Search results for: data infrastructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26559

Search results for: data infrastructure

23829 Urban Resilince and Its Prioritised Components: Analysis of Industrial Township Greater Noida

Authors: N. Mehrotra, V. Ahuja, N. Sridharan

Abstract:

Resilience is an all hazard and a proactive approach, require a multidisciplinary input in the inter related variables of the city system. This research based to identify and operationalize indicators for assessment in domain of institutions, infrastructure and knowledge, all three operating in task oriented community networks. This paper gives a brief account of the methodology developed for assessment of Urban Resilience and its prioritized components for a target population within a newly planned urban complex integrating Surajpur and Kasna village as nodes. People’s perception of Urban Resilience has been examined by conducting questionnaire survey among the target population of Greater Noida. As defined by experts, Urban Resilience of a place is considered to be both a product and process of operation to regain normalcy after an event of disturbance of certain level. Based on this methodology, six indicators are identified that contribute to perception of urban resilience both as in the process of evolution and as an outcome. The relative significance of 6 R’ has also been identified. The dependency factor of various resilience indicators have been explored in this paper, which helps in generating new perspective for future research in disaster management. Based on the stated factors this methodology can be applied to assess urban resilience requirements of a well planned town, which is not an end in itself, but calls for new beginnings.

Keywords: disaster, resilience, system, urban

Procedia PDF Downloads 465
23828 Stakeholder Analysis of Agricultural Drone Policy: A Case Study of the Agricultural Drone Ecosystem of Thailand

Authors: Thanomsin Chakreeves, Atichat Preittigun, Ajchara Phu-ang

Abstract:

This paper presents a stakeholder analysis of agricultural drone policies that meet the government's goal of building an agricultural drone ecosystem in Thailand. Firstly, case studies from other countries are reviewed. The stakeholder analysis method and qualitative data from the interviews are then presented including data from the Institute of Innovation and Management, the Office of National Higher Education Science Research and Innovation Policy Council, agricultural entrepreneurs and farmers. Study and interview data are then employed to describe the current ecosystem and to guide the implementation of agricultural drone policies that are suitable for the ecosystem of Thailand. Finally, policy recommendations are then made that the Thai government should adopt in the future.

Keywords: drone public policy, drone ecosystem, policy development, agricultural drone

Procedia PDF Downloads 155
23827 Study and Analysis of Optical Intersatellite Links

Authors: Boudene Maamar, Xu Mai

Abstract:

Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.

Keywords: optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication

Procedia PDF Downloads 451
23826 Sunshine Hour as a Factor to Maintain the Circadian Rhythm of Heart Rate: Analysis of Ambulatory ECG and Weather Big Data

Authors: Emi Yuda, Yutaka Yoshida, Junichiro Hayano

Abstract:

Distinct circadian rhythm of activity, i.e., high activity during the day and deep rest at night are a typical feature of a healthy lifestyle. Exposure to the skylight is thought to be an important factor to increase arousal level and maintain normal circadian rhythm. To examine whether sunshine hours influence the day-night contract of activity, we analyzed the relationship between 24-hour heart rate (HR) and weather data of the recording day. We analyzed data in 36,500 males and 49,854 females of Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) database in Japan. Median (IQR) sunshine duration was 5.3 (2.8-7.9) hr. While sunshine hours had only modest effects of increasing 24-hour average HR in either gender (P=0.0282 and 0.0248 for male and female) and no significant effects on nighttime HR in either gender, it increased daytime HR (P = 0.0007 and 0.0015) and day-night HF difference in both genders (P < 0.0001 for both) even after adjusting for the effects of average temperature, atmospheric pressure, and humidity. Our observations support for the hypothesis that longer sunshine hours enhance circadian rhythm of activity.

Keywords: big data, circadian rhythm, heart rate, sunshine

Procedia PDF Downloads 168
23825 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector

Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau

Abstract:

Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.

Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement

Procedia PDF Downloads 205
23824 Dynamic Analysis of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Loadings

Authors: Naik Muhammad, Zahid Ullah, Dong-Ho Choi

Abstract:

Submerged floating tunnel (SFT) is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters, and can be a good alternative to long span suspension bridges. SFT is a massive cylindrical structure that floats at a certain depth below the water surface and subjected to extreme environmental conditions. The identification of dominant structural response of SFT becomes more important due to intended environmental conditions for the design of SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic time history analysis of SFT subjected to hydrodynamic and seismic excitations is performed. The SFT is modeled by finite element 3D beam, and the mooring cables are modeled by truss elements. Based on the dynamic time history analysis the displacements and internal forces of SFT were calculated. The response of SFT is presented for hydrodynamic and seismic excitations. The transverse internal forces of SFT were the maximum compared to vertical direction, for both hydrodynamic and seismic cases; this indicates that the cable system provides very small stiffness in transverse direction as compared to vertical direction of SFT.

