Search results for: energy consumption statistic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10428

Search results for: energy consumption statistic

7728 Predictability of Thermal Response in Housing: A Case Study in Australia, Adelaide

Authors: Mina Rouhollahi, J. Boland

Abstract:

Changes in cities’ heat balance due to rapid urbanization and the urban heat island (UHI) have increased energy demands for space cooling and have resulted in uncomfortable living conditions for urban residents. Climate resilience and comfortable living spaces can be addressed through well-designed urban development. The sustainable housing can be more effective in controlling high levels of urban heat. In Australia, to mitigate the effects of UHIs and summer heat waves, one solution to sustainable housing has been the trend to compact housing design and the construction of energy efficient dwellings. This paper analyses whether current housing configurations and orientations are effective in avoiding increased demands for air conditioning and having an energy efficient residential neighborhood. A significant amount of energy is consumed to ensure thermal comfort in houses. This paper reports on the modelling of heat transfer within the homes using the measurements of radiation, convection and conduction between exterior/interior wall surfaces and outdoor/indoor environment respectively. The simulation was tested on selected 7.5-star energy efficient houses constructed of typical material elements and insulation in Adelaide, Australia. The chosen design dwellings were analyzed in extremely hot weather through one year. The data were obtained via a thermal circuit to accurately model the fundamental heat transfer mechanisms on both boundaries of the house and through the multi-layered wall configurations. The formulation of the Lumped capacitance model was considered in discrete time steps by adopting a non-linear model method. The simulation results focused on the effects of orientation of the solar radiation on the dynamic thermal characteristics of the houses orientations. A high star rating did not necessarily coincide with a decrease in peak demands for cooling. A more effective approach to avoid increasing the demands for air conditioning and energy may be to integrate solar–climatic data to evaluate the performance of energy efficient houses.

Keywords: energy-efficient residential building, heat transfer, neighborhood orientation, solar–climatic data

Procedia PDF Downloads 128
7727 Evaluation of the Potability Qualities of Pretreated Distilled Water Produced from Biomass Fuelled Water Distiller

Authors: E. I. Oluwasola, J. A. V. Famurewa, R. Aboloma, K. Adesina

Abstract:

Water samples with pretreatment and without pretreatment were obtained from locally constructed biomass fuelled stainless steel water distiller. The water samples were subjected to Microbial, Physicochemical and Minerals analyses for comparison with NAFDAC and WHO Standards for potable water. The results of the physicochemical and microbiological properties of the raw water(A), and the two distilled water samples (B; distill water without pretreatment) and (C; distill water with pretreatment) showed reduction in most of the quality parameters evaluated in the distilled water samples to the level that conforms to the W.H.O standards for drinking water however, lower values were obtained for the pretreated distilled water sample. The values of 0.0016mg/l, 0.0052mg/l and 0.0528mg/l for the arsenic, chromium and lead content respectively in the raw water were within the permissible limit specified by WHO however; the values of cadmium (0.067mg/l) and mercury (0.0287mg/l) are above the maximum tolerable for drinking water thus, making the raw water unsafe for human consumption. Similarly, the high total plate count (278cfu /ml) and coliform count (1100/100ml) indicate that the raw water is potentially harmful while the distilled water samples showed nil coliform count and low total plate count (35cfu/ml,18cfu/ml) for B and C respectively making the distilled water microbiologically safer for human consumption.

Keywords: biomass, distillation, mineral, potable, physicochemical

Procedia PDF Downloads 491
7726 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 131
7725 Monte Carlo Neutronic Calculations on Laser Inertial Fusion Energy (LIFE)

Authors: Adem Acır

Abstract:

In this study, time dependent neutronic analysis of incineration of minor actinides of a Laser Fusion Inertial Confinement Fusion Fission Energy (LIFE) engine was performed. The calculations were carried out by using MCNP codes with ENDF/B.VI neutron data library. In the neutronic calculations, TRISO particles fueled with minor actinides with natural lithium coolant were performed. The natural lithium cooled LIFE engine used 10 % TRISO fuel minor actinides composition. Tritium breeding ratios (TBR) and energy multiplication factor (M) burnup values were computed as 1.46 and 3.75, respectively. The reactor operation time was calculated as ~ 21 years. The burnup values were obtained as ~1060 GWD/MT, respectively. As a result, the very higher burnup were achieved of LIFE engine.

