Search results for: architectural training
1949 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 271948 Exploring the Cultural Significance of Mural Paintings in the Tombs of Gilan, Iran: Evaluation of Drawn Figures
Authors: Zeinab Mirabulqasemi, Gholamali Hatam
Abstract:
This article discusses the significance of mural paintings in Iranian culture, particularly within the context of religious tombs known as Imamzadehs. These tombs, dedicated to Shiite imams and other revered religious figures, serve as important religious and communal spaces. The tradition of tomb construction evolved from early Islamic practices, gradually transforming burial sites into places of worship. In the Gilan region of Iran, these tombs hold a revered status, serving as focal points for religious observances and social gatherings. The murals adorning these tombs often depict religious motifs, with a particular emphasis on events like the Day of Judgment and the martyrdom of the Imams, notably the saga of Ashura. These paintings also reflect the community's social perspectives and historical allegiances. Various architectural styles are employed in constructing these tombs, including Islamic, traditional, local, and aesthetic architecture. However, the region's climate poses challenges to the preservation of these structures and their murals. Despite these challenges, efforts are made to document and preserve these artworks to ensure their accessibility for future generations. This research also studies tomb paintings by adopting a multifaceted approach, including library research, image analysis, and field research. Finally, it examines the portrayal of significant figures such as the Shiite imams, prophets, and Imamzadehs within these murals, highlighting their thematic significance and cultural importance.Keywords: cultural ritual, Shiite imams, mural, belief foundations, religious paintings
Procedia PDF Downloads 551947 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 561946 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 1651945 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 731944 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 5021943 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis
Authors: Pornpimol Chaiwuttisak
Abstract:
The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.Keywords: DEA, wholesales and retails, logistics, Thailand
Procedia PDF Downloads 4161942 A Study on the Effect of the Mindfulness and Cultivation of Wisdom as an Intervention Strategy for College Student Internet Addiction
Authors: P. C. Li, R. H. Feng, S. J. Chen, Y. J. Yu, Y. L. Chen, X. Y. Fan
Abstract:
The purpose of this study is to investigate the effect of mindfulness and wisdom comprehensive strategy intervention on addiction to the Internet of college students by engaging fourteen intensive full-day mindfulness-based wisdom retreat curriculum. Wisdom, one of the practice method from the threefold training. Internet addiction, a kind of impulse control disorder, which attract the attentions of society due to its high prevalence and harmfulness in the last decade. Therefore, the study of internet addiction intervention is urgent. Participants with internet addiction were Chinese college students and screened by internet addiction disorder diagnose questionnaire (IAD-DQ). A quasi-experimental pretest and posttest design was used as research design. The finding shows that the mindfulness-based wisdom intervention strategy appeared to be effective in reducing the Internet addiction. Moreover, semi-structure interview method was conducted and outcomes included five themes: the reduction of internet use, the increment of awareness on emotion, self-control, present concentration and better positive lifestyle, indicating that mindfulness could be an effective intervention for this group with internet addiction.Keywords: mindfulness, internet addiction, wisdom comprehensive intervention, cognitive-behavior therapy
Procedia PDF Downloads 1831941 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1461940 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles
Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad
Abstract:
As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.Keywords: computational methods, context-awareness, design process, smart spaces
Procedia PDF Downloads 3311939 Small and Medium-Sized Enterprises in West African Semi-Arid Lands Facing Climate Change
Authors: Mamadou Diop, Florence Crick, Momadou Sow, Kate Elizabeth Gannon
Abstract:
Understanding SME leaders’ responses to climate is essential to cope with ongoing changes in temperature and rainfall. This study analyzes the response of SME leaders to the adverse effects of climate change in semi-arid lands (SAL) in Senegal. Based on surveys administrated to 161 SME leaders, this research shows that 91% of economic units are affected by climatic conditions, although 70% do not have a plan to deal with climate risks. Economic actors have striven to take measures to adapt. However, their efforts are limited by various obstacles accentuated by a lack of support from public authorities. In doing so, substantial political, institutional and financial efforts at national and local levels are needed to promote an enabling environment for economic actors to adapt. This will focus on information and training about the threats and opportunities related to global warming, the creation of an adaptation support fund to support local initiatives and the improvement of the institutional, regulatory and political framework.Keywords: small and medium-sized enterprises, climate change, adaptation, semi-arid lands