Keywords: submerged floating tunnel, hydrodynamic analysis, time history analysis, seismic response

Procedia PDF Downloads 331
23823 Hybridized Approach for Distance Estimation Using K-Means Clustering

Authors: Ritu Vashistha, Jitender Kumar

Abstract:

Clustering using the K-means algorithm is a very common way to understand and analyze the obtained output data. When a similar object is grouped, this is called the basis of Clustering. There is K number of objects and C number of cluster in to single cluster in which k is always supposed to be less than C having each cluster to be its own centroid but the major problem is how is identify the cluster is correct based on the data. Formulation of the cluster is not a regular task for every tuple of row record or entity but it is done by an iterative process. Each and every record, tuple, entity is checked and examined and similarity dissimilarity is examined. So this iterative process seems to be very lengthy and unable to give optimal output for the cluster and time taken to find the cluster. To overcome the drawback challenge, we are proposing a formula to find the clusters at the run time, so this approach can give us optimal results. The proposed approach uses the Euclidian distance formula as well melanosis to find the minimum distance between slots as technically we called clusters and the same approach we have also applied to Ant Colony Optimization(ACO) algorithm, which results in the production of two and multi-dimensional matrix.

Keywords: ant colony optimization, data clustering, centroids, data mining, k-means

Procedia PDF Downloads 130
23822 Digital Twin for University Campus: Workflow, Applications and Benefits

Authors: Frederico Fialho Teixeira, Islam Mashaly, Maryam Shafiei, Jurij Karlovsek

Abstract:

The ubiquity of data gathering and smart technologies, advancements in virtual technologies, and the development of the internet of things (IoT) have created urgent demands for the development of frameworks and efficient workflows for data collection, visualisation, and analysis. Digital twin, in different scales of the city into the building, allows for bringing together data from different sources to generate fundamental and illuminating insights for the management of current facilities and the lifecycle of amenities as well as improvement of the performance of current and future designs. Over the past two decades, there has been growing interest in the topic of digital twin and their applications in city and building scales. Most such studies look at the urban environment through a homogeneous or generalist lens and lack specificity in particular characteristics or identities, which define an urban university campus. Bridging this knowledge gap, this paper offers a framework for developing a digital twin for a university campus that, with some modifications, could provide insights for any large-scale digital twin settings like towns and cities. It showcases how currently unused data could be purposefully combined, interpolated and visualised for producing analysis-ready data (such as flood or energy simulations or functional and occupancy maps), highlighting the potential applications of such a framework for campus planning and policymaking. The research integrates campus-level data layers into one spatial information repository and casts light on critical data clusters for the digital twin at the campus level. The paper also seeks to raise insightful and directive questions on how digital twin for campus can be extrapolated to city-scale digital twin. The outcomes of the paper, thus, inform future projects for the development of large-scale digital twin as well as urban and architectural researchers on potential applications of digital twin in future design, management, and sustainable planning, to predict problems, calculate risks, decrease management costs, and improve performance.

Keywords: digital twin, smart campus, framework, data collection, point cloud

Procedia PDF Downloads 72
23821 Ground Improvement with Basal Reinforcement with High Strength Geogrids and PVDs for Embankment over Soft Soils

Authors: Ratnakar Mahajan, Matteo Lelli, Kinjal Parmar

Abstract:

Ground improvement is a very important aspect of infrastructure development, especially when it comes to deep-ground improvement. The use of various geosynthetic applications is very common these days for ground improvement. This paper presents a case study where the combination of two geosynthetic applications was used in order to optimize the design as well as to control the settlements through uniform load distribution. The Agartala-Akaura rail project was made to help increase railway connectivity between India and Bangladesh. Both countries have started the construction of the same. The project requires high railway embankments to be built for the rail link. However, the challenge was to design a proper ground improvement solution as the entire area comprises very soft soil for an average depth of 15m. After due diligence, a combination of two methods was worked out by Maccaferri. PVDs were provided for the consolidation, and on top of that, a layer of high-strength geogrids (Paralink) was proposed as a basal reinforcement. The design approach was followed as described in Indian standards as well as British standards. By introducing a basal reinforcement, the spacing of PVDs could be increased, which allowed quick installation and less material consumption while keeping the consolidation time within the project duration.

