Search results for: 3D textured model
14155 Interaction Tasks of CUE Model in Virtual Language Learning in Travel English for Taiwanese College EFL Learners
Authors: Kuei-Hao Li, Eden Huang
Abstract:
Motivation suggests the willingness one person has towards taking action. Learners’ motivation has frequently been regarded as the most crucial factor in successful language acquisition. Without sufficient motivation, learners cannot achieve long-term learning goals despite remarkable abilities. Therefore, the study aims to investigate motivation of interaction tasks designed by the researchers for college EFL learners in Travel English class in virtual reality environment, integrating CUE model, Cognition, Usage and Expansion in the course. Thirty college learners were asked to join the virtual language learning website designed by the researchers. Data was collected via feedback questionnaire, interview, and learner interactions. The findings indicated that the course in the CUE model in language learning website of virtual reality environment was effective at motivating EFL learners and improving their oral communication and social interactions in the learning process. Some pedagogical implications are also provided in helping both language instructors and EFL learners in virtual reality environment.Keywords: motivation, virtual reality, virtual language learning, second language acquisition
Procedia PDF Downloads 39314154 New Approach in Sports Management of Great Sports Events
Authors: Taieb Kherafa Noureddine
Abstract:
The paper presents a new approach regarding the management in sports that is based on the principles of reengineering. Applying that modern and pure management system, called reengineering, in sports activity, we hope to get better and better results, in order to increase both the health state and the performances of trained athletes. The paper also presents the similarities between BPR (Business Process Reengineering) and sports managements, as well as the proposed solution for a proper implementation of such model of management. The five components of the basic BPR model are presented, together with their features for sports management.Keywords: business process reengineering, great sports events, sports management, training activities
Procedia PDF Downloads 49214153 Designing Effective Serious Games for Learning and Conceptualization Their Structure
Authors: Zahara Abdulhussan Al-Awadai
Abstract:
Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.Keywords: game development, game design, requirements, serious games, serious game model.
Procedia PDF Downloads 6514152 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models
Authors: Suriya
Abstract:
Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar
Procedia PDF Downloads 4914151 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis
Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang
Abstract:
Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression
Procedia PDF Downloads 42314150 Determination of Safe Ore Extraction Methodology beneath Permanent Extraction in a Lead Zinc Mine with the Help of FLAC3D Numerical Model
Authors: Ayan Giri, Lukaranjan Phukan, Shantanu Karmakar
Abstract:
Structure and tectonics play a vital role in ore genesis and deposition. The existence of a swelling structure below the current level of a mine leads to the discovery of ores below some permeant developments of the mine. The discovery and the extraction of the ore body are very critical to sustain the business requirement of the mine. The challenge was to extract the ore without hampering the global stability of the mine. In order to do so, different mining options were considered and analysed by numerical modelling in FLAC3d software. The constitutive model prepared for this simulation is the improved unified constitutive model, which can better and more accurately predict the stress-strain relationships in a continuum model. The IUCM employs the Hoek-Brown criterion to determine the instantaneous Mohr-Coulomb parameters cohesion (c) and friction (ɸ) at each level of confining stress. The extra swelled part can be dimensioned as north-south strike width 50m, east-west strike width 50m. On the north side, already a stope (P1) is excavated of the dimension of 25m NS width. The different options considered were (a) Open stoping of extraction of southern part (P0) of 50m to the full extent, (b) Extraction of the southern part of 25m, then filling of both the primaries and extraction of secondary (S0) 25m in between. (c) Extraction of the southern part (P0) completely, preceded by backfill and modify the design of the secondary (S0) for the overall stability of the permanent excavation above the stoping.Keywords: extraction, IUCM, FLAC 3D, stoping, tectonics
Procedia PDF Downloads 21514149 Load Management Using Multiple Sequential Load Shaping Techniques
Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi
Abstract:
Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization
Procedia PDF Downloads 31314148 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 25714147 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation
Authors: Mohamed Elassaly
Abstract:
The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building.Keywords: damage, frequency content, ground motion, PGA, RC building, seismic
Procedia PDF Downloads 41014146 Bestination: A Sustainable Approach to Conflict Management for Buddhist Entrepreneurs
Authors: Navarat Sachayansrisakul, Nattawat Ponnara
Abstract:
Human beings are driving forces for any unit of societies, whether it would be in a family, communities, industries or even organizations. However, as our humanity progresses, the reliance has shifted from human to machineries and technologies. One main challenge when dealing with more than one person is conflict often resulted. If the conflict is properly managed, then economic development also follows. In order to achieve positive outcome of conflict, it is believed that the management comes from within individual entrepreneurs. As such, this is a unique study as it looks into the spiritual side of humans as business people and applies to the business environment with the focus on moral and ethical framework in order for sustainable development. This study aims to provide a model of how to positively manage conflict without compromising the ethical and moral standards of the businesses. Sustainability in this study is achieved through the Buddhists’ aim for liberation in which it works on the balanced approach to solving conflict. Buddhists’ livelihood is established on simplicity and non-violence while contributing not to only one’s self but those around them such as the stake holders of the businesses and the communities. According to Buddhist principles and some findings, a model called ‘The Bestination Conflict Management’ was developed. Bestination model offers an alternative approach for entrepreneurs to achieve sustainability along with intrinsic and extrinsic rewards that benefit the well-beings of the owners, the stakeholders and the communities involved. This research study identifies ‘Conflict Management’ model as having goodwill and wisdom as a base, then moral motivation as the next level up to have a disciplines in order to keep a unit well cooperated.Keywords: sustainable, entrepreneurs, Buddhist, moral, ethics, conflict
Procedia PDF Downloads 16914145 Enhancement of Visual Comfort Using Parametric Double Skin Façade
Authors: Ahmed A. Khamis, Sherif A. Ibrahim, Mahmoud El Khatieb, Mohamed A. Barakat
Abstract:
Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabricationKeywords: parametric design, double skin facades, digital fabrication, grasshopper, simplify 3D
Procedia PDF Downloads 12214144 Software Architectural Design Ontology
Authors: Muhammad Irfan Marwat, Sadaqat Jan, Syed Zafar Ali Shah
Abstract:
Software architecture plays a key role in software development but absence of formal description of software architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for software architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate software architectural design information.Keywords: semantic-based software architecture, software architecture, ontology, software engineering
Procedia PDF Downloads 55214143 Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank
Authors: Thiyam Tamphasana Devi, Bimlesh Kumar
Abstract:
A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature.Keywords: Eulerian-Eulerian, gas-hold up, gas-liquid phase, local mass transfer rate, local specific area, Rushton Impeller
Procedia PDF Downloads 23614142 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid
Authors: A. Giniatoulline
Abstract:
A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid
Procedia PDF Downloads 31114141 A Discrete Event Simulation Model For Airport Runway Operations Optimization (Case Study)
Authors: Awad Khireldin, Colin Law
Abstract:
Runways are the major infrastructure of airports around the world. Efficient operations of runways are key to ensure that airports are running smoothly with minimal delays. There are many factors that affect the efficiency of runway operations, such as the aircraft wake separation, runways system configuration, the fleet mix, and the runways separation distance. This paper aims to address how to maximize runway operations using a Discrete Event Simulation model. A case study of Cairo International Airport (CIA) is developed to maximize the utilizing of three parallel runways using a simulation model. Different scenarios have been designed where every runway could be assigned for arrival, departure, or mixed operations. A benchmarking study was also included to compare the actual to the proposed results to spot the potential improvements. The simulation model shows that there is a significant difference in utilization and delays between the actual and the proposed ones, there are several recommendations that can be provided to airport management, in the short and long term, to increase the efficiency and to reduce the delays. By including the recommendation with different operations scenarios, such as upgrading the airport slot Coordination from Level 1 to Level 2 in the short term. In the long run, discuss the possibilities to increase the International Air Transport association (IATA) slot coordination to Level 3 as more flights are expected to be handled by the airport. Technological advancements such as radar in the approach full airside simulation model could improve the airport performance where the airport is recommended to review the standard operations procedures with the appropriate authorities. Also, the airport can adopt a future operational plan to accommodate the forecasted additional traffic density in case of adding a fourth terminal building to increase the airport capacity.Keywords: airport performance, runway, discrete event simulation, capacity, airside
Procedia PDF Downloads 13714140 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition
Abstract:
The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network
Procedia PDF Downloads 9614139 The Development of an Agent-Based Model to Support a Science-Based Evacuation and Shelter-in-Place Planning Process within the United States
Authors: Kyle Burke Pfeiffer, Carmella Burdi, Karen Marsh
Abstract:
The evacuation and shelter-in-place planning process employed by most jurisdictions within the United States is not informed by a scientifically-derived framework that is inclusive of the behavioral and policy-related indicators of public compliance with evacuation orders. While a significant body of work exists to define these indicators, the research findings have not been well-integrated nor translated into useable planning factors for public safety officials. Additionally, refinement of the planning factors alone is insufficient to support science-based evacuation planning as the behavioral elements of evacuees—even with consideration of policy-related indicators—must be examined in the context of specific regional transportation and shelter networks. To address this problem, the Federal Emergency Management Agency and Argonne National Laboratory developed an agent-based model to support regional analysis of zone-based evacuation in southeastern Georgia. In particular, this model allows public safety officials to analyze the consequences that a range of hazards may have upon a community, assess evacuation and shelter-in-place decisions in the context of specified evacuation and response plans, and predict outcomes based on community compliance with orders and the capacity of the regional (to include extra-jurisdictional) transportation and shelter networks. The intention is to use this model to aid evacuation planning and decision-making. Applications for the model include developing a science-driven risk communication strategy and, ultimately, in the case of evacuation, the shortest possible travel distance and clearance times for evacuees within the regional boundary conditions.Keywords: agent-based modeling for evacuation, decision-support for evacuation planning, evacuation planning, human behavior in evacuation
Procedia PDF Downloads 23814138 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada
Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman
Abstract:
Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.Keywords: HAND, DTM, rapid floodplain, simplified conceptual models
Procedia PDF Downloads 15314137 Monocular Depth Estimation Benchmarking with Thermal Dataset
Authors: Ali Akyar, Osman Serdar Gedik
Abstract:
Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers
Procedia PDF Downloads 3414136 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion
Authors: J. H. Park, R. H. Hwang, K. B. Yi
Abstract:
Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method
Procedia PDF Downloads 21014135 A Collaborative Teaching and Learning Model between Academy and Industry for Multidisciplinary Engineering Education
Authors: Moon-Soo Kim
Abstract:
In order to cope with the increasing demand for multidisciplinary learning between academy and industry, a collaborative teaching and learning model and related operational tools enabling applications to engineering education are essential. This study proposes a web-based collaborative framework for interactive teaching and learning between academy and industry as an initial step for the development of a web- and mobile-based integrated system for both engineering students and industrial practitioners. The proposed web-based collaborative teaching and learning framework defines several entities such as learner, solver and supporter or sponsor for industrial problems, and also has a systematic architecture to build information system including diverse functions enabling effective interaction among the defined entities regardless of time and places. Furthermore, the framework, which includes knowledge and information self-reinforcing mechanism, focuses on the previous problem-solving records as well as subsequent learners’ creative reusing in solving process of new problems.Keywords: collaborative teaching and learning model, academy and industry, web-based collaborative framework, self-reinforcing mechanism
Procedia PDF Downloads 32614134 Finite Element Simulation of Embankment Bumps at Bridge Approaches, Comparison Study
Authors: F. A. Hassona, M. D. Hashem, R. I. Melek, B. M. Hakeem
Abstract:
A differential settlement at the end of a bridge near the interface between the abutment and the embankment is a persistent problem for highway agencies. The differential settlement produces the common ‘bump at the end of the bridge’. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operation, and reduction in a transportation agency’s public image are all undesirable effects of these uneven and irregular transitions. This paper attempts to simulate the bump at the end of the bridge using PLAXIS finite element 2D program. PLAXIS was used to simulate a laboratory model called Bridge to Embankment Simulator of Transition (B.E.S.T.) device which was built by others to investigate this problem. A total of six numerical simulations were conducted using hardening- soil model with rational assumptions of missing soil parameters to estimate the bump at the end of the bridge. The results show good agreements between the numerical and the laboratory models. Important factors influencing bumps at bridge ends were also addressed in light of the model results.Keywords: bridge approach slabs, bridge bump, hardening-soil, PLAXIS 2D, settlement
Procedia PDF Downloads 35014133 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 14414132 Fatigue Analysis and Life Estimation of the Helicopter Horizontal Tail under Cyclic Loading by Using Finite Element Method
Authors: Defne Uz
Abstract:
Horizontal Tail of helicopter is exposed to repeated oscillatory loading generated by aerodynamic and inertial loads, and bending moments depending on operating conditions and maneuvers of the helicopter. In order to ensure that maximum stress levels do not exceed certain fatigue limit of the material and to prevent damage, a numerical analysis approach can be utilized through the Finite Element Method. Therefore, in this paper, fatigue analysis of the Horizontal Tail model is studied numerically to predict high-cycle and low-cycle fatigue life related to defined loading. The analysis estimates the stress field at stress concentration regions such as around fastener holes where the maximum principal stresses are considered for each load case. Critical element identification of the main load carrying structural components of the model with rivet holes is performed as a post-process since critical regions with high-stress values are used as an input for fatigue life calculation. Once the maximum stress is obtained at the critical element and the related mean and alternating components, it is compared with the endurance limit by applying Soderberg approach. The constant life straight line provides the limit for several combinations of mean and alternating stresses. The life calculation based on S-N (Stress-Number of Cycles) curve is also applied with fully reversed loading to determine the number of cycles corresponds to the oscillatory stress with zero means. The results determine the appropriateness of the design of the model for its fatigue strength and the number of cycles that the model can withstand for the calculated stress. The effect of correctly determining the critical rivet holes is investigated by analyzing stresses at different structural parts in the model. In the case of low life prediction, alternative design solutions are developed, and flight hours can be estimated for the fatigue safe operation of the model.Keywords: fatigue analysis, finite element method, helicopter horizontal tail, life prediction, stress concentration