Keywords: Monte Carlo, minor actinides, nuclear waste, LIFE engine

Procedia PDF Downloads 289
7724 Impact of Revenue Reform on Vulnerable Communities

Authors: Pauliasi Tony Fakahau

Abstract:

This paper provides an overview of the impact of the revenue reform programme on vulnerable communities in the Kingdom of Tonga. Economic turmoil and mismanagement during the late 1990s forced the government to seek technical and financial assistance from the Asian Development Bank to undertake a comprehensive Economic and Public Sector Reform (EPSR) programme. The EPSR is a Western model recommended by donor agencies as the solution to Tonga’s economic challenges. The EPSR programme included public sector reform, private sector growth, and revenue generation. Tax reform was the main tool for revenue generation, which set out to strengthen tax compliance and administration as well as implement a value-added consumption tax. The EPSR is based on Western values and ideology but failed to recognise that Tongan cultural values are important to the local community. Two participant groups were interviewed. Participant group one consisted of 51 people representing vulnerable communities. Participant group two consisted of six people from the government and business sector who were from the elite of Tongan society. The Kakala Research Methodology provided the framework for the research, and the Talanoa Research Method was used to conduct semi-structured interviews in the homes of the first group and in the workplaces of the second group. The research found a heavy burden of the consumption tax on the purchasing power of participant group one (vulnerable participants), having an impact on nearly every financial transaction they made. Participant group ones’ main financial priorities were kavenga fakalotu (obligations to the church), kavenga fakafāmili (obligations to the family) and kavenga fakafonua (obligations to cultural events for the village, nobility, and royalty). The findings identified inequalities of the revenue reform, especially from consumption tax, for vulnerable people and communities compared to the elite of society. The research concluded that government and donor agencies need ameliorating policies to reduce the burden of tax on vulnerable groups more susceptible to the impact of revenue reform.

Keywords: tax reform, tonga vulnerable community revenue, revenue reform, public sector reform

Procedia PDF Downloads 117
7723 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders

Authors: Brad Stappenbelt

Abstract:

The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.

Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy

Procedia PDF Downloads 143
7722 An Analysis of Institutional Environments on Corporate Social Responsibility Practices in Nigerian Renewable Energy Firms

Authors: Bolanle Deborah Motilewa, E. K. Rowland Worlu, Gbenga Mayowa Agboola, Ayodele Maxwell Olokundun

Abstract:

Several studies have proposed a one-size fit all approach to Corporate Social Responsibility (CSR) practices, such that CSR as it applies to developed countries is adapted to developing countries, ignoring the differing institutional environments (such as the regulative, economic, social and political environments), which affects the profitability and practices of businesses operating in them. CSR as it applies to filling institutional gaps in developing countries, was categorized into four themes: environmental protection, product and service innovation, social innovation and local cluster development. Based on the four themes, the study employed a qualitative research approach through the use of interviews and review of available publications to study the influence of institutional environments on CSR practices engaged in by three renewable energy firms operating in Nigeria. Over the course of three 60-minutes sessions with the top management and selected workers of the firms, four propositions were made: regulatory environment influences environmental protection practice of Nigerian renewable firms, economic environment influences product and service innovation practice of Nigerian renewable energy firms, the social environment impacts on social innovation in Nigerian renewable energy firms, and political environment affects local cluster development practice of Nigerian renewable energy firms. It was also observed that beyond institutional environments, the international exposure of an organization’s managers reflected in their approach to CSR. This finding on the influence of international exposure on CSR practices creates an area for further study. Insights from this paper are set to help policy makers in developing countries, CSR managers, and future researchers.

