Search results for: Cox regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18794

Search results for: Cox regression model

16064 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network

Authors: Ahmed O. Babaleye, Rafet E. Kurt

Abstract:

The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.

Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis

Procedia PDF Downloads 280
16063 Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle

Authors: Yuta Moriyama, Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified.

Keywords: aerodynamics, model aircraft, plasma actuator, Wells turbine

Procedia PDF Downloads 246
16062 The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. T. Lin, Y. Chiang, H. C. Chen, C. Shih

Abstract:

Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results.

Keywords: TRACE, safety analysis, BWR/6, severe accident

Procedia PDF Downloads 714
16061 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies

Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak

Abstract:

Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.

Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states

Procedia PDF Downloads 78
16060 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 229
16059 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 259
16058 Edmonton Urban Growth Model as a Support Tool for the City Plan Growth Scenarios Development

Authors: Sinisa J. Vukicevic

Abstract:

Edmonton is currently one of the youngest North American cities and has achieved significant growth over the past 40 years. Strong urban shift requires a new approach to how the city is envisioned, planned, and built. This approach is evidence-based scenario development, and an urban growth model was a key support tool in framing Edmonton development strategies, developing urban policies, and assessing policy implications. The urban growth model has been developed using the Metronamica software platform. The Metronamica land use model evaluated the dynamic of land use change under the influence of key development drivers (population and employment), zoning, land suitability, and land and activity accessibility. The model was designed following the Big City Moves ideas: become greener as we grow, develop a rebuildable city, ignite a community of communities, foster a healing city, and create a city of convergence. The Big City Moves were converted to three development scenarios: ‘Strong Central City’, ‘Node City’, and ‘Corridor City’. Each scenario has a narrative story that expressed scenario’s high level goal, scenario’s approach to residential and commercial activities, to transportation vision, and employment and environmental principles. Land use demand was calculated for each scenario according to specific density targets. Spatial policies were analyzed according to their level of importance within the policy set definition for the specific scenario, but also through the policy measures. The model was calibrated on the way to reproduce known historical land use pattern. For the calibration, we used 2006 and 2011 land use data. The validation is done independently, which means we used the data we did not use for the calibration. The model was validated with 2016 data. In general, the modeling process contain three main phases: ‘from qualitative storyline to quantitative modelling’, ‘model development and model run’, and ‘from quantitative modelling to qualitative storyline’. The model also incorporates five spatial indicators: distance from residential to work, distance from residential to recreation, distance to river valley, urban expansion and habitat fragmentation. The major finding of this research could be looked at from two perspectives: the planning perspective and technology perspective. The planning perspective evaluates the model as a tool for scenario development. Using the model, we explored the land use dynamic that is influenced by a different set of policies. The model enables a direct comparison between the three scenarios. We explored the similarities and differences of scenarios and their quantitative indicators: land use change, population change (and spatial allocation), job allocation, density (population, employment, and dwelling unit), habitat connectivity, proximity to objects of interest, etc. From the technology perspective, the model showed one very important characteristic: the model flexibility. The direction for policy testing changed many times during the consultation process and model flexibility in applying all these changes was highly appreciated. The model satisfied our needs as scenario development and evaluation tool, but also as a communication tool during the consultation process.

Keywords: urban growth model, scenario development, spatial indicators, Metronamica

Procedia PDF Downloads 95
16057 Developing a Knowledge-Based Lean Six Sigma Model to Improve Healthcare Leadership Performance

Authors: Yousuf N. Al Khamisi, Eduardo M. Hernandez, Khurshid M. Khan

Abstract:

Purpose: This paper presents a model of a Knowledge-Based (KB) using Lean Six Sigma (L6σ) principles to enhance the performance of healthcare leadership. Design/methodology/approach: Using L6σ principles to enhance healthcare leaders’ performance needs a pre-assessment of the healthcare organisation’s capabilities. The model will be developed using a rule-based approach of KB system. Thus, KB system embeds Gauging Absence of Pre-requisite (GAP) for benchmarking and Analytical Hierarchy Process (AHP) for prioritization. A comprehensive literature review will be covered for the main contents of the model with a typical output of GAP analysis and AHP. Findings: The proposed KB system benchmarks the current position of healthcare leadership with the ideal benchmark one (resulting from extensive evaluation by the KB/GAP/AHP system of international leadership concepts in healthcare environments). Research limitations/implications: Future work includes validating the implementation model in healthcare environments around the world. Originality/value: This paper presents a novel application of a hybrid KB combines of GAP and AHP methodology. It implements L6σ principles to enhance healthcare performance. This approach assists healthcare leaders’ decision making to reach performance improvement against a best practice benchmark.