Procedia PDF Downloads 2081938 An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City
Authors: Jasper C. Dioco
Abstract:
The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs.Keywords: safety climate, safety knowledge, safety motivation, safety performance, taxi drivers
Procedia PDF Downloads 1921937 Teaching English to Students with Hearing Impairments - A Preliminary Study
Authors: Jane O`Halloran
Abstract:
This research aims to identify the issues and challenges of teaching English as a Foreign Language to Japanese university students who have special learning needs. This study sought to investigate factors influencing the academic performance of students with special or additional needs in an inclusive education context. This study will focus on a consideration of the methods available to support those with hearing impairments. While the study population is limited, it is important to give classes to be inclusive places where all students receive equal access to content. Hearing impairments provide an obvious challenge to language learning and, therefore, second-language learning. However, strategies and technologies exist to support the instructor without specialist training. This paper aims to identify these and present them to other teachers of English as a second language who wish to provide the best possible learning experience for every student. Two case studies will be introduced to compare and contrast the experience of in-class teaching and the online option and to share the positives and negatives of the two approaches. While the study focuses on the situation in a university in Japan, the lessons learned by the author may have universal value to any classroom with a student with a hearing disability.Keywords: inclusive learning, special needs, hearing impairments, teaching strategies
Procedia PDF Downloads 1321936 Exploring the Meaning of Safety in Acute Mental Health Inpatient Units from the Consumer Perspective
Authors: Natalie Cutler, Lorna Moxham, Moira Stephens
Abstract:
Safety is a priority in mental health services, and no more so than in the acute inpatient setting. Mental health service policies and accreditation frameworks commonly approach safety from a risk reduction or elimination perspective leading to service approaches that are arguably more focused on risk than on safety. An exploration what safety means for people who have experienced admission to an acute mental health inpatient unit is currently under way in Sydney, Australia. Using a phenomenographic research approach, this study is seeking to understand the meaning of safety from the perspective of people who use, rather than those who deliver mental health services. Preliminary findings suggest that the meanings of safety for users of mental health services vary from the meanings inherent in the policies and frameworks that inform how mental health services and mental health practice are delivered. This variance has implications for the physical and environmental design of acute mental health inpatient facilities, the policies and practices, and the education and training of mental health staff in particular nurses, who comprise the majority of the mental health workforce. These variances will be presented, along with their implications for the way quality and safety in mental health services are evaluated.Keywords: acute inpatient, mental health, nursing, phenomenography, recovery, safety
Procedia PDF Downloads 2321935 Reimaging Archetype of Mosque: A Case Study on Contemporary Mosque Architecture in Bangladesh
Authors: Sabrina Rahman
Abstract:
The Mosque is Islam’s most symbolic structure, as well as the expression of collective identity. From the explicit words of our Prophet, 'The earth has been created for me as a masjid and a place of purity, and whatever man from my Ummah finds himself in need of prayer, let him pray' (anywhere)! it is obvious that a devout Muslim does not require a defined space or structure for divine worship since the whole earth is his prayer house. Yet we see that from time immemorial man throughout the Muslim world has painstakingly erected innumerable mosques. However, mosque design spans time, crosses boundaries, and expresses cultures. It is a cultural manifestation as much as one based on a regional building tradition or a certain interpretation of religion. The trend to express physical signs of religion is not new. Physical forms seem to convey symbolic messages. However, in recent times physical forms of mosque architecture are dominantly demising from