Search results for: Uniform Linear Array (ULA)
2202 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor
Authors: Sumana Kumar, Abha Misra
Abstract:
Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam
Procedia PDF Downloads 1152201 Conceptualizing Psycho-Social Intervention with Juvenile Offenders as Attachment Therapy: A Practical Approach
Authors: Genziana Lay
Abstract:
A wide majority of older children and adolescents who enter the juvenile court system present with an array of problematic symptoms and behaviors including anxiety, depression, aggressive acting out, detachment, and substance abuse. Attachment theory offers a framework for understanding normative and pathological functioning, which during development is influenced by emotional, social and cognitive elements. There is clear evidence that children and adolescents with the highest risk of developing adaptation problems present an insecure attachment profile. Most offending minors have experienced dysfunctional family relationships as well as social and/or economic deprivation. Their maladaptive attachment develops not only through their relationship with caregivers but with the environment at large. Activation of their faulty attachment system leads them to feel emotionally overwhelmed and engage in destructive behaviors and decision-making. A psycho-social intervention with this population conceptualized as attachment therapy is a multi-faceted, practical approach that has shown excellent results in terms of increased psychological well-being and drastically reduced rates of re-offense/ destructive behavior. Through several; components including psychotherapy, monitoring, volunteering, meditation and socialization, the program focuses on seven dimensions: self-efficacy, responsibility, empathy/reparation, autonomy/security, containment/structure, insight building, and relational health. This paper presents the program and illustrates how the framework of attachment theory practically applied to psycho-social intervention has great therapeutic and social reparation potential. Preliminary evidence drawn from the Sassari Juvenile Court is very promising; this paper will illustrate these results and propose an even more comprehensive, applicable approach to psycho-social reparative intervention that leads to greater psychological health and reduced recidivism in the child and adolescent population.Keywords: attachment, child, adolescent, crime, juvenile, psychosocial
Procedia PDF Downloads 1722200 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures
Authors: Latife Merve Oktay, Berrin Tugrul
Abstract:
Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer
Procedia PDF Downloads 3542199 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites
Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy
Abstract:
Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements
Procedia PDF Downloads 2642198 Sum Capacity with Regularized Channel Inversion in Multi-Antenna Downlink Systems under Equal Power Constraint
Authors: Attaullah Khawaja, Amna Shabbir
Abstract:
Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper regularized channel inversion under equal power constraint in the multiuser multiple input multiple output (MU-MIMO) broadcast channels has been considered. Sum capacity with plain channel inversion also known as Zero Forcing Beam Forming (ZFBF) and optimum sum capacity using Dirty Paper Coding (DPC) has also been investigated. Analysis and simulations show that regularization enhances the system performance and empower linear growth in Sum Capacity and specially work well at low signal to noise ratio (SNRs) regime.Keywords: broadcast channel, channel inversion, multiple antenna multiple-user wireless, multiple-input multiple-output (MIMO), regularization, dirty paper coding (DPC), sum capacity
Procedia PDF Downloads 5272197 Microfluidic Paper-Based Electrochemical Biosensor
Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi
Abstract:
A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.Keywords: biological fluids, biomarkers, microfluidic paper-based electrochemical biosensors, Multiplex
Procedia PDF Downloads 2822196 The Optimal Order Policy for the Newsvendor Model under Worker Learning
Authors: Sunantha Teyarachakul
Abstract:
We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.Keywords: inventory management, Newsvendor model, order policy, worker learning
Procedia PDF Downloads 4162195 Modeling of Compaction Curves for CCA-Cement Stabilized Lateritic Soils
Authors: O. Ahmed Apampa, Yinusa, A. Jimoh
Abstract:
The aim of this study was to develop an appropriate model for predicting the compaction behavior of lateritic soils and corn cob ash (CCA) stabilized lateritic soils. This was done by first adopting an equation earlier developed for fine-grained soils and subsequent adaptation by others and extending it to modified lateritic soil through the introduction of alpha and beta parameters which are polynomial functions of the CCA binder input. The polynomial equations were determined with MATLAB R2011 curve fitting tool, while the alpha and beta parameters were determined by standard linear programming techniques using the Solver function of Microsoft Excel 2010. The model so developed was a good fit with a correlation coefficient R2 value of 0.86. The paper concludes that it is possible to determine the optimum moisture content and the maximum dry density of CCA stabilized soils from the compaction test of the unmodified soil, and recommends that this procedure is extended to other binder stabilized lateritic soils to facilitate quick decision making in roadworks.Keywords: compaction, corn cob ash, lateritic soil, stabilization