Keywords: ground improvement, basal reinforcement, PVDs, high strength geogrids, Paralink

Procedia PDF Downloads 78
23820 Impact of Job Burnout on Job Satisfaction and Job Performance of Front Line Employees in Bank: Moderating Role of Hope and Self-Efficacy

Authors: Huma Khan, Faiza Akhtar

Abstract:

The present study investigates the effects of burnout toward job performance and job satisfaction with the moderating role of hope and self-efficacy. Findings from 310 frontline employees of Pakistani commercial banks (Lahore, Karachi & Islamabad) disclosed burnout has negative significant effects on job performance and job satisfaction. Simple random sampling technique was used to collect data and inferential statistics were applied to analyzed the data. However, results disclosed no moderation effect of hope on burnout, job performance or with job satisfaction. Moreover, Data significantly supported the moderation effect of self-efficacy. Study further shed light on the development of psychological capital. Importance of the implication of the current finding is discussed.

Keywords: burnout, hope, job performance, job satisfaction, psychological capital, self-efficacy

Procedia PDF Downloads 144
23819 Obstacle Classification Method Based on 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.

Keywords: obstacle, classification, database, LIDAR, segmentation, intensity

Procedia PDF Downloads 355
23818 Body Farming in India and Asia

Authors: Yogesh Kumar, Adarsh Kumar

Abstract:

A body farm is a research facility where research is done on forensic investigation and medico-legal disciplines like forensic entomology, forensic pathology, forensic anthropology, forensic archaeology, and related areas of forensic veterinary. All the research is done to collect data on the rate of decomposition (animal and human) and forensically important insects to assist in crime detection. The data collected is used by forensic pathologists, forensic experts, and other experts for the investigation of crime cases and further research. The research work includes different conditions of a dead body like fresh, bloating, decay, dry, and skeleton, and data on local insects which depends on the climatic conditions of the local areas of that country. Therefore, it is the need of time to collect appropriate data in managed conditions with a proper set-up in every country. Hence, it is the duty of the scientific community of every country to establish/propose such facilities for justice and social management. The body farms are also used for training of police, military, investigative dogs, and other agencies. At present, only four countries viz. U.S., Australia, Canada, and Netherlands have body farms and related facilities in organised manner. There is no body farm in Asia also. In India, we have been trying to establish a body farm in A&N Islands that is near Singapore, Malaysia, and some other Asian countries. In view of the above, it becomes imperative to discuss the matter with Asian countries to collect the data on decomposition in a proper manner by establishing a body farm. We can also share the data, knowledge, and expertise to collaborate with one another to make such facilities better and have good scientific relations to promote science and explore ways of investigation at the world level.

Keywords: body farm, rate of decomposition, forensically important flies, time since death

Procedia PDF Downloads 90
23817 The Impact of Inflation Rate and Interest Rate on Islamic and Conventional Banking in Afghanistan

Authors: Tareq Nikzad

Abstract:

Since the first bank was established in 1933, Afghanistan's banking sector has seen a number of variations but hasn't been able to grow to its full potential because of the civil war. The implementation of dual banks in Afghanistan is investigated in this study in relation to the effects of inflation and interest rates. This research took data from World Bank Data (WBD) over a period of nineteen years. For the banking sector, inflation, which is the general rise in prices of goods and services over time, presents considerable difficulties. The objectives of this research are to analyze the effect of inflation and interest rates on conventional and Islamic banks in Afghanistan, identify potential differences between these two banking models, and provide insights for policymakers and practitioners. A mixed-methods approach is used in the research to analyze quantitative data and qualitatively examine the unique difficulties that banks in Afghanistan's economic atmosphere encounter. The findings contribute to the understanding of the relationship between interest rate, inflation rate, and the performance of both banking systems in Afghanistan. The paper concludes with recommendations for policymakers and banking institutions to enhance the stability and growth of the banking sector in Afghanistan. Interest is described as "a prefixed rate for use or borrowing of money" from an Islamic perspective. This "prefixed rate," known in Islamic economics as "riba," has been described as "something undesirable." Furthermore, by using the time series regression data technique on the annual data from 2003 to 2021, this research examines the effect of CPI inflation rate and interest rate of Banking in Afghanistan.