Procedia PDF Downloads 14814131 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach
Authors: Zhuoran Li, Guan Qin
Abstract:
A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method
Procedia PDF Downloads 17314130 On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar.Keywords: porous media, local thermal non-equilibrium, forced convection heat transfer, thermal radiation, Discrete Ordinate Method (DOM)
Procedia PDF Downloads 32614129 Rasch Analysis in the Development of 'Kohesif-Ques': An Instrument to Measure Social Cohesion
Authors: Paramita Sekar Ayu, Sunjaya Deni Kurniadi, Yamazaki Chiho, Hilfi Lukman, Koyama Hiroshi
Abstract:
Social cohesion, or closeness among members of society, is an important determinant of population health. A cohesive society is a crucial societal condition for a positive life evaluation and subjective wellbeing, and people living in a cohesive society are happier and more satisfied with life and achieve better health status. The objective of this study was to compose and validate a questionnaire for measuring social cohesion with Rasch analysis. We develop a set of 13 questions to measure 4 dimensions of social cohesion. Random samples of 166 Bandung citizens’ were selected to answer the questionnaire. To evaluate the questionnaire’s validity and reliability, Rasch analysis (a psychometric model for analyzing categorical data on questionnaire responses) was carried out using Winsteps version 3.75.0. Rasch analysis was performed on the response given to 13 items included in the questionnaire. The reliability coefficient, Cronbach’s alpha was 0.70, model RMSE 0.08, SD 0.54, separation 7.14, and reliability of 0.98. ‘Kohesif-Ques’ is a useful instrument to assess social cohesion.Keywords: rasch analysis, rasch model, social cohesion, quesionnaire
Procedia PDF Downloads 17914128 Forecasting Regional Data Using Spatial Vars
Authors: Taisiia Gorshkova
Abstract:
Since the 1980s, spatial correlation models have been used more often to model regional indicators. An increasingly popular method for studying regional indicators is modeling taking into account spatial relationships between objects that are part of the same economic zone. In 2000s the new class of model – spatial vector autoregressions was developed. The main difference between standard and spatial vector autoregressions is that in the spatial VAR (SpVAR), the values of indicators at time t may depend on the values of explanatory variables at the same time t in neighboring regions and on the values of explanatory variables at time t-k in neighboring regions. Thus, VAR is a special case of SpVAR in the absence of spatial lags, and the spatial panel data model is a special case of spatial VAR in the absence of time lags. Two specifications of SpVAR were applied to Russian regional data for 2000-2017. The values of GRP and regional CPI are used as endogenous variables. The lags of GRP, CPI and the unemployment rate were used as explanatory variables. For comparison purposes, the standard VAR without spatial correlation was used as “naïve” model. In the first specification of SpVAR the unemployment rate and the values of depending variables, GRP and CPI, in neighboring regions at the same moment of time t were included in equations for GRP and CPI respectively. To account for the values of indicators in neighboring regions, the adjacency weight matrix is used, in which regions with a common sea or land border are assigned a value of 1, and the rest - 0. In the second specification the values of depending variables in neighboring regions at the moment of time t were replaced by these values in the previous time moment t-1. According to the results obtained, when inflation and GRP of neighbors are added into the model both inflation and GRP are significantly affected by their previous values, and inflation is also positively affected by an increase in unemployment in the previous period and negatively affected by an increase in GRP in the previous period, which corresponds to economic theory. GRP is not affected by either the inflation lag or the unemployment lag. When the model takes into account lagged values of GRP and inflation in neighboring regions, the results of inflation modeling are practically unchanged: all indicators except the unemployment lag are significant at a 5% significance level. For GRP, in turn, GRP lags in neighboring regions also become significant at a 5% significance level. For both spatial and “naïve” VARs the RMSE were calculated. The minimum RMSE are obtained via SpVAR with lagged explanatory variables. Thus, according to the results of the study, it can be concluded that SpVARs can accurately model both the actual values of macro indicators (particularly CPI and GRP) and the general situation in the regionsKeywords: forecasting, regional data, spatial econometrics, vector autoregression
Procedia PDF Downloads 14314127 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve
Authors: Y. J. Wang, C. Q. Ru
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 51414126 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange
Procedia PDF Downloads 103