Procedia PDF Downloads 5332194 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications
Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand
Abstract:
Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate
Procedia PDF Downloads 1032193 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions
Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic
Abstract:
Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation
Procedia PDF Downloads 3962192 Inverse Dynamics of the Mould Base of Blow Molding Machines
Authors: Vigen Arakelian
Abstract:
This paper deals with the study of devices for displacement of the mould base of blow-molding machines. The displacement of the mould in the studied case is carried out by a linear actuator, which ensures the descent of the mould base and by extension springs, which return the letter in the initial position. The aim of this paper is to study the inverse dynamics of the device for displacement of the mould base of blow-molding machines and to determine its optimum parameters for higher rate of production. In the other words, it is necessary to solve the inverse dynamic problem to find the equation of motion linking applied forces with displacements. This makes it possible to determine the stiffness coefficient of the spring to turn the mold base back to the initial position for a given time. The obtained results are illustrated by a numerical example. It is shown that applying a spring with stiffness returns the mould base of the blow molding machine into the initial position in 0.1 sec.Keywords: design, mechanisms, dynamics, blow-molding machines
Procedia PDF Downloads 1532191 Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study
Authors: Jiangbo Pu, Hanhui Xu, Yazhou Wang, Hongyan Cui, Yong Hu
Abstract:
Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model.Keywords: spinal cord injury (SCI), sample entropy, nonlinear, complex system, firing pattern, EEG, spontaneous activity, Basso Beattie Bresnahan (BBB) score
Procedia PDF Downloads 4652190 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept
Authors: Brandtner-Hafner Martin
Abstract:
Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis
Procedia PDF Downloads 1592189 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors
Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche
Abstract:
Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships
Procedia PDF Downloads 3002188 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G
Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo
Abstract:
Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS
Procedia PDF Downloads 2582187 Factors Influencing Public Attitudes Towards Mental Illness in the Togolese Population
Authors: Myriam Roy
Abstract:
The perspectives of the Togolese public towards mental illness were assessed, looking at religious affiliation, personal knowledge of someone with a mental illness, and education level as influencers. The goal was to observe which factors influenced most strongly the general public’s attitudes towards mental illness. The Togolese population was surveyed within the context of mental health awareness workshops and involved college and university students, rural community members, and company employees. Taylor and Dear’s Community Attitudes towards the Mentally Ill (CAMI) questionnaire was used to assess these influencers and includes four dimensions of community attitudes towards mental illness: authoritarianism, benevolence, social restrictiveness, and community mental health ideology (CMHI). Demographic questions were also included, tailored to the various realities of the Togolese population. These questions looked, among others, at religious, ethnical (region of origin within Togo), and educational background. It was found that religious affiliation and personal knowledge did not correlate significantly with changes in the four dimensions of the CAMI scale. It suggests that public perspectives towards mental illness might not be as associated with these variables as was previously thought. The dimensions, however, did correlate with themselves as was expected. Authoritarianism was associated positively with social restrictiveness, benevolence was associated negatively with social restrictiveness and positively with CMHI, and CMHI was associated negatively with social restrictiveness, indicating the CAMI did not suffer from reliability and validity issues when used with this population. Interestingly, level of education significantly impacted authoritarianism level, with higher education associated with a decrease in authoritarianism. This finding would support the notion that education is likely to provide access to a wide array of information as well as interaction with people from various backgrounds and situations. Providing increased awareness regarding mental health and illness in schools could be beneficial to favor the impact that education appears to have on public perspectives towards mental illness in Togo. Future studies could assess which mental health interventions in schools would be the most useful in Togo.Keywords: CAMI questionnaire, cross-cultural psychology, stigma towards mental illness, West African psychology