Keywords: Lean Six Sigma (L6σ), Knowledge-Based System (KBS), healthcare leadership, Gauge Absence Prerequisites (GAP), Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 166
16056 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 431
16055 The Effects of the Interaction between Prenatal Stress and Diet on Maternal Insulin Resistance and Inflammatory Profile

Authors: Karen L. Lindsay, Sonja Entringer, Claudia Buss, Pathik D. Wadhwa

Abstract:

Maternal nutrition and stress are independently recognized as among the most important factors that influence prenatal biology, with implications for fetal development and poor pregnancy outcomes. While there is substantial evidence from non-pregnancy human and animal studies that a complex, bi-directional relationship exists between nutrition and stress, to the author’s best knowledge, their interaction in the context of pregnancy has been significantly understudied. The aim of this study is to assess the interaction between maternal psychological stress and diet quality across pregnancy and its effects on biomarkers of prenatal insulin resistance and inflammation. This is a prospective longitudinal study of N=235 women carrying a healthy, singleton pregnancy, recruited from prenatal clinics of the University of California, Irvine Medical Center. Participants completed a 4-day ambulatory assessment in early, middle and late pregnancy, which included multiple daily electronic diary entries using Ecological Momentary Assessment (EMA) technology on a dedicated study smartphone. The EMA diaries gathered moment-level data on maternal perceived stress, negative mood, positive mood and quality of social interactions. The numerical scores for these variables were averaged across each study time-point and converted to Z-scores. A single composite variable for 'STRESS' was computed as follows: (Negative mood+Perceived stress)–(Positive mood+Social interaction quality). Dietary intakes were assessed by three 24-hour dietary recalls conducted within two weeks of each 4-day assessment. Daily nutrient and food group intakes were averaged across each study time-point. The Alternative Healthy Eating Index adapted for pregnancy (AHEI-P) was computed for early, middle and late pregnancy as a validated summary measure of diet quality. At the end of each 4-day ambulatory assessment, women provided a fasting blood sample, which was assayed for levels of glucose, insulin, Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was computed. Pearson’s correlation was used to explore the relationship between maternal STRESS and AHEI-P within and between each study time-point. Linear regression was employed to test the association of the stress-diet interaction (STRESS*AHEI-P) with the biological markers HOMA-IR, IL-6 and TNF-α at each study time-point, adjusting for key covariates (pre-pregnancy body mass index, maternal education level, race/ethnicity). Maternal STRESS and AHEI-P were significantly inversely correlated in early (r=-0.164, p=0.018) and mid-pregnancy (-0.160, p=0.019), and AHEI-P from earlier gestational time-points correlated with later STRESS (early AHEI-P x mid STRESS: r=-0.168, p=0.017; mid AHEI-P x late STRESS: r=-0.142, p=0.041). In regression models, the interaction term was not associated with HOMA-IR or IL-6 at any gestational time-point. The stress-diet interaction term was significantly associated with TNF-α according to the following patterns: early AHEI-P*early STRESS vs early TNF-α (p=0.005); early AHEI-P*early STRESS vs mid TNF-α (p=0.002); early AHEI-P*mid STRESS vs mid TNF-α (p=0.005); mid AHEI-P*mid STRESS vs mid TNF-α (p=0.070); mid AHEI-P*late STRESS vs late TNF-α (p=0.011). Poor diet quality is significantly related to higher psychosocial stress levels in pregnant women across gestation, which may promote inflammation via TNF-α. Future prenatal studies should consider the combined effects of maternal stress and diet when evaluating either one of these factors on pregnancy or infant outcomes.

Keywords: diet quality, inflammation, insulin resistance, nutrition, pregnancy, stress, tumor necrosis factor-alpha

Procedia PDF Downloads 200
16054 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions

Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu

Abstract:

Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.

Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge

Procedia PDF Downloads 482
16053 An Evaluation of the Impact of International Accounting Standards on Financial Reporting Quality: Evidence from Emerging Economies

Authors: Kwadwo Yeboah

Abstract:

Background and Aims: The adoption of International Accounting Standards (IAS) is considered to be one of the most significant developments in the accounting profession. The adoption of IAS aims to improve financial reporting quality by ensuring that financial information is transparent and comparable across borders. However, there is a lack of research on the impact of IAS on financial reporting quality in emerging economies. This study aims to fill this gap by evaluating the impact of IAS on financial reporting quality in emerging economies. Methods: This study uses a sample of firms from emerging economies that have adopted IAS. The sample includes firms from different sectors and industries. The financial reporting quality of these firms is measured using financial ratios, such as earnings quality, financial leverage, and liquidity. The data is analyzed using a regression model that controls for firm-specific factors, such as size and profitability. Results: The results show that the adoption of IAS has a positive impact on financial reporting quality in emerging economies. Specifically, firms that adopt IAS exhibit higher earnings quality and lower financial leverage compared to firms that do not adopt IAS. Additionally, the adoption of IAS has a positive impact on liquidity, suggesting that firms that adopt IAS have better access to financing. Conclusions: The findings of this study suggest that the adoption of IAS has a positive impact on financial reporting quality in emerging economies. The results indicate that IAS adoption can improve transparency and comparability of financial information, which can enhance the ability of investors to make informed investment decisions. The study contributes to the literature by providing evidence of the impact of IAS adoption in emerging economies. The findings of this study have implications for policymakers and regulators in emerging economies, as they can use this evidence to support the adoption of IAS and improve financial reporting quality in their respective countries.

