Search results for: home network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6141

Search results for: home network

3441 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil

Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis

Abstract:

A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.

Keywords: healthcare, settlement strategy, urban health, rural

Procedia PDF Downloads 370
3440 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 90
3439 Using a Card Game as a Tool for Developing a Design

Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner

Abstract:

Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.

Keywords: card game, collective songwriting, community of practice, network, postdigital

Procedia PDF Downloads 65
3438 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany

Authors: Karin Schakib-Ekbatan, Annette Roser

Abstract:

According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.

Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings

Procedia PDF Downloads 127
3437 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 456
3436 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 330
3435 Energy Box Programme in the Netherlands

Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen

Abstract:

This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.

Keywords: energy-saving behavior, energy poverty, poverty, private rental sector

Procedia PDF Downloads 117
3434 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 185
3433 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 324
3432 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 100
3431 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 79
3430 Educational Knowledge Transfer in Indigenous Mexican Areas Using Cloud Computing

Authors: L. R. Valencia Pérez, J. M. Peña Aguilar, A. Lamadrid Álvarez, A. Pastrana Palma, H. F. Valencia Pérez, M. Vivanco Vargas

Abstract:

This work proposes a Cooperation-Competitive (Coopetitive) approach that allows coordinated work among the Secretary of Public Education (SEP), the Autonomous University of Querétaro (UAQ) and government funds from National Council for Science and Technology (CONACYT) or some other international organizations. To work on an overall knowledge transfer strategy with e-learning over the Cloud, where experts in junior high and high school education, working in multidisciplinary teams, perform analysis, evaluation, design, production, validation and knowledge transfer at large scale using a Cloud Computing platform. Allowing teachers and students to have all the information required to ensure a homologated nationally knowledge of topics such as mathematics, statistics, chemistry, history, ethics, civism, etc. This work will start with a pilot test in Spanish and initially in two regional dialects Otomí and Náhuatl. Otomí has more than 285,000 speaking indigenes in Queretaro and Mexico´s central region. Náhuatl is number one indigenous dialect spoken in Mexico with more than 1,550,000 indigenes. The phase one of the project takes into account negotiations with indigenous tribes from different regions, and the Information and Communication technologies to deliver the knowledge to the indigenous schools in their native dialect. The methodology includes the following main milestones: Identification of the indigenous areas where Otomí and Náhuatl are the spoken dialects, research with the SEP the location of actual indigenous schools, analysis and inventory or current schools conditions, negotiation with tribe chiefs, analysis of the technological communication requirements to reach the indigenous communities, identification and inventory of local teachers technology knowledge, selection of a pilot topic, analysis of actual student competence with traditional education system, identification of local translators, design of the e-learning platform, design of the multimedia resources and storage strategy for “Cloud Computing”, translation of the topic to both dialects, Indigenous teachers training, pilot test, course release, project follow up, analysis of student requirements for the new technological platform, definition of a new and improved proposal with greater reach in topics and regions. Importance of phase one of the project is multiple, it includes the proposal of a working technological scheme, focusing in the cultural impact in Mexico so that indigenous tribes can improve their knowledge about new forms of crop improvement, home storage technologies, proven home remedies for common diseases, ways of preparing foods containing major nutrients, disclose strengths and weaknesses of each region, communicating through cloud computing platforms offering regional products and opening communication spaces for inter-indigenous cultural exchange.

Keywords: Mexicans indigenous tribes, education, knowledge transfer, cloud computing, otomi, Náhuatl, language

Procedia PDF Downloads 407
3429 Biological Activity of Hibiscus sabdariffa Extract

Authors: Chanasit Chaocharoenphat

Abstract:

Hibiscus sabdariffa is a herbal plant that is commonly used for home remedies in Thailand. This study aims to determine the antioxidant activity of polyphenols, as oxidative stress plays a vital role in the development of cancer, and H. sabdariffa was used in this study. The total flavonoids content was determined using the aluminium chloride colourimetric method and expressed as quercetin equivalents (QE)/g and the antioxidant capacity of the flavonoids using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The IC50 values of H. sabdariffa extract were 167.14 μg/mL ± 0.843 and 77.59 μg/mL ± 0.798, respectively. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. To summarise, H. sabdariffa extract contains a high concentration of total flavonoids and exhibits potent antioxidant activity. However, additional antioxidant activity assays such as superoxide dismutase (SOD), reactive oxygen species (ROS), and reactive nitrogen species (RNS) scavenging assays and in vitro antioxidant experiments should be carried out to investigate the molecular mechanism of the compound.

