Search results for: electric vehicle charging
39 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport
Authors: Aditya Purohit, Neha Bansal
Abstract:
Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport
Procedia PDF Downloads 19738 Synthesis of Carbonyl Iron Particles Modified with Poly (Trimethylsilyloxyethyl Methacrylate) Nano-Grafts
Authors: Martin Cvek, Miroslav Mrlik, Michal Sedlacik, Tomas Plachy
Abstract:
Magnetorheological elastomers (MREs) are multi-phase composite materials containing micron-sized ferromagnetic particles dispersed in an elastomeric matrix. Their properties such as modulus, damping, magneto-striction, and electrical conductivity can be controlled by an external magnetic field and/or pressure. These features of the MREs are used in the development of damping devices, shock attenuators, artificial muscles, sensors or active elements of electric circuits. However, imperfections on the particle/matrix interfaces result in the lower performance of the MREs when compared with theoretical values. Moreover, magnetic particles are susceptible to corrosion agents such as acid rains or sea humidity. Therefore, the modification of particles is an effective tool for the improvement of MRE performance due to enhanced compatibility between particles and matrix as well as improvements of their thermo-oxidation and chemical stability. In this study, the carbonyl iron (CI) particles were controllably modified with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) nano-grafts to develop magnetic core–shell structures exhibiting proper wetting with various elastomeric matrices resulting in improved performance within a frame of rheological, magneto-piezoresistance, pressure-piezoresistance, or radio-absorbing properties. The desired molecular weight of PHEMATMS nano-grafts was precisely tailored using surface-initiated atom transfer radical polymerization (ATRP). The CI particles were firstly functionalized using a 3-aminopropyltriethoxysilane agent, followed by esterification reaction with α-bromoisobutyryl bromide. The ATRP was performed in the anisole medium using ethyl α-bromoisobutyrate as a macroinitiator, N, N´, N´´, N´´-pentamethyldiethylenetriamine as a ligand, and copper bromide as an initiator. To explore the effect PHEMATMS molecular weights on final properties, two variants of core-shell structures with different nano-graft lengths were synthesized, while the reaction kinetics were designed through proper reactant feed ratios and polymerization times. The PHEMATMS nano-grafts were characterized by nuclear magnetic resonance and gel permeation chromatography proving information to their monomer conversions, molecular chain lengths, and low polydispersity indexes (1.28 and 1.35) as the results of the executed ATRP. The successful modifications were confirmed via Fourier transform infrared- and energy-dispersive spectroscopies while expected wavenumber outputs and element presences, respectively, of constituted PHEMATMS nano-grafts, were occurring in the spectra. The surface morphology of bare CI and their PHEMATMS-grafted analogues was further studied by scanning electron microscopy, and the thicknesses of grafted polymeric layers were directly observed by transmission electron microscopy. The contact angles as a measure of particle/matrix compatibility were investigated employing the static sessile drop method. The PHEMATMS nano-grafts enhanced compatibility of hydrophilic CI with low-surface-energy hydrophobic polymer matrix in terms of their wettability and dispersibility in an elastomeric matrix. Thus, the presence of possible defects at the particle/matrix interface is reduced, and higher performance of modified MREs is expected.Keywords: atom transfer radical polymerization, core-shell, particle modification, wettability
Procedia PDF Downloads 20037 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model
Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero
Abstract:
Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods
Procedia PDF Downloads 2336 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 13535 Biocellulose as Platform for the Development of Multifunctional Materials
Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak
Abstract:
Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles
Procedia PDF Downloads 22934 “Self-Torturous Thresholds” in Post-WWII Japan: Three Thresholds to Queer Japanese Futures
Authors: Maari Sugawara
Abstract:
This arts-based research is about "self-torture": the interplay of seemingly opposing elements of pain, pleasure, submission, and power. It asserts that "self-torture" can be considered a nontrivial mediation between the aesthetic and the sociopolitical. It explores what the author calls queered self-torture; "self-torture" marked by an ambivalence that allows the oppressed to resist, and their counter-valorization occasionally functions as therapeutic solutions to the problems they highlight and condense. The research goal is to deconstruct normative self-torture and propose queered self-torture as a fertile ground for considering the complexities of desire that allow the oppressed to practice freedom. While “self-torture” manifests in many societies, this research focuses on cultural and national identity in post-WWII Japan using this lens of self-torture, as masochism functions as the very basis for Japanese cultural and national identity to ensure self-preservation. This masochism is defined as an impulse to realize a sense of pride and construct an identity through the acceptance of subordination, shame, and humiliation in the face of an all-powerful Other; the dominant Euro-America. It could be argued that this self-torture is a result of Japanese cultural annihilation and the trauma of the nation's defeat to the US. This is the definition of "self-torturous thresholds," the author’s post-WWII Japan psycho-historical diagnosis; when this threshold is crossed, the oppressed begin to torture themselves; the oppressors no longer need to do anything to maintain their power. The oppressed are already oppressing themselves. The term "oppressed" here refers to Japanese individuals and residents of Japan who are subjected to oppressive “white” heteropatriarchal supremacist structures and values that serve colonialist interests. There are three stages in "self-torturous thresholds": (1) the oppressors no longer need to oppress because the oppressed voluntarily commit to self-torture; (2) the oppressed find pleasure in self-torture; and (3) the oppressed achieve queered self-torture, to achieve alternative futures. Using the conceptualization of "self-torture," this research examines and critiques pleasure, desire, capital, and power in postwar Japan, which enables the discussion of the data-colonizing “Moonshot Research and Development program”. If the oppressed want to divest from the habits of normative self-torture, which shape what is possible in both our present and future, we need methods to feel and know that the alternative results of self-torture are possible. Phase three will be enacted using Sarah Ahmed's queer methodology to reorient national and cultural identity away from heteronormativity. Through theoretical analysis, textual analysis, archival research, ethnographic interviews, and digital art projects, including experimental documentary as a method to capture the realities of the individuals who are practicing self-torture, this research seeks to reveal how self-torture may become not just a vehicle of pleasure but also a mode of critiquing power and achieving freedom. It seeks to encourage the imaginings of queer Japanese futures, where the marginalized survive Japan’s natural and man-made disasters and Japan’s Imperialist past and present rather than submitting to the country’s continued violence.Keywords: arts-based research, Japanese studies, interdisciplinary arts, queer studies, cultural studies, popular culture, BDSM, sadomasochism, sexuality, VR, AR, digital art, visual arts, speculative fiction
Procedia PDF Downloads 7233 Investigation of Attitude of Production Workers towards Job Rotation in Automotive Industry against the Background of Demographic Change
Authors: Franciska Weise, Ralph Bruder
Abstract:
Due to the demographic change in Germany along with the declining birth rate and the increasing age of population, the share of older people in society is rising. This development is also reflected in the work force of German companies. Therefore companies should focus on improving ergonomics, especially in the area of age-related work design. Literature shows that studies on age-related work design have been carried out in the past, some of whose results have been put into practice. However, there is still a need for further research. One of the most important methods for taking into account the needs of an aging population is job rotation. This method aims at preventing or reducing health risks and inappropriate physical strain. It is conceived as a systematic change of workplaces within a group. Existing literature does not cover any methods for the investigation of the attitudes of employees towards job rotation. However, in order to evaluate job rotation, it is essential to have knowledge of the views of people towards rotation. In addition to an investigation of attitudes, the design of rotation plays a crucial role. The sequence of activities and the rotation frequency influence the worker and as well the work result. The evaluation of preliminary talks on the shop floor showed that team speakers and foremen share a common understanding of job rotation. In practice, different varieties of job rotation exist. One important aspect is the frequency of rotation. It is possible to rotate never, more than one time or even during every break, or more often than every break. It depends on the opportunity