Keywords: inflation, Islamic banking, conventional banking, interest, Afghanistan, impact

Procedia PDF Downloads 77
23816 Review of the Legislative and Policy Issues in Promoting Infrastructure Development to Promote Automation in Telecom Industry

Authors: Marvin Ricardo Awarab

Abstract:

There has never been a greater need for telecom services. The Internet of Things (IoT), 5G networking, and edge computing are the driving forces behind this increased demand. The fierce demand offers communications service providers significant income opportunities. The telecom sector is centered on automation, and realizing a digital operation that functions as a real-time business will be crucial for the industry as a whole. Automation in telecom refers to the application of technology to create a more effective, quick, and scalable alternative to the conventional method of operating the telecom industry. With the promotion of 5G and the Internet of Things (IoT), telecom companies will continue to invest extensively in telecom automation technology. Automation offers benefits in the telecom industry; developing countries such as Namibia may not fully tap into such benefits because of the lack of funds and infrastructural resources to invest in automation. This paper fully investigates the benefits of automation in the telecom industry. Furthermore, the paper identifies hiccups that developing countries such as Namibia face in their quest to fully introduce automation in the telecom industry. Additionally, the paper proposes possible avenues that Namibia, as a developing country, adopt investing in automation infrastructural resources with the aim of reaping the full benefits of automation in the telecom industry.

Keywords: automation, development, internet, internet of things, network, telecom, telecommunications policy, 5G

Procedia PDF Downloads 69
23815 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.

Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria

Procedia PDF Downloads 381
23814 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics

Authors: Janne Engblom, Elias Oikarinen

Abstract:

A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.

Keywords: dynamic model, fixed effects, panel data, price dynamics

Procedia PDF Downloads 1516
23813 Blockchain-Based Assignment Management System

Authors: Amogh Katti, J. Sai Asritha, D. Nivedh, M. Kalyan Srinivas, B. Somnath Chakravarthi

Abstract:

Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf,.doc,.ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators.

Keywords: education technology, learning management system, decentralized applications, blockchain

Procedia PDF Downloads 87
23812 US-ASEAN Counter Terrorism Cooperation: Maintaining International Security and Avoiding Muslim Stereotypes

Authors: Jordan Daud, Satriya Wibawa, Wahyu Wardhana

Abstract:

The US Global War on Terror has had effect on Southeast Asia as Second Front of Global War on Terror. Since 2001, ASEAN had adopted legal framework to counter the terrorist threat through numerous approach which accommodate various counterterrorism policy of the ten member states. ASEAN have also enhanced multilateral cooperation with US and its allies in Asia Pacific region in addressing terrorist threat, terrorist funding, cyber terrorism and other forms of terrorism. This cooperation is essential to maintain international security and stability and also assure economic development. This work focuses on the US-ASEAN counterterrorism cooperation due to they identified terrorism as a mutual enemy that posed to human security, infrastructure security, and national security. Having in mind that international terrorism usually connected with Muslim community, this paper will also elaborate the concept of Jihad and Islam revivalism in politics to avoid negative image of Islam and Muslim. This paper argues that as region with large Muslim community, Southeast Asia still need to tighten counter terrorism cooperation and also lessening Muslim stereotypes with terrorism through educating public understanding and inter-faith and intra-faith dialogue to create a better world.

Keywords: ASEAN, U.S., counter terrorism, Muslim stereotypes

Procedia PDF Downloads 252
23811 Access to Apprenticeships and the Impact of Individual and School Level Characteristics

Authors: Marianne Dæhlen

Abstract:

Periods of apprenticeships are characteristic of many vocational educational training (VET) systems. In many countries, becoming a skilled worker implies that the journey starts with an application for apprenticeships at a company or another relevant training establishment. In Norway, where this study is conducted, VET students start their journey with two years of school-based training before applying for two years of apprenticeship. Previous research has shown that access to apprenticeships differs by family background (socio-economic, immigrant, etc.), gender, school grades, and region. The question we raise in this study is whether the status, reputation, or position of the vocational school contributes to VET students’ access to apprenticeships. Data and methods: Register data containing information about schools’ and VET students’ characteristics will be analyzed in multilevel regression analyses. At the school level, the data will contain information on school size, shares of immigrants and/or share of male/female students, and grade requirements for admission. At the VET-student level, the register contains information on e.g., gender, school grades, educational program/trade, obtaining apprenticeship or not. The data set comprises about 3,000 students. Results: The register data is expected to be received in November 2024 and consequently, any results are not present at the point of this call. The planned article is part of a larger research project granted from the Norwegian Research Council and will, accordingly to the plan, start up in December 2024.