mosque architecture projects in Bangladesh. Dome & minaret, the most prominent symbol of the mosque, is replacing by contextual and contemporary improvisation rather than subcontinental mosque architecture practice of early fellows. Thus the recent mosque projects of the last 15 years established the contemporary architectural realm in their design. Contextually, spiritual lighting, the serenity of space, tranquility of outdoor spaces, the texture of materials is widely establishing a new genre of Muslim prayer space. A case study based research will lead to specify its significant factors of modernism. Based on the findings, the paper presents evidence of recent projects as well as a guideline for the future image of contemporary Mosque architecture in Bangladesh.Keywords: contemporary architecture, modernism, prayer space, symbolism
Procedia PDF Downloads 1211934 Re-Envisioning Modernity: Transformations of Postwar Suburban Landscapes
Authors: Shannon Clayton
Abstract:
In an effort to explore the potential transformation of North American postwar suburbs, this M.Arch thesis actively engages in the ongoing critique of modernism from the mid 20th century to the present. Contemporary urban design practice has emerged out of the reaction to orthodox modernism. Typically, new suburban development falls into one of two strategies; an attempt to replicate pre-war fabric that never existed, or a reliance on high-density to create instant urbanism. In both cases, the critical role of architecture has been grossly undervalued. Ironically, it is the denial of suburbia’s inherent modernity that has served to prevent genuine place-making. As history demonstrates, modernism is not antithetical to architecture and place. In the postwar years, a critical discussion emerged amongst architects, which sought to evolve modernism beyond functionalism. This was demonstrated through critical discussions on image, experience, and monumentality. As well as increased interest in civic space, and investigations into mat urbanism and the megastructure. The undercurrent within these explorations was a belief that the scale and complexity of modern development could become an opportunity to create urbanism, rather than squander it. This critical discourse has continued through architectural work in the Netherlands and Denmark since the early 1990s, where an emphasis on visual variety, human scale, and public interaction has been given high priority. This thesis applies principles from this ongoing dialogue, and identifies hidden potential within existing North American suburban networks. As a result, the project re-evaluates the legacy of the master plan from a contemporary perspective.Keywords: urbanism, modernism, suburbia, place-making
Procedia PDF Downloads 2521933 A Pilot Study on the Short Term Effects of Paslop Dance Exercise on Core Strength, Balance and Flexibility
Authors: Wilawan Kanhachon, Yodchai Boonprakob, Uraiwon Chatchawan, Junichiro Yamauchi
Abstract:
Introduction: Paslop is a traditional dance from Laos, which is popular in Laos and northeastern of Thailand. This unique type of Paslop dancing is to control body movement with the song. While dancing to the beat, dancers should contract their abdomen and back muscle all the time. Paslop may be a good alternative to improve strengthening, balance and flexibility. Objective: To investigate the effects of Paslop dance exercise on core strength, balance, and flexibility. Methods: Seven healthy participants (age, 20.57±1.13 yrs; height, 162.29±6.16 cm; body mass, 58.14±7.03 kg; mean± S.D.) were volunteered to perform the 45-minute Paslop dance exercise in three times a week for 8 weeks. Before, during and after the exercise period, core strength, balance and flexibility were measured with the pressure biofeedback unit (PBU), one-leg stance test (OLST), and sit and reach test (SAR), respectively. Result: PBU score for core strength increased from 2.12 mmHg in baseline to 6.34 mmHg at the 4th week and 10.10 mmHg at the 8th week after the Paslop dance training, while OLST and SAR did not change. Conclusion: The study demonstrates that 8-week Paslop dancing exercise can improve the core strength.Keywords: balance, core strength, flexibility, Paslop
Procedia PDF Downloads 3811932 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 5341931 Understanding Post-Displacement Earnings Losses: The Role of Wealth Inequality
Authors: M. Bartal
Abstract:
A large empirical evidence points to sizable lifetime earnings losses associated with the displacement of tenured workers. The causes of these losses are still not well-understood. Existing explanations are heavily based on human capital depreciation during non-employment spells. In this paper, a new avenue is explored. Evidence on the role of household liquidity constraints in accounting for the persistence of post-displacement earning losses is provided based on SIPP data. Then, a directed search and matching model with endogenous human capital and wealth accumulation is introduced. The model is computationally tractable thanks to its block-recursive structure and highlights a non-trivial, yet intuitive, interaction between wealth and human capital. Constrained workers tend to accept jobs with low firm-sponsored training because the latter are (endogenously) easier to find. This new channel provides a plausible explanation for why young (highly constrained) workers suffer persistent scars after displacement. Finally, the model is calibrated on US data to show that the interplay between wealth and human capital is crucial to replicate the observed lifecycle pattern of earning losses. JEL— E21, E24, J24, J63.Keywords: directed search, human capital accumulation, job displacement, wealth accumulation
