Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87758
Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems

Authors: Yiwei Li, Boyu Tian, Mingyu Gao

Abstract:

Hybrid main memory systems combine both performance and capacity advantages from heterogeneous memory technologies. With larger capacities, higher associativities, and finer granularities, hybrid memory systems currently exhibit significant metadata storage and lookup overheads for flexibly remapping data blocks between the two memory tiers. To alleviate the inefficiencies of existing designs, we propose Trimma, the combination of a multi-level metadata structure and an efficient metadata cache design. Trimma uses a multilevel metadata table to only track truly necessary address remap entries. The saved memory space is effectively utilized as extra DRAM cache capacity to improve performance. Trimma also uses separate formats to store the entries with non-identity and identity mappings. This improves the overall remap cache hit rate, further boosting the performance. Trimma is transparent to software and compatible with various types of hybrid memory systems. When evaluated on a representative DDR4 + NVM hybrid memory system, Trimma achieves up to 2.4× and on average 58.1% speedup benefits, compared with a state-of-the-art design that only leverages the unallocated fast memory space for caching. Trimma addresses metadata management overheads and targets future scalable large-scale hybrid memory architectures.

Keywords: memory system, data cache, hybrid memory, non-volatile memory

Procedia PDF Downloads 81