Keywords: corporate social responsibility, renewable energy firms, institutional environment, social entrepreneurship

Procedia PDF Downloads 284
7721 The Impact of a Sustainable Solar Heating System on the Growth of ‎Strawberry Plants in an Agricultural Greenhouse

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

The use of solar energy is a crucial tactic in the agricultural industry's plan ‎‎to decrease greenhouse gas emissions. This clean source of energy can ‎greatly lower the sector's carbon footprint and make a significant impact in ‎the ‎fight against climate change. In this regard, this study examines the ‎effects ‎of a solar-based heating system, in a north-south oriented agricultural ‎green‎house on the development of strawberry plants during winter. This ‎system ‎relies on the circulation of water as a heat transfer fluid in a closed ‎circuit ‎installed on the greenhouse roof to store heat during the day and ‎release it ‎inside at night. A comparative experimental study was conducted ‎in two ‎greenhouses, one experimental with the solar heating system and the ‎other ‎for control without any heating system. Both greenhouses are located ‎on the ‎terrace of the Solar Energy and Environment Laboratory of the ‎Mohammed ‎V University in Rabat, Morocco. The developed heating system ‎consists of a ‎copper coil inserted in double glazing and placed on the roof of ‎the greenhouse, a water pump circulator, a battery, and a photovoltaic solar ‎panel to ‎power the electrical components. This inexpensive and ‎environmentally ‎friendly system allows the greenhouse to be heated during ‎the winter and ‎improves its microclimate system. This improvement resulted ‎in an increase ‎in the air temperature inside the experimental greenhouse by 6 ‎‎°C and 8 °C, ‎and a reduction in its relative humidity by 23% and 35% ‎compared to the ‎control greenhouse and the ambient air, respectively, ‎throughout the winter. ‎For the agronomic performance, it was observed that ‎the production was 17 ‎days earlier than in the control greenhouse‎.‎

Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse

Procedia PDF Downloads 82
7720 Electrospun NaMnPO₄/CNF as High-Performance Cathode Material for Sodium Ion Batteries

Authors: Concetta Busacca, Leone Frusteri, Orazio Di Blasi, Alessandra Di Blasi

Abstract:

The large-scale extension of renewable energy led, recently, to the development of efficient and low-cost electrochemical energy storage (EES) systems such as batteries. Although lithium-ion battery (LIB) technology is relatively mature, several issues regarding safety, cyclability, and high costs must be overcome. Thanks to the availability and low cost of sodium, sodium-ion batteries (NIB) have the potential to meet the energy storage needs of the large-scale grid, becoming a valid alternative to LIB in some energy sectors, such as the stationary one. However, important challenges such as low specific energy and short cyclic life due to the large radius of Na+ must be faced to introduce this technology into the market. As an important component of SIBs, cathode materials have a significant effect on the electrochemical performance of SIBs. Recently, sodium layer transition metal oxides, phosphates, and organic compounds have been investigated as cathode materials for SIBs. In particular, phosphate-based compounds such as NaₓMPO₄ (M= Fe, Co, Mn) have been extensively studied as cathodic polyanion materials due to their long cycle stability and appropriate operating voltage. Among these, an interesting cathode material is the NaMnPO₄ based one, thanks to the stability and the high redox potential of the Mn²⁺/Mn³⁺ ion pair (3÷4 V vs. Na+/Na), which allows reaching a high energy density. This work concerns with the synthesis of a composite material based on NaMnPO₄ and carbon nanofibers (NaMnPO₄-CNF) characterized by a mixed crystalline structure between the maricite and olivine phases and a self-standing manufacture obtained by electrospinning technique. The material was tested in a Na-ion battery coin cell in half cell configuration, and showed outstanding electrocatalytic performances with a specific discharge capacity of 125 mAhg⁻¹ and 101 mAhg⁻¹ at 0.3C and 0.6C, respectively, and a retention capacity of about 80% a 0.6C after 100 cycles.

Keywords: electrospinning, self standing materials, Na ion battery, cathode materials

Procedia PDF Downloads 61
7719 Determinants of International Volatility Passthroughs of Agricultural Commodities: A Panel Analysis of Developing Countries

Authors: Tetsuji Tanaka, Jin Guo

Abstract:

The extant literature has not succeeded in uncovering the common determinants of price volatility transmissions of agricultural commodities from international to local markets, and further, has rarely investigated the role of self-sufficiency measures in the context of national food security. We analyzed various factors to determine the degree of price volatility transmissions of wheat, rice, and maize between world and domestic markets using GARCH models with dynamic conditional correlation (DCC) specifications and panel-feasible generalized least square models. We found that the grain autarky system has the potential to diminish volatility pass-throughs for three grain commodities. Furthermore, it was discovered that the substitutive commodity consumption behavior between maize and wheat buffers the volatility transmissions of both, but rice does not function as a transmission-relieving element, either for the volatilities of wheat or maize. The effectiveness of grain consumption substitution to insulate the pass-throughs from global markets is greater than that of cereal self-sufficiency. These implications are extremely beneficial for developing governments to protect their domestic food markets from uncertainty in foreign countries and as such, improves food security.

