Search results for: total capacity algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15735

Search results for: total capacity algorithm

13035 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem

Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen

Abstract:

A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.

Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder

Procedia PDF Downloads 261
13034 Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems

Authors: Yiwei Li, Boyu Tian, Mingyu Gao

Abstract:

Hybrid main memory systems combine both performance and capacity advantages from heterogeneous memory technologies. With larger capacities, higher associativities, and finer granularities, hybrid memory systems currently exhibit significant metadata storage and lookup overheads for flexibly remapping data blocks between the two memory tiers. To alleviate the inefficiencies of existing designs, we propose Trimma, the combination of a multi-level metadata structure and an efficient metadata cache design. Trimma uses a multilevel metadata table to only track truly necessary address remap entries. The saved memory space is effectively utilized as extra DRAM cache capacity to improve performance. Trimma also uses separate formats to store the entries with non-identity and identity mappings. This improves the overall remap cache hit rate, further boosting the performance. Trimma is transparent to software and compatible with various types of hybrid memory systems. When evaluated on a representative DDR4 + NVM hybrid memory system, Trimma achieves up to 2.4× and on average 58.1% speedup benefits, compared with a state-of-the-art design that only leverages the unallocated fast memory space for caching. Trimma addresses metadata management overheads and targets future scalable large-scale hybrid memory architectures.

Keywords: memory system, data cache, hybrid memory, non-volatile memory

Procedia PDF Downloads 79
13033 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words (BOVW), classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar (PolSAR)

Procedia PDF Downloads 210
13032 Fatty Acids in Female's Gonads of the Red Sea Fish Rhabdosargus Sarba During the Spawning Season

Authors: Suhaila Qari, Samia Moharram, Safaa Alowaidi

Abstract:

Objectives: To determine the fatty acids profiles in female fish, R. sarba from the Red Sea during the spawning season. Methods: Monthly individual Rhabdosargus sarba were obtained from Bangalah market in Jeddah, Red Sea and transported to the laboratory in ice aquarium. The total length, standard length and weight were measured, fishes were dissected. Ovaries were removed, weighed and 10 ml of concentrated hydrochloric acid were added to 10g of the ovary in a conical flask and immersed in boiling water until the sample was dissolved and the fat was seen to collect on the surface. The conical was cooled and the fat was extracted by shaking with 30 ml of diethyl ether. The extract was bowled after allowing the layers to separate into a weighed flask. The extraction was repeated three times more and distilled off the solvent then the fat dried at 100oC, cooled and weighed. Then 50 mg of lipid was put in a tube, 5 ml of methanolic sulphuric acid was added and 2 ml of benzene, the tube well closed and placed in water bath at 90oC for an hour and half. After cooling, 8 ml water and 5 ml petroleum was added shacked strongly and the ethereal layer was separated in a dry tube, evaporated to dryness. The fatty acid methyl esters were analyzed using a Hewlett Packard (HP 6890) chromatography, asplit /splitless injector and flame ionization detector (FID). Results: In female Rhabdosargus sarba, a total of 29 fatty acids detected in ovaries throughout the spawning season. The main fatty acid group in total lipid was saturated fatty acid (SFA, 28.9%), followed by 23.5% of polyunsaturated fatty acids (PUFA) and 12.9% of monounsaturated fatty acids (MUFA). The dominant SFA were palmitic and stearic, the major MUFA were palmitoleic and oleic, and the major PUFA were C18:2 and C22:2. During spawning stages no significant differences in total SFA, MUFA and PUFA, the highest value of SFA was in late spawning (36.78%). However, the highest value of MUFA and PUFA was in spawning (16.70% and 24.96% respectively). During spawning season there were a significant differences in total SFA between March (late spawning stage) and December (nearly ripe stage), (P < 0.05).