Keywords: accounting, international, standards, finance

Procedia PDF Downloads 84
16052 Character Education Model for Early Childhood Based Javanese Culture

Authors: Rafika Bayu Kusumandari, Istyarini, Ispen Safrel

Abstract:

Character education will be more meaningful if carried out since early childhood. This is because early childhood education is the foundation of the formation of character. This study intends to find a model of character education in early childhood based on Javanese culture. In keeping with the focus of the study, long-term goals to be achieved through this research is to find once described the development of a model of character education in early childhood Javanese culture based in Semarang are then applied across early childhood education institutions in Semarang City. The specific objective of the study is: Describe the character models and management education in early childhood Java-based culture in Semarang City. The benefits of this research are; Provide an overview of the model and describe the management of character education in early childhood Java-based culture in Semarang City. Referring to the objectives of the research program was designed with a "Research and Development", meaning that a program of research followed by development programs for improvement or refinement. To produce a prototype model of character education in early childhood Java-based culture in the city, taken systematic measures in the form of the action, reflection, evaluation and innovation by applying qualitative research methods, descriptive, development, experimentation, and evaluation. This study aims to gain in-depth description of the model of character education in early childhood Java-based culture in the city of Semarang. The reason for the use of the use of qualitative methods researcher's knowledge, no study results and empirical research specifically about the model of character education in early childhood Java-based culture in the city of Semarang. On the implementation of character education early childhood adapted to the characteristics of each school and the emphasis of each agency arrangements for early childhood education, culture-based Java. Javanese culture should be introduced early in order not to erode the cultural lost outside the entrance as the era of globalization. In addition, Java is promoting a culture of courtesy and manners are very appropriate for the character formation of children of early age.

Keywords: education character, Javanese culture, childhood, character

Procedia PDF Downloads 391
16051 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 122
16050 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: artificial neural network, classification, students, e-learning

Procedia PDF Downloads 426
16049 On the Well-Posedness of Darcy–Forchheimer Power Model Equation

Authors: Johnson Audu, Faisal Fairag

Abstract:

In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.

Keywords: porous media, power law, strong inertia, nonlinear, monotone type

Procedia PDF Downloads 317
16048 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 97
16047 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 480
16046 Building Organisational Culture That Stimulates Creativity and Innovation

Authors: Ala Hanetite

Abstract:

The purpose of this article is to present, by means of a model, the determinants of organisational culture which influence creativity and innovation. A literature study showed that a model, based on the open systems theory and the work of Schein, can offer a holistic approach in describing organisational culture. The relationship between creativity, innovation and culture is discussed in this context. Against the background of this model, the determinants of organisational culture were identified. The determinants are strategy, structure, support mechanisms, behaviour that encourages innovation, and open communication. The influence of each determinant on creativity and innovation is discussed. Values, norms and beliefs that play a role in creativity and innovation can either support or inhibit creativity and innovation depending on how they influence individual and group behaviour. This is also explained in the article.

Keywords: attitudes, creativity, innovation, organisational culture

Procedia PDF Downloads 591
16045 The Quality Improvement of Painting Assignments for Grade 4-6 Students by Using PDCA Cycle

Authors: Pawinee Sorawech

Abstract:

The purpose of this study was to investigate the quality improvement of painting assignments for grade 4-6 students by using PDCA cycle. This study employed a qualitative technique. Suan Sunandha Rajabhat University and its demonstration school were selected as the area of study. An in-depth interview was utilized. The findings revealed that model of PDCA cycle was a proper model to increase the quality of painting assignments for grade 4-6 students. The six steps of improvement included: studying the PDCA model, setting up a plan, determining the scope of work, creating a strategy, developing a quality for painting assignment, and coming up with a handbook for a quality improvement of painting assignment.

Keywords: quality, painting assignments, PDCA cycle, grade 4-6 students

Procedia PDF Downloads 482
16044 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 174
16043 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 268
16042 Numerical Investigation of the Electromagnetic Common Rail Injector Characteristics

Authors: Rafal Sochaczewski, Ksenia Siadkowska, Tytus Tulwin

Abstract:

The paper describes the modeling of a fuel injector for common rail systems. A one-dimensional model of a solenoid-valve-controlled injector with Valve Closes Orifice (VCO) spray was modelled in the AVL Hydsim. This model shows the dynamic phenomena that occur in the injector. The accuracy of the calibration, based on a regulation of the parameters of the control valve and the nozzle needle lift, was verified by comparing the numerical results of injector flow rate. Our model is capable of a precise simulation of injector operating parameters in relation to injection time and fuel pressure in a fuel rail. As a result, there were made characteristics of the injector flow rate and backflow.