Keywords: food security, GARCH, grain self-sufficiency, volatility transmission

Procedia PDF Downloads 153
7718 Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine

Authors: Shishir Lamichhane, Saurav Dulal, Bibek Gautam, Madan Thapa Magar, Indraman Tamrakar

Abstract:

Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability.

Keywords: damping constant, inertia–constant, ROCOF, transient stability, distributed sources

Procedia PDF Downloads 203
7717 Water Efficiency: Greywater Recycling

Authors: Melissa Lubitz

Abstract:

Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together.

Keywords: greywater, wastewater treatment, water conservation, circular water society

Procedia PDF Downloads 58
7716 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite

Authors: Mohsen Farahat, Tsuyoshi Hirajima

Abstract:

Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.

Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy

Procedia PDF Downloads 238
7715 A Worldwide Assessment of Geothermal Energy Policy: Systematic, Qualitative and Critical Literature Review

Authors: Diego Moya, Juan Paredes, Clay Aldas, Ramiro Tite, Prasad Kaparaju

Abstract:

Globally, energy policy for geothermal development is addressed in different forms, depending on the economy, resources, country-development, environment aspects and technology access. Although some countries have established strong regulations and standards for geothermal exploration, exploitation and sustainable use at the policy level (government departments and institutions), others have discussed geothermal laws at legal levels (congress – a national legislative body of a country). Appropriate regulations are needed not only to meet local and international funding requirements but also to avoid speculation in the use of the geothermal resource. In this regards, this paper presents the results of a systematic, qualitative and critical literature review of geothermal energy policy worldwide addressing two scenarios: policy and legal levels. At first, literature is collected and classified from scientific and government sources regarding geothermal energy policy of the most advanced geothermal producing countries, including Iceland, New Zealand, Mexico, the USA, Central America, Italy, Japan, Philippines, Indonesia, Kenia, and Australia. This is followed by a systematic review of the literature aiming to know the best geothermal practices and what remains uncertain regarding geothermal policy implementation. This analysis is made considering the stages of geothermal production. Furthermore, a qualitative analysis is conducted comparing the findings across geothermal policies in the countries mentioned above. Then, a critical review aims to identify significant items in the field to be applied in countries with geothermal potential but with no or weak geothermal policies. Finally, patterns and relationships are detected, and conclusions are drawn.

Keywords: assessment, geothermal, energy policy, worldwide

Procedia PDF Downloads 379
7714 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures

Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar

Abstract:

Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.

Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses

Procedia PDF Downloads 523
7713 Dietary Nutrient Consumption Patterns by the Pregnant Mother in Dhaka City, Bangladesh

Authors: Kazi Muhammad Rezaul Karim, Tasmia Tasnim

Abstract:

Introduction: Pregnancy is a condition of higher nutrient requirement but in developing countries like Bangladesh most of the pregnant women can not meet their nutrient requirement and sometimes they are neglected in the family. The purpose of the study was to assess the nutritional status and dietary nutrient intake by the pregnant women, in Dhaka city, Bangladesh. Methods: The study population comprised of pregnant women from urban or semi-urban, aged between 18 to 35 and free of pregnancy related complication and other diseases. Under a cross-sectional design, 30 healthy non-pregnant as well as 130 pregnant women, at 3 different trimesters of pregnancy were assessed. A questionnaire was developed to obtain demographic, socio-economic, anthropometric, drug and medical history. Three day consecutive 24-hour food recalls were used to assess food intake and then converted to nutrient intake. Results: The average BMI of the nonpregnant women was 22.89 ± 3.4 kg/m2 and that of pregnant women was 23.52 ± 3.71 kg/m2. The mean dietary nutrient intake of dietary fiber, calorie, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, vitamin C, Vitamin A, folate, vitamin B6 and Vitamin B12 of the pregnant mothers were 4.38 g, 1619 kcal, 60.05 g, 30.38 g, 268.79 g, 537.21 mg, 21.53 mg, 1.15 mg, 0.94 mg, 97.36 mg, 647.6 µg, 153.93 µg, 1.41 mg and 4.09 µg respectively. Most of pregnant women (more than 90%) can not meet their energy, calcium and folate requirements. Conclusion: Most of the pregnant mother in Bangladesh can not meet their dietary requirements during pregnancy.