Keywords: sparidae, Rhabdosargus sarba, fish, fatty acids, spawning, gonads, red sea

Procedia PDF Downloads 802
13031 Effect of Addition Cinnamon Extract (Cinnamomum burmannii) to Water Content, pH Value, Total Lactid Acid Bacteria Colonies, Antioxidant Activity and Cholesterol Levels of Goat Milk Yoghurt Isolates Dadih (Pediococcus pentosaceus)

Authors: Endang Purwati, Ely Vebriyanti, R. Puji Hartini, Hendri Purwanto

Abstract:

This study aimed to determine the effect of addition cinnamon extract (Cinnamomum burmannii) in making goat milk yogurt product isolates dadih (Pediococcus pentosaceus) to antioxidant activity and cholesterol levels. The method of research was the experimental method by using a Randomized Block Design (RBD), which consists of 5 treatments with 4 groups as replication. Treatment in this study was used of cinnamon extract as A (0%), B (1%), C (2%), D (3%), E (4%) in a goat’s milk yoghurt. This study was used 4200 ml of Peranakan Etawa goat’s milk and 80 ml of cinnamon extract. The variable analyzed were water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. The average water content ranged from 81.2-85.56%. Mean pH values rang between 4.74–4.30. Mean total lactic acid bacteria colonies ranged from 3.87 x 10⁸ - 7.95 x 10⁸ CFU/ml. The average of the antioxidant activity ranged between 10.98%-27.88%. Average of cholesterol levels ranged from 14.0 mg/ml–17.5 mg/ml. The results showed that the addition of cinnamon extract in making goat milk yoghurt product isolates dadih (Pediococcus pentosaceus) significantly different (P < 0.05) to water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. In conclusion, the study shows that using of cinnamon extract 4% is the best in making goat milk yoghurt.

Keywords: antioxidant, cholesterol, cinnamon, Pediococcus pentosaceus, yoghurt

Procedia PDF Downloads 255
13030 Carrying Capacity Estimation for Small Hydro Plant Located in Torrential Rivers

Authors: Elena Carcano, James Ball, Betty Tiko

Abstract:

Carrying capacity refers to the maximum population that a given level of resources can sustain over a specific period. In undisturbed environments, the maximum population is determined by the availability and distribution of resources, as well as the competition for their utilization. This information is typically obtained through long-term data collection. In regulated environments, where resources are artificially modified, populations must adapt to changing conditions, which can lead to additional challenges due to fluctuations in resource availability over time and throughout development. An example of this is observed in hydropower plants, which alter water flow and impact fish migration patterns and behaviors. To assess how fish species can adapt to these changes, specialized surveys are conducted, which provide valuable information on fish populations, sample sizes, and density before and after flow modifications. In such situations, it is highly recommended to conduct hydrological and biological monitoring to gain insight into how flow reductions affect species adaptability and to prevent unfavorable exploitation conditions. This analysis involves several planned steps that help design appropriate hydropower production while simultaneously addressing environmental needs. Consequently, the study aims to strike a balance between technical assessment, biological requirements, and societal expectations. Beginning with a small hydro project that requires restoration, this analysis focuses on the lower tail of the Flow Duration Curve (FDC), where both hydrological and environmental goals can be met. The proposed approach involves determining the threshold condition that is tolerable for the most vulnerable species sampled (Telestes Muticellus) by identifying a low flow value from the long-term FDC. The results establish a practical connection between hydrological and environmental information and simplify the process by establishing a single reference flow value that represents the minimum environmental flow that should be maintained.

Keywords: carrying capacity, fish bypass ladder, long-term streamflow duration curve, eta-beta method, environmental flow

Procedia PDF Downloads 40
13029 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
13028 A Combined Activated Sludge-Sonication Process for Abattoir Wastewater Treatment

Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Devendra Saroj, Judy Lee

Abstract:

Wastewater treatment is becoming a worldwide concern due to new and tighter environmental regulations, and the increasing need for fresh water for the exponentially growing population. The meat industry has one of the highest consumption of water producing up to 10 times more polluted (BOD) wastewaters in comparison to domestic sewage. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-sonication system was used to treat pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process and using ultrasound as tertiary treatment. Different ultrasonic frequencies, powers and sonication times were applied to the samples and results were analysed for chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids, pH, total coliforms and total viable counts. Additionally, both mechanical and chemical effects of ultrasound were quantified for organic matter removal (COD and BOD) and disinfection (microorganism inactivation) using different techniques such as aluminum foil pitting, flow cytometry, and KI dosimetry.

