South and those in the North. Yet, the myungjul gathering creates a kind of collective hometown, beside one’s genealogical hometown, where they can express lamentation and guilt over not being able to visit their parents and ancestors in their hometowns, which they are traditionally required to do. In this as-if ritual, myungjul is re-created for and by the women and for others in the community. Yet, the texture of this ritual is marked by discontent and dissatisfaction. Attending to fostering discontents that seep into the collective events, this paper aims to seek ways to study the violence that permeated in everyday life in partitioned Korea.Keywords: as-if ritual, everyday life, kinship, migration
Procedia PDF Downloads 1471010 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 461009 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses
Authors: Nuri Caglayan, H. Kursat Celik
Abstract:
There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.Keywords: air quality, fuzzy logic model, livestock housing, fan speed
Procedia PDF Downloads 3741008 An Open Trial of Mobile-Assisted Cognitive Behavioral Therapy for Negative Symptoms in Schizophrenia: Pupillometry Predictors of Outcome
Authors: Eric Granholm, Christophe Delay, Jason Holden, Peter Link
Abstract:
Negative symptoms are an important unmet treatment needed for schizophrenia. We conducted an open trial of a novel blended intervention called mobile-assisted cognitive behavior therapy for negative symptoms (mCBTn). mCBTn is a weekly group therapy intervention combining in-person and smartphone-based CBT (CBT2go app) to improve experiential negative symptoms in people with schizophrenia. Both the therapy group and CBT2go app included recovery goal setting, thought challenging, scheduling of pleasurable activities and social interactions, and pleasure savoring interventions to modify defeatist attitudes, a target mechanism associated with negative symptoms, and improve experiential negative symptoms. We tested whether participants with schizophrenia or schizoaffective disorder (N=31) who met prospective criteria for persistent negative symptoms showed improvement in experiential negative symptoms. Retention was excellent (87% at 18 weeks) and severity of defeatist attitudes and motivation and pleasure negative symptoms declined significantly in mCBTn with large effect sizes. We also tested whether pupillary responses, a measure of cognitive effort, predicted improvement in negative symptoms mCBTn. Pupillary responses were recorded at baseline using a Tobii pupillometer during the digit span task with 3-, 6- and 9-digit spans. Mixed models showed that greater dilation during the task at baseline significantly predicted a greater reduction in experiential negative symptoms. Pupillary responses may provide a much-needed prognostic biomarker of which patients are most likely to benefit from CBT. Greater pupil dilation during a cognitive task predicted greater improvement in experiential negative symptoms. Pupil dilation has been linked to motivation and engagement of executive control, so these factors may contribute to benefits in interventions that train cognitive skills to manage negative thoughts and emotions. The findings suggest mCBTn is a feasible and effective treatment for experiential negative symptoms and justify a larger randomized controlled clinical trial. The findings also provide support for the defeatist attitude model of experiential negative symptoms and suggest that mobile-assisted interventions like mCBTn can strengthen and shorten intensive psychosocial interventions for schizophrenia.Keywords: cognitive-behavioral therapy, mobile interventions, negative symptoms, pupillometry schizophrenia
Procedia PDF Downloads 1811007 Private Coded Computation of Matrix Multiplication
Authors: Malihe Aliasgari, Yousef Nejatbakhsh
Abstract:
The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers
Procedia PDF Downloads 1251006 Community Based Psychosocial Intervention Reduces Maternal Depression and Infant Development in Bangladesh
Authors: S. Yesmin, N. F.Rahman, R. Akther, T. Begum, T. Tahmid, T. Chowdury, S. Afrin, J. D. Hamadani
Abstract:
Abstract: Maternal depression is one of the risk factors of developmental delay in young children in low-income countries. Maternal depressions during pregnancy are rarely reported in Bangladesh. Objectives: The purpose of the present study was to examine the efficacy of a community based psychosocial intervention on women with mild to moderate depressive illness during the perinatal period and on their children from birth to 12 months on mothers’ mental status and their infants’ growth and development. Methodology: The study followed a prospective longitudinal approach with a randomized controlled design. Total 250 pregnant women aged between 15 and 40 years were enrolled in their third trimester of pregnancy of which 125 women were in the intervention group and 125 in the control group. Women in the intervention group received the “Thinking Healthy (CBT based) program” at their home setting, from their last month of pregnancy till 10 months after delivery. Their children received psychosocial stimulation from birth till 12 months. The following instruments were applied to get the outcome information- Bangla version of Edinburgh Postnatal Depression Scale (BEPDS), Prenatal Attachment Inventory (PAI), Maternal Attachment Inventory (MAI), Bayley Scale of Infant Development-Third version (Bayley–III) and Family Care Indicator (FCI). In addition, sever morbidity; breastfeeding, immunization, socio-economic and demographic information were collected. Data were collected at three time points viz. baseline, midline (6 months after delivery) and endline (12 months after delivery). Results: There was no significant difference