Procedia PDF Downloads 1342186 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 5032185 Analysing the Creative Evolution of the Beatles
Authors: David Mason-Cox
Abstract:
Existing academic analyses of The Beatles cover a huge array of topics. This research explores one clear but multifaceted aspect of The Beatles: the development of their creativity. While its importance cannot be underestimated, a thorough appraisal of the roots of the group’s individual and collective artistic blossoming deserves more attention. This paper investigates the mechanisms that caused or enabled the group to eventually exert such an immense and long-lasting influence on popular music and culture. It suggests that the artistic inspiration of Astrid Kirchherr during their time in Hamburg may be much more far-reaching than has previously been credited. It further addresses the effect of the confluence of conditions and events which essentially ‘hot-housed’ the four working-class Liverpudlians, providing them with the incentives and the means to far exceed their apparent potential. Thirdly, it looks at the competitive nature of The Beatles, both as a group and as individuals, and how that competitive streak sparked them to improve as musicians, songwriters, and showmen. In viewing these triggers through the lens of creative theory, the research attempts to analyse what made The Beatles’ innovative ascendancy so extraordinary and why creativity can be misunderstood. This then is the tale of impressionable youths from post-war austerity Britain; the lure of an artist with strong aesthetic sensibilities in an exotic locale, the media boom of the early 1960s, the machinations of the music business, the national grief in the US following Kennedy’s assassination, and, finally the resilience and determination of four young men who were prepared to take advantage of every opportunity to prove, and improve, themselves -the harbingers of a new creative paradigm. This paper is part of a broader study which also examines how their growth toward artistic maturity informs The Beatles’ significance and impact on the culture and the counterculture during the 1960s and beyond. It will eventually combine critical textual analysis with a series of interviews of musicians, other creatives, and intellectuals. These will be conducted to advance the existing erudition and to develop a more accurate understanding of the group’s cultural influence upon real-world individuals.Keywords: artistic influence, Beatles, competition, creative theory, new creative paradigm
Procedia PDF Downloads 1012184 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters. After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).Keywords: Nd₂Zr₃(MoO₄)₉, powder x-ray diffraction, solid state synthesis, zirconium molybdates
Procedia PDF Downloads 3982183 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network
Authors: Ehsan Motamedian
Abstract:
Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions
Procedia PDF Downloads 4342182 Current Status and a Forecasting Model of Community Household Waste Generation: A Case Study on Ward 24 (Nirala), Khulna, Bangladesh
Authors: Md. Nazmul Haque, Mahinur Rahman
Abstract:
The objective of the research is to determine the quantity of household waste generated and forecast the future condition of Ward No 24 (Nirala). For performing that, three core issues are focused: (i) the capacity and service area of the dumping stations; (ii) the present waste generation amount per capita per day; (iii) the responsibility of the local authority in the household waste collection. This research relied on field survey-based data collection from all stakeholders and GIS-based secondary analysis of waste collection points and their coverage. However, these studies are mostly based on the inherent forecasting approaches, cannot predict the amount of waste correctly. The findings of this study suggest that Nirala is a formal residential area introducing a better approach to the waste collection - self-controlled and collection system. Here, a forecasting model proposed for waste generation as Y = -2250387 + 1146.1 * X, where X = year.Keywords: eco-friendly environment, household waste, linear regression, waste management
Procedia PDF Downloads 2852181 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 1552180 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics
Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca
Abstract:
The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.Keywords: adulteration, multivariate analysis, potential functions, regression
Procedia PDF Downloads 1252179 Tobacco Taxation and the Heterogeneity of Smokers' Responses to Price Increases
Authors: Simone Tedeschi, Francesco Crespi, Paolo Liberati, Massimo Paradiso, Antonio Sciala
Abstract:
This paper aims at contributing to the understanding of smokers’ responses to cigarette prices increases with a focus on heterogeneity, both across individuals and price levels. To do this, a stated preference quasi-experimental design grounded in a random utility framework is proposed to evaluate the effect on smokers’ utility of the price level and variation, along with social conditioning and health impact perception. The analysis is based on individual-level data drawn from a unique survey gathering very detailed information on Italian smokers’ habits. In particular, qualitative information on the individual reactions triggered by changes in prices of different magnitude and composition are exploited. The main findings stemming from the analysis are the following; the average price elasticity of cigarette consumption is comparable with previous estimates for advanced economies (-.32). However, the decomposition of this result across five latent-classes of smokers, reveals extreme heterogeneity in terms of price responsiveness, implying a potential price elasticity that ranges between 0.05 to almost 1. Such heterogeneity is in part explained by observable characteristics such as age, income, gender, education as well as (current and lagged) smoking intensity. Moreover, price responsiveness is far from being independent from the size of the prospected price increase. Finally, by comparing even and uneven price variations, it is shown that uniform across-brand price increases are able to limit the scope of product substitutions and downgrade. Estimated price-response heterogeneity has significant implications for tax policy. Among them, first, it provides evidence and a rationale for why the aggregate price elasticity is likely to follow a strictly increasing pattern as a function of the experienced price variation. This information is crucial for forecasting the effect of a given tax-driven price change on tax revenue. Second, it provides some guidance on how to design excise tax reforms to balance public health and revenue goals.Keywords: smoking behaviour, preference heterogeneity, price responsiveness, cigarette taxation, random utility models
Procedia PDF Downloads 1622178 Investigation of the Stability of the F* Iterative Algorithm on Strong Peudocontractive Mappings and Its Applications
Authors: Felix Damilola Ajibade, Opeyemi O. Enoch, Taiwo Paul Fajusigbe
Abstract:
This paper is centered on conducting an inquiry into the stability of the F* iterative algorithm to the fixed point of a strongly pseudo-contractive mapping in the framework of uniformly convex Banach spaces. To achieve the desired result, certain existing inequalities in convex Banach spaces were utilized, as well as the stability criteria of Harder and Hicks. Other necessary conditions for the stability of the F* algorithm on strong pseudo-contractive mapping were also obtained. Through a numerical approach, we prove that the F* iterative algorithm is H-stable for strongly pseudo-contractive mapping. Finally, the solution of the mixed-type Volterra-Fredholm functional non-linear integral equation is estimated using our results.Keywords: stability, F* -iterative algorithm, pseudo-contractive mappings, uniformly convex Banach space, mixed-type Volterra-Fredholm integral equation
Procedia PDF Downloads 1032177 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise
Procedia PDF Downloads 4892176 Comparison of Parallel CUDA and OpenMP Implementations of Memetic Algorithms for Solving Optimization Problems
Authors: Jason Digalakis, John Cotronis
Abstract:
Memetic algorithms (MAs) are useful for solving optimization problems. It is quite difficult to search the search space of the optimization problem with large dimensions. There is a challenge to use all the cores of the system. In this study, a sequential implementation of the memetic algorithm is converted into a concurrent version, which is executed on the cores of both CPU and GPU. For this reason, CUDA and OpenMP libraries are operated on the parallel algorithm to make a concurrent execution on CPU and GPU, respectively. The aim of this study is to compare CPU and GPU implementation of the memetic algorithm. For this purpose, fourteen benchmark functions are selected as test problems. The obtained results indicate that our approach leads to speedups up to five thousand times higher compared to one CPU thread while maintaining a reasonable results quality. This clearly shows that GPUs have the potential to acceleration of MAs and allow them to solve much more complex tasks.Keywords: memetic algorithm, CUDA, GPU-based memetic algorithm, open multi processing, multimodal functions, unimodal functions, non-linear optimization problems
Procedia PDF Downloads 1012175 Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam
Authors: Jang-Hwan Yin, Hae-Jeong Jeong, Hyo-Geun Jeong
Abstract:
K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water.Keywords: PV generation system, clean energy, green growth, solar energy
Procedia PDF Downloads 4132174 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5832173 Optimal Feedback Linearization Control of PEM Fuel Cell
Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh
Abstract:
This paper presents a new method to design nonlinear feedback linearization controller for polymer electrolyte membrane fuel cells (PEMFCs). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEM fuel cells. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEM fuel cell system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA_II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.Keywords: nonlinear dynamic model, polymer electrolyte membrane fuel cells, feedback linearization, optimal control, NSGA_II
Procedia PDF Downloads 518