Keywords: abattoir wastewater, ultrasound, wastewater treatment, water disinfection

Procedia PDF Downloads 287
13027 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: chitosan, clay, dye adsorption, hydrogels nanocomposites

Procedia PDF Downloads 122
13026 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction

Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter

Abstract:

Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.

Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA

Procedia PDF Downloads 180
13025 Assessment of Major Feed Resources and Its Utilization in Manaslu Conservation Area Nepal

Authors: Sabita Subedi, Bhojan Dhakal, Shankar Raj Pant, Naba Raj Devkota

Abstract:

An assessment was made about the available feed resources, its utilization pattern, specifically, roughage and concentrate, produced from the Manaslu Conservation Area (MCA) of Nepal to formulate the appropriate strategies in satisfying the annual dietary requirements of the livestock covering its present production and management scenarios. A comparative study was done by employing a purposively conducted survey to deduct the distribution of forage sources in the area. Findings revealed that natural vegetation, seasonally available crop residues, and dried grasses were major feed resources, whereas their contribution to the total supply varied significantly (p < 0.01). The amount of feed obtained from various sources was calculated by standard conversion and using primary household data. Findings revealed that farmers practice significantly higher (p < 0.01) number of grazing days and hours per day for large ruminants such as Yak and Chauries as compared to small ruminants such as goats and sheep. The findings also indicated seasonal variations of feed supply, whereas January to March is the period of short supply (p < 0.01). It was relatively in good supply from June to September though average roughage and crude protein supplement for the animals was far below than optimum requirements. These scenarios suggest the need for immediate attention to improve the range productivity in the MCA as the deteriorating situations of the rangelands may raise questions on the sustainability of livestock herders.

Keywords: altitude, carrying capacity, dietary requirement, feed resources, rangeland, ruminant

Procedia PDF Downloads 200
13024 Interaction Effects of Dietary Ginger, Zingiber Officinale, on Plasma Protein Fractions in Rainbow Trout, Oncorhynchus Mykiss

Authors: Ali Taheri Mirghaed, Sara Ahani, Ashkan Zargar, Seyyed Morteza Hoseini

Abstract:

Diseases are the major challenges in intensive aquaculture that cause significant annual losses. Antibiotic-therapy is a common way to control bacterial disease in fish, and oxytetracycline (OTC) is the only oral antibiotic in aquaculture approved FDA. OTC has been found to have negative effects on fish, such as oxidative stress and immune-suppression, thus, it is necessary to mitigate such effects. Medicinal herbs have various benefits on fish, including antioxidant, immunostimulant, and anti-microbial effects. Therefore, we hypothesized if dietary ginger meal (GM) interacts with dietary OTC by monitoring plasma protein fractions in rainbow trout. The study was conducted as a 2 × 2 factorial design, including diets containing 0 and 1% GM and 0 and 1.66 % OTC (corresponding to 100 mg/kg fish biomass per day). After ten days treating the fish (60 g individual weight) with these feeds, blood samples were taken from al treatments (n =3). Plasma was separated by centrifugation, and protein fractions were determined by electrophoresis. The results showed that OTC and GM had interaction effects on total protein (P<0.001), albumin (P<0.001), alpha-1 fraction (P=0.010), alpha-2 fraction (P=0.001), beta-2 fraction (P=0.014), and gamma fraction (P<0.001). Beta-1 fraction was significantly (P=0.030) affected by dietary GM. GM decreased plasma total protein, albumin, and beta-2 but increased beta-1 fraction. OTC significantly decreased total protein (P<0.001), albumin (P=0.001), alpha-2 fraction (P<0.001), beta-2 fraction (P=0.004), and gamma fraction (P<0.001) but had no significant effects on alpha-1 and beta-1 fractions. Dietary GM inhibited/suppressed the effects of dietary OTC on the plasma total protein and protein fractions. In conclusion, adding 1% GM to diet can mitigate the negative effects of dietary OTC on plasma proteins. Thus, GM may boost health of rainbow trout during the period of medication with OTC.