between any of the socioeconomic and demographic variables at baseline. A very preliminary analysis of the data shows an intervention effect on Socioemotional behaviour of children at endline (p<0.001), motor development at midline (p=0.016) and at endline (p=0.065), language development at midline (p=0.004) and at endline (p=0.023), cognitive development at midline (p=0.008) and at endline (p=0.002), and quality of psychosocial stimulation at midline (p=0.023) and at endline (p=0.010). EPDS at baseline was not different between the groups (p=0.419), but there was a significant improvement at midline (p=0.027) and at endline (p=0.024) between the groups following the intervention. Conclusion: Psychosocial intervention is found effective in reducing women’s low and moderate depressive illness to cope with mental health problem and improving development of young children in Bangladesh.Keywords: mental health, maternal depression, infant development, CBT, EPDS
Procedia PDF Downloads 2751005 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 1641004 An Improved Image Steganography Technique Based on Least Significant Bit Insertion
Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo
Abstract:
In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.Keywords: steganography, image steganography, least significant bits, bit map image
Procedia PDF Downloads 2671003 Sorption of Charged Organic Dyes from Anionic Hydrogels
Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos
Abstract:
Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison.Keywords: anionic organic hydrogels, sorption, organic dyes, water purification agents
Procedia PDF Downloads 2601002 Computational Fluid Dynamics Simulation to Study the Effect of Ambient Temperature on the Ventilation in a Metro Tunnel
Authors: Yousef Almutairi, Yajue Wu
Abstract:
Various large-scale trends have characterized the current century thus far, including increasing shifts towards urbanization and greater movement. It is predicted that there will be 9.3 billion people on Earth in 2050 and that over two-thirds of this population will be city dwellers. Moreover, in larger cities worldwide, mass transportation systems, including underground systems, have grown to account for the majority of travel in those settings. Underground networks are vulnerable to fires, however, endangering travellers’ safety, with various examples of fire outbreaks in this setting. This study aims to increase knowledge of the impacts of extreme climatic conditions on fires, including the role of the high ambient temperatures experienced in Middle Eastern countries and specifically in Saudi Arabia. This is an element that is not always included when assessments of fire safety are made (considering visibility, temperatures, and flows of smoke). This paper focuses on a tunnel within Riyadh’s underground system as a case study and includes simulations based on computational fluid dynamics using ANSYS Fluent, which investigates the impact of various ventilation systems while identifying smoke density, speed, pressure and temperatures within this tunnel.Keywords: fire, subway tunnel, CFD, mechanical ventilation, smoke, temperature, harsh weather
Procedia PDF Downloads 1331001 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1391000 The Importance of Anthropometric Indices for Assessing the Physical Development and Physical Fitness of Young Athletes
Authors: Akbarova Gulnozakhon
Abstract:
Relevance. Physical exercises can prolong the function of the growth zones of long tubular bones, delay the fusion of the epiphyses and diaphyses of bones and, thus, increase the growth of the body. At the same time, intensive strength exercises can accelerate the process of ossification of bone growth zones and slow down their growth in length. The influence of physical exercises on the process of biological maturation is noted. Gymnastics, which requires intense speed and strength loads, delays puberty. On the other hand, it is indicated that the relatively slow puberty of gymnasts is associated with the selection of girls with a special somatotype in this sport. It was found that the later onset of menstruation in female athletes does not have a negative effect on the maturation process and fertility (the ability to procreate). Observations are made about the normalizing influence of sports on the puberty of girls. The purpose of the study. Our goal is to study physical activity of varying intensity on the formation of secondary sexual characteristics and hormonal status of girls in adolescence. Each biological process peculiar to a given organism is not in a stationary state, but fluctuates with a certain frequency. According to the duration, there are, for example, circadian cycles, and infradian cycles, a typical example of which is the menstrual cycle. Materials and methods, results. Violations of menstrual function in athletes were detected by applying a questionnaire survey that contains several paragraphs and sub-paragraphs where passport data, anthropometric indicators, taking into account anthropometric indices, information about the menstrual cycle are indicated. Of 135 female athletes aged 1-3 to 16 years engaged in various sports - gymnasts, menstrual function disorders were noted in 86.7% (primary or secondary amenorrhea, irregular MC), in swimming-in 57.1%. The general condition also changes during the menstrual cycle. In a large percentage of cases, athletes indicate an increase in irritability in the premenstrual (45%) and menstrual (36%) phases. During these phases, girls note an increase in fatigue of 46.5% and 58% (respectively). In girls, secondary sexual characteristics continue to form during puberty and the clearest indicator of the onset of puberty is the age of the onset of the first menstruation - menarche. Conclusions. 1. Physical exercise has a positive effect on all major systems of the body and thus promotes health.2. Along with a beneficial effect on human health, physical exercise, if the requirements of sports are not observed, can be harmful.Keywords: girls health, anthropometric, physical development, reproductive health