Procedia PDF Downloads 2081930 Assessment of the Administration and Services of Public Access Computers in Academic Libraries in Kaduna State, Nigeria
Authors: Usman Ahmed Adam, Umar Ibrahim, Ezra S. Gbaje
Abstract:
This study is posed to explore the practice of Public Access Computers (PACs) in academic libraries in Kaduna State, Nigeria. The study aimed to determine the computers and other tools available, their services and challenges of the practices. Three questions were framed to identify number of public computers and tools available, their services and problems faced during the practice. The study used qualitative research design along with semi-constructed interview and observation as tools for data collection. Descriptive analysis was employed to analyze the data. The sample size of the study comprises 52 librarian and IT staff from the seven academic institutions in Kaduna State. The findings revealed that, PACs were provided for access to the Internet, digital resources, library catalogue and training services. The study further explored that, despite the limit number of the computers, users were not allowed to enjoy many services. The study recommends that libraries in Kaduna state should provide more public computers to be able to cover the population of their users; libraries should allow users to use the computers without limitations and restrictions.Keywords: academic libraries, computers in library, digital libraries, public computers
Procedia PDF Downloads 3521929 Knowledge Management Factors Affecting the Level of Commitment
Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi
Abstract:
This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.Keywords: drilling industry, knowledge management, organizational commitment, loyalty, principle component analysis
Procedia PDF Downloads 3521928 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication
Authors: Devanjan Bhattacharya, Jitka Komarkova
Abstract:
The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.Keywords: geospatial, web-based GIS, geohazard, warning system
Procedia PDF Downloads 4081927 Knowledge of Strategies to Teach Reading Components Among Teachers of Hard of Hearing Students
Authors: Khalid Alasim
Abstract:
This study investigated Saudi Arabian elementary school teachers’ knowledge of strategies to teach reading components to hard-of-hearing students. The study focused on four of the five reading components the National Reading Panel (NPR, 2000) identified: phonemic awareness; phonics; vocabulary, and reading comprehension, and explored the relationship between teachers’ demographic characteristics and their knowledge of the strategies as well. An explanatory sequential mixed methods design was used that included two phases. The quantitative phase examined the knowledge of these Arabic reading components among 89 elementary school teachers of hard-of-hearing students, and the qualitative phase consisted of interviews with 10 teachers. The results indicated that the teachers have a great deal of knowledge (above the mean score) of strategies to teach reading components. Specifically, teachers’ knowledge of strategies to teach the vocabulary component was the highest. The results also showed no significant association between teachers’ demographic characteristics and their knowledge of strategies to teach reading components. The qualitative analysis revealed two themes: 1) teachers’ lack of basic knowledge of strategies to teach reading components, and 2) the absence of in-service courses and training programs in reading for teachers.Keywords: knowledge, reading, components, hard-of-hearing, phonology, vocabulary
Procedia PDF Downloads 801926 Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving the army, moving convoys etc. The radar operator selects one of the promising targets into single target tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper, we present a technique using mathematical and statistical methods like fast fourier transformation (FFT) and principal component analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, FFT, principal component analysis, eigenvector, octave-notes, DSP
Procedia PDF Downloads 3941925 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial
Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu
Abstract:
The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease
Procedia PDF Downloads 1801924 Dynamic Balance and Functional Performance in Total Hip Arthroplasty