Keywords: ginger, plasma protein electrophoresis, dietary additive, rainbow trout

Procedia PDF Downloads 93
13023 The Role of Social and Technical Lean Implementation in Improving Operational Performance: Insights from the Pharmaceutical Industry

Authors: Bernasconi Matteo, Grothkopp Mark, Friedli Thomas

Abstract:

The objective of this paper is to examine the relationships between technical and social lean bundles as well as operational performance in the context of the pharmaceutical industry. We investigate the direct and mediating effects of the lean bundles total productive maintenance (TPM), total quality management (TQM), Just-In-Time (JIT), and human resource management (HRM) on operational performance. Our analysis relies on 113 manufacturing facilities from the St.Gallen OPEX benchmarking database. The results show that HRM has a positive indirect effect on operational performance mediated by the technical lean bundles.

Keywords: human resource management, operational performance, pharmaceutical industry, technical lean practices

Procedia PDF Downloads 128
13022 Mixed Alumina-Silicate Materials for Groundwater Remediation

Authors: Ziyad Abunada, Abir Al-tabbaa

Abstract:

The current work is investigating the effectiveness of combined mixed materials mainly modified bentonites and organoclay in treating contaminated groundwater. Sodium bentonite was manufactured with a quaternary amine surfactant, dimethyl ammonium chloride to produce organoclay (OC). Inorgano-organo bentonite (IOB) was produced by intercalating alkylbenzyd-methyl-ammonium chloride surfactant into sodium bentonite and pillared with chlorohydrol pillaring agent. The materials efficiency was tested for both TEX compounds from model-contaminated water and a mixture of organic contaminants found in groundwater samples collected from a contaminated site in the United Kingdom. The sorption data was fitted well to both Langmuir and Freundlich adsorption models reflecting the double sorption model where the correlation coefficient was greater than 0.89 for all materials. The mixed materials showed higher sorptive capacity than individual material with a preference order of X> E> T and a maximum sorptive capacity of 21.8 mg/g was reported for IOB-OC materials for o-xylene. The mixed materials showed at least two times higher affinity towards a mixture of organic contaminants in groundwater samples. Other experimental parameters such as pH and contact time were also investigated. The pseudo-second-order rate equation was able to provide the best description of adsorption kinetics.

Keywords: modified bentobite, groundwater, adsorption, contaminats

Procedia PDF Downloads 225
13021 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 429
13020 Anti-Jaundice Properties of Methanolic Extract of Carica Papaya Leaves on Jaundice-Induced Albino Rat

Authors: Joseph Bamidele Minari

Abstract:

The anti-jaundice properties of the methanolic extract of Carica papaya leaves on albino rat was evaluated. In order to achieve this, the phytochemical screening of the extract was carried out, and carbon tetrachloride (CCl4) (i.p) was injected into albino rats to induce jaundice. The rats were simultaneously given oral doses of 20 mg/kg, 40 mg/kg, 60 mg/kg, 80 mg/kg and 100 mg/kg (p.o) of methanolic extract of C. papaya. The effects of these extract on total bilirubin concentration, liver ALT AST, GGT activities of the jaundice-induced rats were studied after seven days period of the experiment. Administration of CCl4 alone to the rats significantly increased (p<0.05) total bilirubin concentration while the activities of ALT, AST, and GGT in the liver when compared to controls which received distilled water (p.o) was significantly lower (p<0.05). Simultaneous treatment of CCl4 injection, and oral administration of different doses of the C. papaya extract significantly reduced (p<0.05) total bilirubin concentration in the serum while the liver ALT AST, GGT activities significantly increased (p < 0.05). However, the lowest significant reduction (p<0.05) of bilirubin concentration was observed with simultaneous administration of 60mg/kg of the extract on the rats. This study suggests that the extract of C. papaya leaves possess the phytochemicals that have anti-jaundice properties.

Keywords: carica papaya, jaundice, herbal medicine, liver, rat

Procedia PDF Downloads 452
13019 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model

Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract:

In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.

Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data

Procedia PDF Downloads 334
13018 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 475
13017 Endemic Asteraceae from Mauritius Islands as Potential Phytomedicines

Authors: S.Kauroo, J. Govinden Soulange, D. Marie

Abstract:

Psiadia species from the Asteraceae are traditionally used in the folk medicine of Mauritius to treat cutaneous and bronchial infections. The present study aimed at validating the phytomedicinal properties of the selected species from the Asteraceae family, namely Psiadia arguta, Psiadia viscosa, Psiadia lithospermifolia, and Distephanus populifolius. Dried hexane, ethyl acetate, and methanol leaf extracts were studied for their antioxidant properties using the DPPH (1, 1-diphenyl-2-picryl-hydrazyl), FRAP (Ferric Reducing Ability of Plasma), and Deoxyribose assays. Antibacterial activity against human pathogenic bacteria namely Escherichia coli (ATCC 27853), Staphylococcus aureus (ATCC 29213), Enterococcus faecalis (ATCC 29212), Klebsiella pneumonia (ATCC27853), Pseudomonas aeruginosa (ATCC 27853), and Bacillus cereus (ATCC 11778) was measured using the broth microdilution assay. Qualitative phytochemical screening using standard methods revealed the presence of coumarins, tannins, leucoanthocyanins, and steroids in all the tested extracts. The measured phenolics level of the selected plant extracts varied from 24.0 to 231.6 mg GAE/g with the maximum level in methanol extracts in all four species. The highest flavonoids and proanthocyanidins content was noted in Psiadia arguta methanolic extracts with 65.7±1.8 mg QE/g and 5.1±0.0 mg CAT/g dry weight (DW) extract, respectively. The maximum free radical scavenging activity was measured in Psiadia arguta methanol and ethyl acetate extracts with IC50 11.3±0.2 and 11.6± 0.2 µg/mL, respectively and followed by Distephanus populifolius methanol extracts with an IC50 of 11.3± 0.8 µg/mL. The maximum ferric reducing antioxidant potential was noted in Psiadia lithospermifolia methanol extracts with a FRAP value of 18.8 ± 0.4 µmol Fe2+/L/g DW. The antioxidant capacity based on DPPH and Deoxyribose values were negatively related to total phenolics, flavonoid and proanthocyanidins content while the ferric reducing antioxidant potential were strongly correlated to total phenolics, flavonoid and proanthocyanidins content. All four species exhibited antimicrobial activity against the tested bacteria (both Gram-negative and Gram-positive). Interestingly, the hexane and ethyl acetate extracts of Psiadia viscosa and Psiadia lithospermifolia were more active than the control antibiotic Chloramphenicol. The Minimum inhibitory concentration (MIC) values for hexane and ethyl acetate extracts of Psiadia viscosa and Psiadia lithospermifolia against the tested bacteria ranged from (62.5 to 500 µg/ml). These findings validate the use of these tested Asteraceae in the traditional medicine of Mauritius and also highlight their pharmaceutical potential as prospective phytomedicines.

Keywords: antibacterial, antioxidant, DPPH, flavonoids, FRAP, Psiadia spp

Procedia PDF Downloads 531
13016 Energy Analysis of Sugarcane Production: A Case Study in Metehara Sugar Factory in Ethiopia

Authors: Wasihun Girma Hailemariam

Abstract:

Energy is one of the key elements required for every agricultural activity, especially for large scale agricultural production such as sugarcane cultivation which mostly is used to produce sugar and bioethanol from sugarcane. In such kinds of resource (energy) intensive activities, energy analysis of the production system and looking for other alternatives which can reduce energy inputs of the sugarcane production process are steps forward for resource management. The purpose of this study was to determine input energy (direct and indirect) per hectare of sugarcane production sector of Metehara sugar factory in Ethiopia. Total energy consumption of the production system was 61,642 MJ/ha-yr. This total input energy is a cumulative value of different inputs (direct and indirect inputs) in the production system. The contribution of these different inputs is discussed and a scenario of substituting the most influential input by other alternative input which can replace the original input in its nutrient content was discussed. In this study the most influential input for increased energy consumption was application of organic fertilizer which accounted for 50 % of the total energy consumption. Filter cake which is a residue from the sugar production in the factory was used to substitute the organic fertilizer and the reduction in the energy consumption of the sugarcane production was discussed

Keywords: energy analysis, organic fertilizer, resource management, sugarcane

Procedia PDF Downloads 158
13015 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops

Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding

Abstract:

BACKGROUND: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. OBJECTIVE: This article tried to optimize the layout of troops’ cafeteria and to improve the overall efficiency of the dining process. METHODS: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. RESULTS: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interference reduced as well, which verified corresponding simulation results. CONCLUSIONS: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.