Keywords: ABTS assay, antioxidant activity, Gracilaria fisheri, DPPH assays, total flavonoid content

Procedia PDF Downloads 247
3428 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 241
3427 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 259
3426 Parental Expectations and Student Performance in Secondary School Mathematics Education

Authors: Daya Weerasinghe

Abstract:

Parental expectations often differ to that of their children and the influence and involvement of parents, at home, may affect the student performance in the classroom. This paper presents results from a survey of Asian and European background secondary school mathematics students (N=128) in Melbourne, Australia. Student responses to survey questions were analysed using confirmatory factor analysis, followed by t-tests and ANOVA. The aim of the analysis was to identify similarities and differences in parental expectations in relation to ethnicity, gender, and the year level of the students. The notable findings from the analysis showed no significant difference (at 0.05 level) in parental expectations and student performance, in relation to ethnicity or gender. Conversely, there was a significant difference in both parental expectations and student performance between year 7 and year 12 students. Further, whilst there was a significant difference in parental expectations between year 7 and year 11 students, the students’ performances were not significantly different. The results suggest further research may be needed to understand the parental expectations and student performance between the lower and upper secondary school mathematics students.

Keywords: ethnic background, gender, parental expectations, student performance, year level

Procedia PDF Downloads 315
3425 Investigating Links in Achievement and Deprivation (ILiAD): A Case Study Approach to Community Differences

Authors: Ruth Leitch, Joanne Hughes

Abstract:

This paper presents the findings of a three-year government-funded study (ILiAD) that aimed to understand the reasons for differential educational achievement within and between socially and economically deprived areas in Northern Ireland. Previous international studies have concluded that there is a positive correlation between deprivation and underachievement. Our preliminary secondary data analysis suggested that the factors involved in educational achievement within multiple deprived areas may be more complex than this, with some areas of high multiple deprivation having high levels of student attainment, whereas other less deprived areas demonstrated much lower levels of student attainment, as measured by outcomes on high stakes national tests. The study proposed that no single explanation or disparate set of explanations could easily account for the linkage between levels of deprivation and patterns of educational achievement. Using a social capital perspective that centralizes the connections within and between individuals and social networks in a community as a valuable resource for educational achievement, the ILiAD study involved a multi-level case study analysis of seven community sites in Northern Ireland, selected on the basis of religious composition (housing areas are largely segregated by religious affiliation), measures of multiple deprivation and differentials in educational achievement. The case study approach involved three (interconnecting) levels of qualitative data collection and analysis - what we have termed Micro (or community/grassroots level) understandings, Meso (or school level) explanations and Macro (or policy/structural) factors. The analysis combines a statistical mapping of factors with qualitative, in-depth data interpretation which, together, allow for deeper understandings of the dynamics and contributory factors within and between the case study sites. Thematic analysis of the qualitative data reveals both cross-cutting factors (e.g. demographic shifts and loss of community, place of the school in the community, parental capacity) and analytic case studies of explanatory factors associated with each of the community sites also permit a comparative element. Issues arising from the qualitative analysis are classified either as drivers or inhibitors of educational achievement within and between communities. Key issues that are emerging as inhibitors/drivers to attainment include: the legacy of the community conflict in Northern Ireland, not least in terms of inter-generational stress, related with substance abuse and mental health issues; differing discourses on notions of ‘community’ and ‘achievement’ within/between community sites; inter-agency and intra-agency levels of collaboration and joined-up working; relationship between the home/school/community triad and; school leadership and school ethos. At this stage, the balance of these factors can be conceptualized in terms of bonding social capital (or lack of it) within families, within schools, within each community, within agencies and also bridging social capital between the home/school/community, between different communities and between key statutory and voluntary organisations. The presentation will outline the study rationale, its methodology, present some cross-cutting findings and use an illustrative case study of the findings from a community site to underscore the importance of attending to community differences when trying to engage in research to understand and improve educational attainment for all.