Keywords: pregnancy, dietary nutrient, nutritional status, BMI

Procedia PDF Downloads 437
7712 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis (PHA) using the What-If Technique

Authors: Lormaine Anne Branzuela, Elysa Largo, Julie Marisol Pagalilauan, Neil Concibido, Monet Concepcion Detras

Abstract:

Energy is a necessity both for the people and the country. The demand for energy is continually increasing, but the supply is not doing the same. The reopening of the Bataan Nuclear Power Plant (BNPP) in the Philippines has been circulating in the media for the current time. The general public has been hesitant in accepting the inclusion of nuclear energy in the Philippine energy mix due to perceived unsafe conditions of the plant. This study evaluated the possible operations of a nuclear power plant, which is of the same type as the BNPP, considering the safety of the workers, the public, and the environment using a Process Hazard Analysis (PHA) method. What-If Technique was utilized to identify the hazards and consequences on the operations of the plant, together with the level of risk it entails. Through the brainstorming sessions of the PHA team, it was found that the most critical system on the plant is the primary system. Possible leakages on pipes and equipment due to weakened seals and welds and blockages on coolant path due to fouling were the most common scenarios identified, which further caused the most critical scenario – radioactive leak through sump contamination, nuclear meltdown, and equipment damage and explosion which could result to multiple injuries and fatalities, and environmental impacts.

Keywords: process safety management, process hazard analysis, what-If technique, nuclear power plant

Procedia PDF Downloads 211
7711 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 182
7710 Understanding the Impact of Li- bis(trifluoromethanesulfonyl)imide Doping on Spiro-OMeTAD Properties and Perovskite Solar Cell Performance

Authors: Martin C. Eze, Gao Min

Abstract:

Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) dopant is beneficial in improving the properties of 2,2′,7,7′-Tetrakis (N, N-di-p-methoxyphenylamino)-9,9′-spiro-bifluorene (Spiro-OMETAD) transport layer used in perovskite solar cells (PSCs). Properties such as electrical conductivity, band energy mismatch, and refractive index of Spiro-OMETAD layers are believed to play key roles in PSCs performance but only the dependence of electrical conductivity on Li-TFSI doping has been extensively studied. In this work, the effect of Li-TFSI doping level on highest occupied molecular orbital (HOMO) energy, electrical conductivity, and refractive index of Spiro-OMETAD film and PSC performance was demonstrated. The Spiro-OMETAD films were spin-coated at 4000 rpm for 30 seconds from solutions containing 73.4 mM of Spiro-OMeTAD, 23.6 mM of 4-tert-butylpyridine, 7.6 mM of tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) tri[bis(trifluoromethane) sulfonimide] (FK209) dopant and Li-TFSI dopant varying from 37 to 62 mM in 1 ml of chlorobenzene. From ultraviolet photoelectron spectroscopy (UPS), ellipsometry, and 4-probe studies, the results show that films deposition from Spiro-OMETAD solution doped with 40 mM of Li-TFSI shows the highest electrical conductivity of 6.35×10-6 S/cm, the refractive index of 1.87 at 632.32 nm, HOMO energy of -5.22 eV and the lowest HOMO energy mismatch of 0.21 eV compared to HOMO energy of perovskite layer. The PSCs fabricated show the best power conversion efficiency, open-circuit voltage, and fill factor of 17.10 %, 1.1 V, and 70.12%, respectively, for devices based on Spiro-OMETAD solution doped with 40 mM of Li-TFSI. This study demonstrates that the optimum Spiro-OMETAD/ Li-TFSI doping ratio of 1.84 is the optimum doping level for Spiro-OMETAD layer preparation.

Keywords: electrical conductivity, homo energy mismatch, lithium bis(trifluoromethanesulfonyl)imide, power conversion efficiency, refractive index

Procedia PDF Downloads 120
7709 Offshore Power Transition Project

Authors: Kashmir Johal

Abstract:

Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology.