Keywords: layout optimization, dining efficiency, troops’ cafeteria, anylogic simulation, field experiment

Procedia PDF Downloads 143
13014 Producing Outdoor Design Conditions based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The outdoor design weather data are usually comprised of multiple meteorological elements for a 24-hour period separately, but the dependency between the elements is not well considered, which may cause an overestimation of selecting air-conditioning capacity. Considering the dependency between the air temperature and global solar radiation, we used the copula approach to model the joint distributions of those two weather elements and suggest a new method of selecting more credible outdoor design conditions based on the specific simultaneous occurrence probability of air temperature and global solar radiation. In this paper, the 10-year period hourly weather data from 2001 to 2010 in Osaka, Japan, was used to analyze the dependency structure and joint distribution, the result shows that the Joe-Frank copula fit for almost all hourly data. According to calculating the simultaneous occurrence probability and the common exceeding probability of air temperature and global solar radiation, the results have shown that the maximum difference in design air temperature and global solar radiation of the day is about 2 degrees Celsius and 30W/m2, respectively.

Keywords: energy conservation, design weather database, HVAC, copula approach

Procedia PDF Downloads 268
13013 Trend Analysis of Annual Total Precipitation Data in Konya

Authors: Naci Büyükkaracığan

Abstract:

Hydroclimatic observation values ​​are used in the planning of the project of water resources. Climate variables are the first of the values ​​used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.

Keywords: trend analysis, precipitation, hydroclimatology, Konya

Procedia PDF Downloads 219
13012 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal

Authors: Basanta Raj Adhikari

Abstract:

Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.

Keywords: community, earthquake, landslides, Nepal

Procedia PDF Downloads 156
13011 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms

Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri

Abstract:

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.

Keywords: connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks

Procedia PDF Downloads 241
13010 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 103
13009 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
13008 Sperm Flagellum Center-Line Tracing in 4D Stacks Using an Iterative Minimal Path Method

Authors: Paul Hernandez-Herrera, Fernando Montoya, Juan Manuel Rendon, Alberto Darszon, Gabriel Corkidi

Abstract:

Intracellular calcium ([Ca2+]i) regulates sperm motility. The analysis of [Ca2+]i has been traditionally achieved in two dimensions while the real movement of the cell takes place in three spatial dimensions. Due to optical limitations (high speed cell movement and low light emission) important data concerning the three dimensional movement of these flagellated cells had been neglected. Visualizing [Ca2+]i in 3D is not a simple matter since it requires complex fluorescence microscopy techniques where the resulting images have very low intensity and consequently low SNR (Signal to Noise Ratio). In 4D sequences, this problem is magnified since the flagellum oscillates (for human sperm) at least at an average frequency of 15 Hz. In this paper, a novel approach to extract the flagellum’s center-line in 4D stacks is presented. For this purpose, an iterative algorithm based on the fast-marching method is proposed to extract the flagellum’s center-line. Quantitative and qualitative results are presented in a 4D stack to demonstrate the ability of the proposed algorithm to trace the flagellum’s center-line. The method reached a precision and recall of 0.96 as compared with a semi-manual method.

Keywords: flagellum, minimal path, segmentation, sperm

Procedia PDF Downloads 284
13007 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR

Authors: Ionut Vintu, Stefan Laible, Ruth Schulz

Abstract:

Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.

Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection

Procedia PDF Downloads 139
13006 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation

Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince

Abstract:

In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.

Keywords: ambient anaerobic digestion, biogas recovery, poultry manure, renewable energy

Procedia PDF Downloads 420