Keywords: educational achievement, multiple deprivation, community case studies, social capital

Procedia PDF Downloads 391
3424 Migrant Youth: Trauma-Informed Interventions

Authors: Nancy Daly

Abstract:

Migrant youth who have experienced traumatic events in their home countries or in their passage to the United States may require interventions or formal services to support varying levels and types of needs. The manner in which such youth are engaged and evaluated, as well as the framework of evaluation, can impact their educational services and placement. Evidenced-based trauma-informed practices that engage and support migrant youth serve as an important bridge to stabilization; however, ensuring long-term growth may require a range of integrated services, including special education and mental health services. Special education evaluations which consider the eligibility of Emotional Disturbance for migrant youth must carefully weigh issues of mental health needs against the exclusionary criteria of lack of access to education, limited language skills, as well as other environmental factors. Case studies of recently arrived migrant youth reveal both commonalities and differences in types and levels of need which underscores the importance of adept evaluation and case management to ensure the provision of services that support growth and resiliency.

Keywords: migrant youth, trauma-informed care, mental health services, special education

Procedia PDF Downloads 126
3423 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 273
3422 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 126
3421 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)

Authors: Tesfaye Fenta Boka, Niu Zhendong

Abstract:

Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.

Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks

Procedia PDF Downloads 92
3420 Investigating the Correlation Between Customer Satisfaction Components and Reaching Competitive Advantage, Using SEM Approach

Authors: Samaneh Pouyanfar, Michael Oliff

Abstract:

Nowadays, customer satisfaction and discovering the superior services, are counted as vital issues in most manufacturing and services companies. In these terms, gaining the competitive advantage by a business depends on products and services which are able to cause the customer satisfaction. Given the importance of this subject, this paper tries to investigate the correlation between components of customer satisfaction and gaining the competitive advantage by the business. For this purpose, after reviewing the research literature and doing deep interviews with authors and active people in the industry, based on the variables affecting the customer satisfaction and determinant components of business competitive advantage, research questionnaire was prepared. In sum, 96 executives of PARS-KHAZAR Company were asked in a survey. The results of P.L.S. Test for the research structure analysis showed that the measuring tools in terms of technical features, like convergent and divergent validity and compound reliability were very appropriate. Moreover the results showed that, the structure of products and factors related to foundation, has affected the competitive advantage performance positively and significantly; but the influence of structure of services and business environment on competitive advantage was not confirmed.

Keywords: customer satisfaction, competitive advantage, products, foundation, home appliances

Procedia PDF Downloads 274
3419 Theoretical Literature Review on Lack of Cardiorespiratory Fitness and Its Effects on Children

Authors: E. Abdi

Abstract:

The purpose of this theoretical literature review is to study the relevant academic literature on lack of cardiorespiratory fitness and its effects on children. The total of thirty eight relevant documents were identified and considered for this review which nineteen of those were original research articles published in peer reviewed journals. The other nineteen articles were statistical documents. This document is structured to examine 4 effects in deficiency of cardiorespiratory fitness in school aged children: (a) obesity, (b) inadequate fitness level, (c) unhealthy life style, and (d) academics. The categories provide a theoretical framework for future studies. The results are broken down into 6 sections: (a) academics,( b) healthy life style, (c) low cost, (d) obesity, (e) Relative Age Effect (RAE), and (f) race/poverty. The study discusses that regular physical fitness assists children and adolescents to develop healthy physical activity behaviors which can be sustained throughout adult life. Conclusion suggests that advocacy for increasing physical activity and decreasing sedentary behaviors at school and home are necessary.

Keywords: cardiorespiratory, endurance, physical activity, physical fitness

Procedia PDF Downloads 429
3418 Collective Bargaining Agreement with Its Related Factors and Employees’ Perceived Productivity: The Case of an Academic Institution in Davao City, Philippines

Authors: Amylyn F. Labasano, M. S. Econ

Abstract:

The study predicts the impact of collective bargaining agreement and its related factors on employees’ perceived productivity in terms of union-management relation’s climate, income, fringe benefits, and job satisfaction of the employees. It also determines whether there are significant differences in the employees’ perceived productivity based on the demographic characteristics of the respondents. The results revealed that the relationship climate which exists between the union and the management is found to have significant adverse effect on the average unpaid hours spent by employees working within the college. On the other hand, the total monthly wage earnings of employees have negative effect on the average hours an employee spent in bringing his work home while job satisfaction positively influences the overall productivity level of employees. The result further shows significant differences in the productivity level of employees across civil status and current designation.