Keywords: renewable, energy, power, offshore

Procedia PDF Downloads 62
7708 High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode

Authors: Ruey-Chi Wang, Po-Hsiang Huang, Ping-Chang Chuang, Shu-Jen Chen

Abstract:

High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors.

Keywords: supercapacitor, CuO, RGO, lithium

Procedia PDF Downloads 177
7707 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption

Authors: Ashish Ashish

Abstract:

In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.

Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption

Procedia PDF Downloads 143
7706 Implementation of Renewable Energy Technologies in Rural Africa

Authors: Joseph Levodo, Andy Ford, ISSA Chaer

Abstract:

Africa enjoys some of the best solar radiation levels in the world averaging between 4-6 kWh/m2/day for most of the year and the global economic and political conditions that tend to make African countries more dependent on their own energy resources have caused growing interest in wanting renewable energy based technologies. However to-date, implementation of Modern Energy Technologies in Africa is still very low especially the use of solar conversion technologies. It was initially speculated that the low uptake of solar technology in Africa was associated with the continent’s high poverty levels and limitations in technical capacity as well as awareness. Nonetheless, this is not an academic based speculation and the exact reasons for this low trend in technology adoption are unclear and require further investigation. This paper presents literature review and analysis relating to the techno-economic feasibility of solar photovoltaic power generation in Africa. The literature review would include the following four main categories: design methods, techno-economic feasibility of solar photovoltaic power generation, performance evaluations of various systems, Then it looks at the role of policy and potential future of technological development of photovoltaic (PV) by exploring the impact of alternative policy instruments and technology cost reductions on the financial viability of investing solar photovoltaic (PV) in Africa.

Keywords: Africa Solar Potential, policy, photovoltaic, technologies

Procedia PDF Downloads 554
7705 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions

Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz

Abstract:

This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.

Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle

Procedia PDF Downloads 229
7704 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structure-borne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using on-board are presented. By conducting a statistical energy analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The subsequent optimization design of damping treatment in the offshore platform can be made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: statistical energy analysis, damping treatment, noise control, offshore platform

Procedia PDF Downloads 550
7703 Techno-Economic Analysis of Motor-Generator Pair System and Virtual Synchronous Generator for Providing Inertia of Power System

Authors: Zhou Yingkun, Xu Guorui, Wei Siming, Huang Yongzhang

Abstract:

With the increasing of the penetration of renewable energy in power system, the whole inertia of the power system is declining, which will endanger the frequency stability of the power system. In order to enhance the inertia, virtual synchronous generator (VSG) has been proposed. In addition, the motor-generator pair (MGP) system is proposed to enhance grid inertia. Both of them need additional equipment to provide instantaneous energy, so the economic problem should be considered. In this paper, the basic working principle of MGP system and VSG are introduced firstly. Then, the technical characteristics and economic investment of MGP/VSG are compared by calculation and simulation. The results show that the MGP system can provide same inertia with less cost than VSG.

Keywords: high renewable energy penetration, inertia of power system, motor-generator pair (MGP) system, virtual synchronous generator (VSG), techno-economic analysis

Procedia PDF Downloads 444
7702 Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery

Authors: Pritika Ramharack, Mahmoud E. S. Soliman

Abstract:

The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.

Keywords: NS5 protein inhibitors, per-residue decomposition, pharmacophore model, virtual screening, Zika virus

Procedia PDF Downloads 221
7701 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 294
7700 Impact of Very Small Power Producers (VSPP) on Control and Protection System in Distribution Networks

Authors: Noppatee Sabpayakom, Somporn Sirisumrannukul

Abstract:

Due to incentive policies to promote renewable energy and energy efficiency, high penetration levels of very small power producers (VSPP) located in distribution networks have imposed technical barriers and established new requirements for protection and control of the networks. Although VSPPs have economic and environmental benefit, they may introduce negative effects and cause several challenges on the issue of protection and control system. This paper presents comprehensive studies of possible impacts on control and protection systems based on real distribution systems located in a metropolitan area. A number of scenarios were examined primarily focusing on state of islanding, and un-disconnected VSPP during faults. It is shown that without proper measures to address the issues, the system would be unable to maintain its integrity of electricity power supply for disturbance incidents.

Keywords: control and protection systems, distributed generation, renewable energy, very small power producers

Procedia PDF Downloads 475
7699 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 138