Search results for: probabilistic model
14348 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours
Authors: Fikret Yalcinkaya, Hamza Unsal
Abstract:
To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models
Procedia PDF Downloads 18614347 Developing Heat-Power Efficiency Criteria for Characterization of Technosphere Structural Elements
Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Aleksandr A. Gajour, Andrei P. Garnov
Abstract:
This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with a spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the Polar Regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under the limited and unlimited amount of heat-energy resources are analyzed.Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes
Procedia PDF Downloads 32614346 A Case Study at PT Bank XYZ on The Role of Compensation, Career Development, and Employee Engagement towards Employee Performance
Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari
Abstract:
This study aims to examine, analyze and explain the impacts of compensation, career development and employee engagement to employee’s performance partially and simultaneously (Case Study at PT Bank XYZ). The research design used is quantitative descriptive research causality involving 30 respondents. Sources of data are from primary and secondary data, primary data obtained from questionnaires distribution and secondary data obtained from journals and books. Data analysis used model test using smart application PLS 3 that consists of test outer model and inner model. The results showed that compensation, career development and employee engagement partially have a positive impact on employee performance, while they have a positive and significant impact on employee performance simultaneously. The independent variable has the greatest impact is the employee engagement.Keywords: compensation, career development, employee engagement, employee performance
Procedia PDF Downloads 15514345 Generic Hybrid Models for Two-Dimensional Ultrasonic Guided Wave Problems
Authors: Manoj Reghu, Prabhu Rajagopal, C. V. Krishnamurthy, Krishnan Balasubramaniam
Abstract:
A thorough understanding of guided ultrasonic wave behavior in structures is essential for the application of existing Non Destructive Evaluation (NDE) technologies, as well as for the development of new methods. However, the analysis of guided wave phenomena is challenging because of their complex dispersive and multimodal nature. Although numerical solution procedures have proven to be very useful in this regard, the increasing complexity of features and defects to be considered, as well as the desire to improve the accuracy of inspection often imposes a large computational cost. Hybrid models that combine numerical solutions for wave scattering with faster alternative methods for wave propagation have long been considered as a solution to this problem. However usually such models require modification of the base code of the solution procedure. Here we aim to develop Generic Hybrid models that can be directly applied to any two different solution procedures. With this goal in mind, a Numerical Hybrid model and an Analytical-Numerical Hybrid model has been developed. The concept and implementation of these Hybrid models are discussed in this paper.Keywords: guided ultrasonic waves, Finite Element Method (FEM), Hybrid model
Procedia PDF Downloads 46914344 Numerical Modeling of Timber Structures under Varying Humidity Conditions
Authors: Sabina Huč, Staffan Svensson, Tomaž Hozjan
Abstract:
Timber structures may be exposed to various environmental conditions during their service life. Often, the structures have to resist extreme changes in the relative humidity of surrounding air, with simultaneously carrying the loads. Wood material response for this load case is seen as increasing deformation of the timber structure. Relative humidity variations cause moisture changes in timber and consequently shrinkage and swelling of the material. Moisture changes and loads acting together result in mechano-sorptive creep, while sustained load gives viscoelastic creep. In some cases, magnitude of the mechano-sorptive strain can be about five times the elastic strain already at low stress levels. Therefore, analyzing mechano-sorptive creep and its influence on timber structures’ long-term behavior is of high importance. Relatively many one-dimensional rheological models for rheological behavior of wood can be found in literature, while a number of models coupling creep response in each material direction is limited. In this study, mathematical formulation of a coupled two-dimensional mechano-sorptive model and its application to the experimental results are presented. The mechano-sorptive model constitutes of a moisture transport model and a mechanical model. Variation of the moisture content in wood is modelled by multi-Fickian moisture transport model. The model accounts for processes of the bound-water and water-vapor diffusion in wood, that are coupled through sorption hysteresis. Sorption defines a nonlinear relation between moisture content and relative humidity. Multi-Fickian moisture transport model is able to accurately predict unique, non-uniform moisture content field within the timber member over time. Calculated moisture content in timber members is used as an input to the mechanical analysis. In the mechanical analysis, the total strain is assumed to be a sum of the elastic strain, viscoelastic strain, mechano-sorptive strain, and strain due to shrinkage and swelling. Mechano-sorptive response is modelled by so-called spring-dashpot type of a model, that proved to be suitable for describing creep of wood. Mechano-sorptive strain is dependent on change of moisture content. The model includes mechano-sorptive material parameters that have to be calibrated to the experimental results. The calibration is made to the experiments carried out on wooden blocks subjected to uniaxial compressive loaded in tangential direction and varying humidity conditions. The moisture and the mechanical model are implemented in a finite element software. The calibration procedure gives the required, distinctive set of mechano-sorptive material parameters. The analysis shows that mechano-sorptive strain in transverse direction is present, though its magnitude and variation are substantially lower than the mechano-sorptive strain in the direction of loading. The presented mechano-sorptive model enables observing real temporal and spatial distribution of the moisture-induced strains and stresses in timber members. Since the model’s suitability for predicting mechano-sorptive strains is shown and the required material parameters are obtained, a comprehensive advanced analysis of the stress-strain state in timber structures, including connections subjected to constant load and varying humidity is possible.Keywords: mechanical analysis, mechano-sorptive creep, moisture transport model, timber