Keywords: perceived productivity, collective bargaining agreement, union, union-management relations climate, income, fringe benefits, job satisfaction

Procedia PDF Downloads 333
3417 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 294
3416 Soil Salinity Mapping using Electromagnetic Induction Measurements

Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri

Abstract:

Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization

Keywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable

Procedia PDF Downloads 187
3415 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 392
3414 Tax Treaties between Developed and Developing Countries: Withholding Taxes and Treaty Heterogeneity Content

Authors: Pranvera Shehaj

Abstract:

Unlike any prior analysis on the withholding tax rates negotiated in tax treaties, this study looks at the treaty heterogeneity content, by investigating the impact of the residence country’s double tax relief method and of tax-sparing agreements, on the difference between developing countries’ domestic withholding taxes on dividends on one side, and treaty negotiated withholding taxes at source on portfolio dividends on the other side. Using a dyadic panel dataset of asymmetric double tax treaties between 2005 and 2019, this study suggests first that the difference between domestic and negotiated WHTs on portfolio dividends is higher when the OECD member uses the credit method, as compared to when it uses the exemption method. Second, results suggest that the inclusion of tax-sparing provisions vanishes the positive effect of the credit method at home on the difference between domestic and negotiated WHTs on portfolio dividends, incentivizing developing countries to negotiate higher withholding taxes.

Keywords: double tax treaties, asymmetric investments, withholding tax, dividends, double tax relief method, tax sparing

Procedia PDF Downloads 64
3413 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends

Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe

Abstract:

Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.

Keywords: port, Miami, network, cargo, cruise

Procedia PDF Downloads 81
3412 Industrial Production of the Saudi Future Dwelling: A Saudi Volumetric Solution for Single Family Homes, Leveraging Industry 4.0 with Scalable Automation, Hybrid Structural Insulated Panels Technology and Local Materials

Authors: Bandar Alkahlan

Abstract:

The King Abdulaziz City for Science and Technology (KACST) created the Saudi Future Dwelling (SFD) initiative to identify, localize and commercialize a scalable home manufacturing technology suited to deployment across the Kingdom of Saudi Arabia (KSA). This paper outlines the journey, the creation of the international project delivery team, the product design, the selection of the process technologies, and the outcomes. A target was set to remove 85% of the construction and finishing processes from the building site as these activities could be more efficiently completed in a factory environment. Therefore, integral to the SFD initiative is the successful industrialization of the home building process using appropriate technologies, automation, robotics, and manufacturing logistics. The technologies proposed for the SFD housing system are designed to be energy efficient, economical, fit for purpose from a Saudi cultural perspective, and will minimize the use of concrete, relying mainly on locally available Saudi natural materials derived from the local resource industries. To this end, the building structure is comprised of a hybrid system of structural insulated panels (SIP), combined with a light gauge steel framework manufactured in a large format panel system. The paper traces the investigative process and steps completed by the project team during the selection process. As part of the SFD Project, a pathway was mapped out to include a proof-of-concept prototype housing module and the set-up and commissioning of a lab-factory complete with all production machinery and equipment necessary to simulate a full-scale production environment. The prototype housing module was used to validate and inform current and future product design as well as manufacturing process decisions. A description of the prototype design and manufacture is outlined along with valuable learning derived from the build and how these results were used to enhance the SFD project. The industrial engineering concepts and lab-factory detailed design and layout are described in the paper, along with the shop floor I.T. management strategy. Special attention was paid to showcase all technologies within the lab-factory as part of the engagement strategy with private investors to leverage the SFD project with large scale factories throughout the Kingdom. A detailed analysis is included in the process surrounding the design, specification, and procurement of the manufacturing machinery, equipment, and logistical manipulators required to produce the SFD housing modules. The manufacturing machinery was comprised of a combination of standardized and bespoke equipment from a wide range of international suppliers. The paper describes the selection process, pre-ordering trials and studies, and, in some cases, the requirement for additional research and development by the equipment suppliers in order to achieve the SFD objectives. A set of conclusions is drawn describing the results achieved thus far, along with a list of recommended ongoing operational tests, enhancements, research, and development aimed at achieving full-scale engagement with private sector investment and roll-out of the SFD project across the Kingdom.

Keywords: automation, dwelling, manufacturing, product design

Procedia PDF Downloads 124