Keywords: common rail, diesel engine, fuel injector, modeling

Procedia PDF Downloads 412
16041 Two Layer Photo-Thermal Deflection Model to Investigate the Electronic Properties in BGaAs/GaAs Alloys

Authors: S. Ilahi, M. Baira, F. Saidi, N. Yacoubi, L. Auvray, H. Maaref

Abstract:

Photo-thermal deflection technique (PTD) is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties.

Keywords: photothermal defelction technique, two layer model, BGaAs/GaAs alloys, boron composition

Procedia PDF Downloads 301
16040 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five

Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz

Abstract:

Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.

Keywords: hydroxyl, global model, model maintenance, near infrared, polyol

Procedia PDF Downloads 135
16039 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 433
16038 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 148
16037 Sexual Behaviors and Its Predictors among Iranian Women in Iran: A Cross-Sectional Study

Authors: Zahra Karimian, Effat Merghati Khoei, Raziyeh Maasoumi

Abstract:

Background: Women's sexual well-being is center of focus in the field of sexology. Study of sexual behavior and investigating its predictors is important in women's health promotion. Objectives: This study aimed to explore the components of sexual behaviors and their possible associations with the women's demographic. Methods: A National Sexual Behavior Assessment Questionnaire was administered to 500 women ages 15 to 45 who referred to the public health centers seeking for health care services. The associations with demographic were examined. Results: From all participant, 31.8% of women obtain high score in the sexual capacity 21.2% in sexual motivation and 0.2% in sexual function. In sexual script component, 86.2% of women were holding traditional beliefs toward sexual behaviors; the majority (91.5%) of women believed in mutual and relational sexuality, 83.4% believed in androcentricity (male-dominated sexuality). Pearson correlation test showed significant positive correlations between sexual capacity, motivation, function and sexual script (p < 0.05). Regression model showed that sexual capacity is associated with women's education, age of her spouse. Sexual function and sexual motivation were significantly associated with the age of subjects' spouses. Conclusion: In this study, lower score was found in sexual performance while women were scored higher in the sexual capacity and motivation. We argue that these lower score in sexual performance more likely is due to the level of participants' religiosity and formation of their sexuality through an androcentric culture. Women's level of education and the spouse age appear to be predicting factors in the scores the subjects gained. We suggest that gender-specific and culturally sensitive sexuality education should be focus of women's health programs in Iran.

Keywords: sexual behaviors, women, health, Iran

Procedia PDF Downloads 239
16036 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
16035 Predictors of Non-Adherence to Pharmacological Therapy in Patients with Type 2 Diabetes

Authors: Anan Jarab, Riham Almrayat, Salam Alqudah, Maher Khdour, Tareq Mukattash, Sharell Pinto

Abstract:

Background: The prevalence of diabetes in Jordan is among the highest in the world, making it a particularly alarming health problem there. It has been indicated that poor adherence to the prescribed therapy lead to poor glycemic control and enhance the development of diabetes complications and unnecessary hospitalization. Purpose: To explore factors associated with medication non-adherence in patients with type 2 diabetes in Jordan. Materials and Methods: Variables including socio-demographics, disease and therapy factors, diabetes knowledge, and health-related quality of life in addition to adherence assessment were collected for 171 patients with type 2 diabetes using custom-designed and validated questionnaires. Logistic regression was performed to develop a model with variables that best predicted medication non-adherence in patients with type 2 diabetes in Jordan. Results: The majority of the patients (72.5%) were non-adherent. Patients were found four times less likely to adhere to their medications with each unit increase in the number of prescribed medications (OR = 0.244, CI = 0.08-0.63) and nine times less likely to adhere to their medications with each unit increase in the frequency of administration of diabetic medication (OR = 0.111, CI = 0.04-2.01). Patients in the present study were also approximately three times less likely (OR = 0.362, CI = 0.24-0.87) to adhere to their medications if they reported having concerns about side effects and twice more likely to adhere to medications (OR = 0.493, CI = 0.08-1.16) if they had one or more micro-vascular complication. Conclusion: The current study revealed low adherence rate to the prescribed therapy among Jordanians with type 2 diabetes. Simplifying dosage regimen, selecting treatments with lower side effects along with an emphasis on diabetes complications should be taken into account when developing care plans for patients with type 2 diabetes.

Keywords: type 2 diabetes, adherence, glycemic control, clinical pharmacist, Jordan

Procedia PDF Downloads 438