Authors: Mahmoud Ghazy, Ahmed R. Z. Baghdadi
Abstract:
Background: With the perceived pain and poor function experienced following total hip Arthroplasty (THA), patients usually feel un-satisfied. Methods: Thirty patients with THA (group I) and thirty indicated for arthroplasty but weren’t operated on yet (group II) participated in the study. The mean age was 54.53±3.44 and 55.33±2.32 years and BMI 35.7±3.03 and 35.73±1.03 kg/m2 for group I and III respectively. The Berg Balance Scale (BBS), Timed Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks pre- and post-operatively and three months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs. Results: group I had significantly lower TUG and SC time compared with group II four weeks and three months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly four weeks and three months post-operatively compared with four weeks pre- operatively in group. But no significant differences in BBS scores four weeks and three months post-operatively in group I compared with group II. Interpretation/Conclusion : Patients with THA still have defects in proprioception, so they needs more concentration on proprioception training.Keywords: dynamic balance, functional performance, hip arthroplasty, total
Procedia PDF Downloads 3721923 The Reenactment of Historic Memory and the Ways to Read past Traces through Contemporary Architecture in European Urban Contexts: The Case Study of the Medieval Walls of Naples
Authors: Francesco Scarpati
Abstract:
Because of their long history, ranging from ancient times to the present day, European cities feature many historical layers, whose single identities are represented by traces surviving in the urban design. However, urban transformations, in particular, the ones that have been produced by the property speculation phenomena of the 20th century, often compromised the readability of these traces, resulting in a loss of the historical identities of the single layers. The purpose of this research is, therefore, a reflection on the theme of the reenactment of the historical memory in the stratified European contexts and on how contemporary architecture can help to reveal past signs of the cities. The research work starts from an analysis of a series of emblematic examples that have already provided an original solution to the described problem, going from the architectural detail scale to the urban and landscape scale. The results of these analyses are then applied to the case study of the city of Naples, as an emblematic example of a stratified city, with an ancient Greek origin; a city where it is possible to read most of the traces of its transformations. Particular consideration is given to the trace of the medieval walls of the city, which a long time ago clearly divided the city itself from the outer fields, and that is no longer readable at the current time. Finally, solutions and methods of intervention are proposed to ensure that the trace of the walls, read as a boundary, can be revealed through the contemporary project.Keywords: contemporary project, historic memory, historic urban contexts, medieval walls, naples, stratified cities, urban traces
Procedia PDF Downloads 2641922 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction
Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi
Abstract:
For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy
Procedia PDF Downloads 1131921 Implementation of Human Resource Management in Greek Law Enforcement Agencies
Authors: Konstantinos G. Papaioannou, Panagiotis K. Serdaris
Abstract:
This study, examines the level of implementation of Human Resource Management (HRM) activities in law enforcement agencies in Greece. Recognizing that HRM is crucial for maximizing organizational performance, the study aims to evaluate its application within Greek law enforcement. A quantitative-descriptive survey was conducted, involving 996 executives from Greek Law Enforcement Agencies (477 from the Hellenic Police and 519 from the Hellenic Coast Guard), through random sampling. The survey, revealed significant concerns regarding the minimal implementation of HRM practices, in both agencies. The findings indicate that HRM practices, such as HR planning, recruitment, job position, selection, training and development, personnel management, compensation, labor relations and health and safety, are minimally applied. Neither the Hellenic Police nor the Hellenic Coast Guard appears to follow a comprehensive HRM plan. The study, contributes both theoretically and practically by highlighting the lack of HRM implementation in these agencies. The data suggest that by adopting strategic HRM practices, these organizations can enhance personnel performance and better fulfill their societal roles. Future research should extend to law enforcement agencies in other countries to draw more representative conclusion.Keywords: coastguard, human resources management, law enforcement agencies, performance management, police
Procedia PDF Downloads 451920 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 86