Procedia PDF Downloads 104999 The Impact of Information and Communication Technology on the Re-Engineering Process of Small and Medium Enterprises
Authors: Hiba Mezaache
Abstract:
The current study aimed to know the impact of using information and communication technology on the process of re-engineering small and medium enterprises, as the world witnessed the speed development of the latter in its field of work and the diversity of its objectives and programs, that also made its process important for the growth and development of the institution and also gaining the flexibility to face the changes that may occur in the environment of work, so in order to know the impact of information and communication technology on the success of this process, we prepared an electronic questionnaire that included (70) items, and we also used the SPSS statistical calendar to analyze the data obtained. In the end of our study, our conclusion was that there was a positive correlation between the four dimensions of information and communication technology, i.e., hardware and equipment, software, communication networks, databases, and the re-engineering process, in addition to the fact that the studied institutions attach great importance to formal communication, for its positive advantages that it achieves in reducing time and effort and costs in performing the business. We could also say that communication technology contributes to the process of formulating objectives related to the re-engineering strategy. Finally, we recommend the necessity of empowering workers to use information technology and communication more in enterprises, and to integrate them more into the activity of the enterprise by involving them in the decision-making process, and also to keep pace with the development in the field of software, hardware, and technological equipment.Keywords: information and communication technology, re-engineering, small and medium enterprises, the impact
Procedia PDF Downloads 180998 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)
Authors: Emmanuel Ekwueme, Anwar Ali
Abstract:
As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy
Procedia PDF Downloads 17997 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing
Authors: Seyong Oh, Jin-Hong Park
Abstract:
Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing
Procedia PDF Downloads 175996 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity
Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang
Abstract:
The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.Keywords: text information retrieval, natural language processing, new word discovery, information extraction
Procedia PDF Downloads 100995 Challenging Weak Central Coherence: An Exploration of Neurological Evidence from Visual Processing and Linguistic Studies in Autism Spectrum Disorder
Authors: Jessica Scher Lisa, Eric Shyman
Abstract:
Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by persistent deficits in social communication and social interaction (i.e. deficits in social-emotional reciprocity, nonverbal communicative behaviors, and establishing/maintaining social relationships), as well as by the presence of repetitive behaviors and perseverative areas of interest (i.e. stereotyped or receptive motor movements, use of objects, or speech, rigidity, restricted interests, and hypo or hyperactivity to sensory input or unusual interest in sensory aspects of the environment). Additionally, diagnoses of ASD require the presentation of symptoms in the early developmental period, marked impairments in adaptive functioning, and a lack of explanation by general intellectual impairment or global developmental delay (although these conditions may be co-occurring). Over the past several decades, many theories have been developed in an effort to explain the root cause of ASD in terms of atypical central cognitive processes. The field of neuroscience is increasingly finding structural and functional differences between autistic and neurotypical individuals using neuro-imaging technology. One main area this research has focused upon is in visuospatial processing, with specific attention to the notion of ‘weak central coherence’ (WCC). This paper offers an analysis of findings from selected studies in order to explore research that challenges the ‘deficit’ characterization of a weak central coherence theory as opposed to a ‘superiority’ characterization of strong local coherence. The weak central coherence theory has long been both supported and refuted in the ASD literature and has most recently been increasingly challenged by advances in neuroscience. The selected studies lend evidence to the notion of amplified localized perception rather than deficient global perception. In other words, WCC may represent superiority in ‘local processing’ rather than a deficit in global processing. Additionally, the right hemisphere and the specific area of the extrastriate appear to be key in both the visual and lexicosemantic process. Overactivity in the striate region seems to suggest inaccuracy in semantic language, which lends itself to support for the link between the striate region and the atypical organization of the lexicosemantic system in ASD.Keywords: autism spectrum disorder, neurology, visual processing, weak coherence
Procedia PDF Downloads 130994 e-Learning Security: A Distributed Incident Response Generator
Authors: Bel G Raggad
Abstract:
An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection
Procedia PDF Downloads 438993 Occupational Diseases in the Automotive Industry in Czechia
Authors: J. Jarolímek, P. Urban, P. Pavlínek, D. Dzúrová
Abstract:
The industry constitutes a dominant economic sector in Czechia. The automotive industry represents the most important industrial sector in terms of gross value added and the number of employees. The objective of this study was to analyse the occurrence of occupational diseases (OD) in the automotive industry in Czechia during the 2001-2014 period. Whereas the occurrence of OD in other sectors has generally been decreasing, it has been increasing in the automotive industry, including growing spatial discrepancies. Data on OD cases were retrieved from the National Registry of Occupational Diseases. Further, we conducted a survey in automotive companies with a focus on occupational health services and positions of the companies in global production networks (GPNs). An analysis of OD distribution in the automotive industry was performed (age, gender, company size and its role in GPNs, regional distribution of studied companies, and regional unemployment rate), and was accompanied by an assessment of the quality and range of occupational health services. The employees older than 40 years had nearly 2.5 times higher probability of OD occurrence compared with employees younger than 40 years (OR 2.41; 95% CI: 2.05-2.85). The OD occurrence probability was 3 times higher for women than for men (OR 3.01; 95 % CI: 2.55-3.55). The OD incidence rate was increasing with the size of the company. An association between the OD incidence and the unemployment rate was not confirmed.Keywords: occupational diseases, automotive industry, health geography, unemployment
Procedia PDF Downloads 251992 Research on Road Openness in the Old Urban Residential District Based on Space Syntax: A Case Study on Kunming within the First Loop Road
Authors: Haoyang Liang, Dandong Ge
Abstract:
With the rapid development of Chinese cities, traffic congestion has become more and more serious. At the same time, there are many closed old residential area in Chinese cities, which seriously affect the connectivity of urban roads and reduce the density of urban road networks. After reopening the restricted old residential area, the internal roads in the original residential area were transformed into urban roads, which was of great help to alleviate traffic congestion. This paper uses the spatial syntactic theory to analyze the urban road network and compares the roads with the integration and connectivity degree to evaluate whether the opening of the roads in the residential areas can improve the urban traffic. Based on the road network system within the first loop road in Kunming, the Space Syntax evaluation model is established for status analysis. And comparative analysis method will be used to compare the change of the model before and after the road openness of the old urban residential district within the first-ring road in Kunming. Then it will pick out the areas which indicate a significant difference for the small dimensions model analysis. According to the analyzed results and traffic situation, the evaluation of road openness in the old urban residential district will be proposed to improve the urban residential districts.Keywords: Space Syntax, Kunming, urban renovation, traffic jam
Procedia PDF Downloads 163991 Financing from Customers for SMEs and Managing Financial Risks: The Role of Customer Relationships
Authors: Yongsheng Guo, Mengyu Lu
Abstract:
This study investigates how Chinese SMEs manage financial risks in financing from customers from the perspectives of ethics and national culture. A grounded theory approach is adopted to identify the causal conditions, actions/interactions, and consequences. 32 interviews were conducted, and systematic coding methods were used to identify themes and categories. This study found that Chinese ethical principles, including integrity, friendship, and reciprocity, and cultural traits, including collectivism, acquaintance society, and long-term orientation, provide conditions for financing from customers. The SMEs establish trust-based relationships with customers through personal communications and social networks and reduce financial risk through diversification, frequent operations, and enterprise reputations. Both customers and SMEs can get benefits like financial resources and customer experiences. This study creates a theoretical framework that connects the causal conditions, processes, and outcomes, providing a deeper understanding of financing from customers. A resource and process capability theory of SMEs and a customer capital and customer value model are proposed to connect accounting and finance concepts. Suggestions are proposed for the authorities as more guidance and regulations are needed for this informal finance.Keywords: CRM, culture, ethics, SME, risk management
Procedia PDF Downloads 45990 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis
Authors: Sipu Guo, Silin Huang
Abstract:
Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.Keywords: allostatic load, executive function, network analysis, rural adolescent
Procedia PDF Downloads 52989 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets
Authors: Ece Cigdem Mutlu, Burak Alakent
Abstract:
Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.Keywords: average run length, M-estimators, quality control, robust estimators
Procedia PDF Downloads 191988 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks
Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem
Abstract:
The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.Keywords: classification, gated recurrent unit, recurrent neural network, transportation
Procedia PDF Downloads 138