Procedia PDF Downloads 24914343 Reframing Service Sector Privatisation Quality Conception with the Theory of Deferred Action
Authors: Mukunda Bastola, Frank Nyame-Asiamah
Abstract:
Economics explanation for privatisation, drawing on neo-liberal market structures and technical efficiency principles has failed to address social imbalance and, distribute the efficiency benefits accrued from privatisation equitably among service users and different classes of people in society. Stakeholders’ interest, which cover ethical values and changing human needs are ignored due to shareholders’ profit maximising strategy with higher service charges. The consequence of these is that, the existing justifications for privatisation have fallen short of customer quality expectations because the underlying plan-based models fail to account for the nuances of customer expectations. We draw on the theory of deferred action to develop a context-based privatisation model, the deferred-based privatisation model, to explain how privatisation could be strategised for the emergent reality of the wider stakeholders’ interests and everyday quality demands of customers which are unpredictable.Keywords: privatisation, service quality, shareholders, deferred action, deferred-based privatisation model
Procedia PDF Downloads 27914342 Household Level Determinants of Rural-Urban Migration in Bangladesh
Authors: Shamima Akhter, Siegfried Bauer
Abstract:
The aim of this study is to analyze the migration process of the rural population of Bangladesh. Heckman Probit model with sample selection was applied in this paper to explore the determinants of migration and intensity of migration at farm household level. The farm survey was conducted in the central part of Bangladesh on 160 farm households with migrant and on 154 farm households without migrant including a total of 316 farm households. The results from the applied model revealed that main determinants of migration at farm household level are household age, economically active males and females, number of young and old dependent members in the household and agricultural land holding. On the other hand, the main determinants of intensity of migration are availability of economically adult male in the household, number of young dependents and agricultural land holding.Keywords: determinants, Heckman Probit model, migration, rural-urban
Procedia PDF Downloads 31514341 Exact Phase Diagram of High-TC Superconductors
Authors: Abid Boudiar
Abstract:
We propose a simple model to obtain an exact expression of Tc/(Tc,max) for the temperature-doping phase diagram of superconducting cuprates. We showed that our model predicted most phase diagram scenario. We found the exact special doping points p(opt), p(qcp) and an accurate E(g,max). Some other properties such as the stripes length 100.1°A and the energy gap in cuprates chain 6meV can also be calculated exactly. Another interesting consequence of this simple picture is the new magic numbers and the ability to express everything using a (Tc,p) diagram via the golden ratio.Keywords: superconducting cuprates, phase, pseudogap, hole doping, strips, golden ratio, soliton
Procedia PDF Downloads 47314340 Behavioral Assessment of the Role of Brain 5-HT4 Receptors on the Memory and Cognitive Performance in a Rat Model of Alzheimer Disease
Authors: Siamak Shahidi, Nasrin Hashemi-Firouzi, Sara Soleimani-Asl, Alireza Komaki
Abstract:
Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory and cognitive performance. Recently, an involvement of the serotonergic system and their receptors are suspected in the AD progression. In the present behavioral study, the effects of BIMU (selective 5-HT4 receptor agonist) on cognition and memory in the rat model of AD was investigated. Material and Methods: The animal model of the AD was induced by intracerebroventricular (Icv) injection of amyloid beta (Aβ) in adult male Wistar rats. Animals were divided into experimental groups included control, sham, Aβ, Aβ +BIMU groups. The treatment substances were icv injected (1 μg/μL) for thirty consecutive days. Then, novel object recognition (NOR) and passive avoidance learning (PAL) tests were applied to investigate memory and cognitive performance. Results: Aβ decrease the discrimination index of NOR test. Also, it increases the time spent in the dark compartment during PAL test, as compared with sham and control groups. In addition, compared to Aβ groups, BIMU significantly increased the discrimination index of NOR test and decreased the time spent in the dark compartment of PAL test. Conclusion: These findings suggest that 5-HT4 receptor activation prevents progression of memory and cognitive impairment in a rat model of AD.Keywords: Alzheimer disease, cognition, memory, serotonin receptors
Procedia PDF Downloads 13614339 Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters
Authors: Avan Al-Saffar, Eun-Jin Kim
Abstract:
Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.Keywords: dynamical systems, fisher information, probability density function (pdf), sustainability
Procedia PDF Downloads 43414338 Assessing Level of Pregnancy Rate and Milk Yield in Indian Murrah Buffaloes
Authors: V. Jamuna, A. K. Chakravarty, C. S. Patil, Vijay Kumar, M. A. Mir, Rakesh Kumar
Abstract:
Intense selection of buffaloes for milk production at organized herds of the country without giving due attention to fertility traits viz. pregnancy rate has lead to deterioration in their performances. Aim of study is to develop an optimum model for predicting pregnancy rate and to assess the level of pregnancy rate with respect to milk production Murrah buffaloes. Data pertaining to 1224 lactation records of Murrah buffaloes spread over a period 21 years were analyzed and it was observed that pregnancy rate depicted negative phenotypic association with lactation milk yield (-0.08 ± 0.04). For developing optimum model for pregnancy rate in Murrah buffaloes seven simple and multiple regression models were developed. Among the seven models, model II having only Service period as an independent reproduction variable, was found to be the best prediction model, based on the four statistical criterions (high coefficient of determination (R 2), low mean sum of squares due to error (MSSe), conceptual predictive (CP) value, and Bayesian information criterion (BIC). For standardizing the level of fertility with milk production, pregnancy rate was classified into seven classes with the increment of 10% in all parities, life time and their corresponding average pregnancy rate in relation to the average lactation milk yield (MY).It was observed that to achieve around 2000 kg MY which can be considered optimum for Indian Murrah buffaloes, level of pregnancy rate should be in between 30-50%.Keywords: life time, pregnancy rate, production, service period, standardization
Procedia PDF Downloads 64014337 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone
Authors: Xinhuang Wu, Yousef Sardahi
Abstract:
A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones
Procedia PDF Downloads 7414336 Nonlinear Analysis of Steel Fiber Reinforced Concrete Frames Considering Shear Behaviour of Members under Varying Axial Load
Authors: Habib Akbarzadeh Bengar, Mohammad Asadi Kiadehi, Ali Rameeh
Abstract:
The result of the past earthquakes has shown that insufficient amount of stirrups and brittle behavior of concrete lead to the shear and flexural failure in reinforced concrete (RC) members. In this paper, an analytical model proposed to predict the nonlinear behavior of RC and SFRC elements and frames. In this model, some important parameter such as shear effect, varying axial load, and longitudinal bar buckling are considered. The results of analytical model were verified with experimental tests. The results of verification have shown that the proposed analytical model can predict the nonlinear behavior of RC and SFRC members and also frames accurately. In addition, the results have shown that use of steel fibers increased bearing capacity and ductility of RC frame. Due to this enhancement in shear strength and ductility, insufficient amount of stirrups, which resulted in shear failure, can be offset with usage of the steel fibers. In addition to the steps taken, to analyze the effects of fibers percentages on the bearing capacity and ductility of frames parametric studies have been performed to investigate of these effects.Keywords: nonlinear analysis, SFRC frame, shear failure, varying an axial load
Procedia PDF Downloads 22314335 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho
Abstract:
Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem
Procedia PDF Downloads 29914334 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks
Authors: Tugba Bayoglu
Abstract:
Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification
Procedia PDF Downloads 28614333 The Importance of Downstream Supply Chain in Supply Chain Risk Management: Multi-Objective Optimization
Authors: Zohreh Khojasteh-Ghamari, Takashi Irohara
Abstract:
One of the efficient ways in supply chain risk management is avoiding the interruption in Supply Chain (SC) before it occurs. Although the majority of the organizations focus on their first-tier suppliers to avoid risk in the SC, studies show that in only 60 percent of the disruption cases the reason is first tier suppliers. In the 40 percent of the SC disruptions, the reason is downstream SC, which is the second tier and lower. Due to the increasing complexity and interrelation of modern supply chains, the SC elements have become difficult to trace. Moreover, studies show that there is a vital need to better understand the integration of risk and visibility, especially in the context of multiple objectives. In this study, we propose a multi-objective programming model to avoid disruption in SC. The objective of this study is evaluating the effect of downstream SCV on managing supply chain risk. We propose a multi-objective mathematical programming model with the objective functions of minimizing the total cost and maximizing the downstream supply chain visibility (SCV). The decision variable is supplier selection. We assume there are several manufacturers and several candidate suppliers. For each manufacturer, our model proposes the best suppliers with the lowest cost and maximum visibility in downstream supply chain. We examine the applicability of the model by numerical examples. We also define several scenarios for datasets and observe the tendency. The results show that minimum visibility in downstream SC is needed to have a safe SC network.Keywords: downstream supply chain, optimization, supply chain risk, supply chain visibility
Procedia PDF Downloads 24814332 Create a Brand Value Assessment Model to Choosing a Cosmetic Brand in Tehran Combining DEMATEL Techniques and Multi-Stage ANFIS
Authors: Hamed Saremi, Suzan Taghavy, Seyed Mohammad Hanif Sanjari, Mostafa Kahali
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study, the identified indicators of brand equity are based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: brand, cosmetic product, ANFIS, DEMATEL
Procedia PDF Downloads 42014331 A Simplified Distribution for Nonlinear Seas
Authors: M. A. Tayfun, M. A. Alkhalidi
Abstract:
The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is re-examined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.Keywords: ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness
Procedia PDF Downloads 43614330 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis
Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong
Abstract:
A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model
Procedia PDF Downloads 34414329 Energy Storage in the Future of Ethiopia Renewable Electricity Grid System
Authors: Dawit Abay Tesfamariam
Abstract:
Ethiopia’s Climate- Resilient Green Economy strategy focuses mainly on generating and utilization of Renewable Energy (RE). The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources on the grid from solar and wind energy were only 8 % of the total energy produced. On the other hand, the EEP electricity generation plan in 2030 indicates that 36 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the Energy PLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EPM analysis for two predictive scenarios. The EPM simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Hence, the model’s results are in line with the actual 2016 output. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EPM simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was dominant in all months except in the three rainy months of the year (June, July, and August). Consequently, based on the validated outcomes of EPM indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that; if the excess power is utilized with a storage mechanism that can stabilize the grid system; as a result, the extra RE generated can be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming energy storage system to synchronize with RE potentials that can be generated from RE.Keywords: renewable energy, storage, wind, energyplan
Procedia PDF Downloads 8514328 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions
Authors: Tatiana G. Smirnova, Stan G. Benjamin
Abstract:
Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes
Procedia PDF Downloads 9314327 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode
Authors: Girish Chavadappanavar
Abstract:
The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).Keywords: climate impact, regression analysis, yield and forecast model, sugar models
Procedia PDF Downloads 7614326 Breast Cancer Mortality and Comorbidities in Portugal: A Predictive Model Built with Real World Data
Authors: Cecília M. Antão, Paulo Jorge Nogueira
Abstract:
Breast cancer (BC) is the first cause of cancer mortality among Portuguese women. This retrospective observational study aimed at identifying comorbidities associated with BC female patients admitted to Portuguese public hospitals (2010-2018), investigating the effect of comorbidities on BC mortality rate, and building a predictive model using logistic regression. Results showed that the BC mortality in Portugal decreased in this period and reached 4.37% in 2018. Adjusted odds ratio indicated that secondary malignant neoplasms of liver, of bone and bone marrow, congestive heart failure, and diabetes were associated with an increased chance of dying from breast cancer. Although the Lisbon district (the most populated area) accounted for the largest percentage of BC patients, the logistic regression model showed that, besides patient’s age, being resident in Bragança, Castelo Branco, or Porto districts was directly associated with an increase of the mortality rate.Keywords: breast cancer, comorbidities, logistic regression, adjusted odds ratio
Procedia PDF Downloads 9214325 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems
Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang
Abstract:
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.Keywords: fault detection, linear parameter varying, model predictive control, set theory
Procedia PDF Downloads 26014324 Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model
Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan
Abstract:
Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper.Keywords: scouring process, plunge pool, scour hole depth, physical model, flip bucket
Procedia PDF Downloads 39714323 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 26314322 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast
Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef
Abstract:
This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast
Procedia PDF Downloads 13714321 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision
Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams
Abstract:
The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment
Procedia PDF Downloads 32914320 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 13414319 Development of a Classification Model for Value-Added and Non-Value-Added Operations in Retail Logistics: Insights from a Supermarket Case Study
Authors: Helena Macedo, Larissa Tomaz, Levi Guimarães, Luís Cerqueira-Pinto, José Dinis-Carvalho
Abstract:
In the context of retail logistics, the pursuit of operational efficiency and cost optimization involves a rigorous distinction between value-added and non-value-added activities. In today's competitive market, optimizing efficiency and reducing operational costs are paramount for retail businesses. This research paper focuses on the development of a classification model adapted to the retail sector, specifically examining internal logistics processes. Based on a comprehensive analysis conducted in a retail supermarket located in the north of Portugal, which covered various aspects of internal retail logistics, this study questions the concept of value and the definition of wastes traditionally applied in a manufacturing context and proposes a new way to assess activities in the context of internal logistics. This study combines quantitative data analysis with qualitative evaluations. The proposed classification model offers a systematic approach to categorize operations within the retail logistics chain, providing actionable insights for decision-makers to streamline processes, enhance productivity, and allocate resources more effectively. This model contributes not only to academic discourse but also serves as a practical tool for retail businesses, aiding in the enhancement of their internal logistics dynamics.Keywords: lean retail, lean logisitcs, retail logistics, value-added and non-value-added
Procedia PDF Downloads 72