Keywords: apprenticeships, VET-students’ characteristics, vocational schools, quantitative methods

Procedia PDF Downloads 17
23810 Data Acquisition System for Automotive Testing According to the European Directive 2004/104/EC

Authors: Herminio Martínez-García, Juan Gámiz, Yolanda Bolea, Antoni Grau

Abstract:

This article presents an interactive system for data acquisition in vehicle testing according to the test process defined in automotive directive 2004/104/EC. The project has been designed and developed by authors for the Spanish company Applus-LGAI. The developed project will result in a new process, which will involve the creation of braking cycle test defined in the aforementioned automotive directive. It will also allow the analysis of new vehicle features that was not feasible, allowing an increasing interaction with the vehicle. Potential users of this system in the short term will be vehicle manufacturers and in a medium term the system can be extended to testing other automotive components and EMC tests.

Keywords: automotive process, data acquisition system, electromagnetic compatibility (EMC) testing, European Directive 2004/104/EC

Procedia PDF Downloads 344
23809 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 305
23808 A Review of Spatial Analysis as a Geographic Information Management Tool

Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku

Abstract:

Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.

Keywords: aspatial technique, buffer analysis, epidemiology, interpolation

Procedia PDF Downloads 330
23807 IoT Based Agriculture Monitoring Framework for Sustainable Rice Production

Authors: Armanul Hoque Shaon, Md Baizid Mahmud, Askander Nobi, Md. Raju Ahmed, Md. Jiabul Hoque

Abstract:

In the Internet of Things (IoT), devices are linked to the internet through a wireless network, allowing them to collect and transmit data without the need for a human operator. Agriculture relies heavily on wireless sensors, which are a vital component of the Internet of Things (IoT). This kind of wireless sensor network monitors physical or environmental variables like temperatures, sound, vibration, pressure, or motion without relying on a central location or sink and collaboratively passes its data across the network to be analyzed. As the primary source of plant nutrients, the soil is critical to the agricultural industry's continued growth. We're excited about the prospect of developing an Internet of Things (IoT) solution. To arrange the network, the sink node collects groundwater levels and sends them to the Gateway, which centralizes the data and forwards it to the sensor nodes. The sink node gathers soil moisture data, transmits the mean to the Gateways, and then forwards it to the website for dissemination. The web server is in charge of storing and presenting the moisture in the soil data to the web application's users. Soil characteristics may be collected using a networked method that we developed to improve rice production. Paddy land is running out as the population of our nation grows. The success of this project will be dependent on the appropriate use of the existing land base.

Keywords: IoT based agriculture monitoring, intelligent irrigation, communicating network, rice production

Procedia PDF Downloads 157
23806 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 391
23805 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data

Authors: Arman S. Kussainov, Altynbek K. Beisekov

Abstract:

This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.

Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm

Procedia PDF Downloads 417
23804 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach

Authors: Hani Mekdash, Lina Jaber, Yehia Temsah

Abstract:

Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.

Keywords: deep excavation, prestressing, pre-stressed piles, shoring system

Procedia PDF Downloads 121
23803 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 115
23802 The Impact of Artificial Intelligence on Higher Education in Latin America

Authors: Luis Rodrigo Valencia Perez, Francisco Flores Aguero, Gibran Aguilar Rangel

Abstract:

Artificial Intelligence (AI) is rapidly transforming diverse sectors, and higher education in Latin America is no exception. This article explores the impact of AI on higher education institutions in the region, highlighting the imperative need for well-trained teachers in emerging technologies and a cultural shift towards the adoption and efficient use of these tools. AI offers significant opportunities to improve learning personalization, optimize administrative processes, and promote more inclusive and accessible education. However, the effectiveness of its implementation depends largely on the preparation and willingness of teachers to integrate these technologies into their pedagogical practices. Furthermore, it is essential that Latin American countries develop and implement public policies that encourage the adoption of AI in the education sector, thus ensuring that institutions can compete globally. Policies should focus on the continuous training of educators, investment in technological infrastructure, and the creation of regulatory frameworks that promote innovation and the ethical use of AI. Only through a comprehensive and collaborative approach will it be possible to fully harness the potential of AI to transform higher education in Latin America, thereby boosting the region's development and competitiveness on the global stage.

Keywords: artificial intelligence (AI), higher education, teacher training, public policies, latin america, global competitiveness

Procedia PDF Downloads 34
23801 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 285
23800 Image Compression Using Block Power Method for SVD Decomposition

Authors: El Asnaoui Khalid, Chawki Youness, Aksasse Brahim, Ouanan Mohammed

Abstract:

In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.

Keywords: image compression, SVD, block SVD power method, lossless compression, near lossless

Procedia PDF Downloads 391