or possibility to rotate whenever workers want to rotate. From the preliminary talks some challenges can be derived. For example a rotation in the whole team is not possible, if a team member requires to be trained for a new task. In order to be able to determine the relation of the design and the attitude towards job rotation, a questionnaire is carried out in the vehicle manufacturing. The questionnaire will be employed to determine the different varieties of job rotation that exist in production, as well as the attitudes of workers towards those different frequencies of job rotation. In addition, younger and older employees will be compared with regard to their rotation frequency and their attitudes towards rotation. There are three kinds of age groups. Three questions are under examination. The first question is whether older employees rotate less frequently than younger employees. Also it is investigated to know whether the frequency of job rotation and the attitude towards the frequency of job rotation are interconnected. Moreover, the attitudes of the different age groups towards the frequency of rotation will be examined. Up to now 144 employees, all working in production, took part in the survey. 36.8 % were younger than thirty, 37.5 % were between thirty und forty-four and 25.7 % were above forty-five years old. The data shows no difference between the three age groups in relation to the frequency of job rotation (N=139, median=4, Chi²=.859, df=2, p=.651). Most employees rotate between six and seven workplaces per day. In addition there is a statistically significant correlation between the frequency of job rotation and the attitude towards the frequency (Spearman-Rho: 2-sided=.008, correlation coefficient=.223). Less than four workplaces per day are not enough for the employees. The third question, which differences can be found between older and younger people who rotate in a different way and with different attitudes towards job rotation, cannot be possible answered. Till now the data shows that younger people would like to rotate very often. Regarding to older people no correlation can be found with acceptable significance. The results of the survey will be used to improve the current practice of job rotation. In addition, the discussions during the survey are expected to help sensitize the employees with respect to rotation issues, and to contribute to optimizing rotation by means of qualification and an improved design of job rotation. Together with the employees and the results of the survey there must be found standards which show how to rotate in an ergonomic way while consider the attitude towards job rotation.Keywords: job rotation, age-related work design, questionnaire, automotive industry
Procedia PDF Downloads 30332 Clinical Presentation and Immune Response to Intramammary Infection of Holstein-Friesian Heifers with Isolates from Two Staphylococcus aureus Lineages
Authors: Dagmara A. Niedziela, Mark P. Murphy, Orla M. Keane, Finola C. Leonard
Abstract:
Staphylococcus aureus is the most frequent cause of clinical and subclinical bovine mastitis in Ireland. Mastitis caused by S. aureus is often chronic and tends to recur after antibiotic treatment. This may be due to several virulence factors, including attributes that enable the bacterium to internalize into bovine mammary epithelial cells, where it may evade antibiotic treatment, or evade the host immune response. Four bovine-adapted lineages (CC71, CC97, CC151 and ST136) were identified among a collection of Irish S. aureus mastitis isolates. Genotypic variation of mastitis-causing strains may contribute to different presentations of the disease, including differences in milk somatic cell count (SCC), the main method of mastitis detection. The objective of this study was to investigate the influence of bacterial strain and lineage on host immune response, by employing cell culture methods in vitro as well as an in vivo infection model. Twelve bovine adapted S. aureus strains were examined for internalization into bovine mammary epithelial cells (bMEC) and their ability to induce an immune response from bMEC (using qPCR and ELISA). In vitro studies found differences in a variety of virulence traits between the lineages. Strains from lineages CC97 and CC71 internalized more efficiently into bovine mammary epithelial cells (bMEC) than CC151 and ST136. CC97 strains also induced immune genes in bMEC more strongly than strains from the other 3 lineages. One strain each of CC151 and CC97 that differed in their ability to cause an immune response in bMEC were selected on the basis of the above in vitro experiments. Fourteen first-lactation Holstein-Friesian cows were purchased from 2 farms on the basis of low SCC (less than 50 000 cells/ml) and infection free status. Seven cows were infected with 1.73 x 102 c.f.u. of the CC97 strain (Group 1) and another seven with 5.83 x 102 c.f.u. of the CC151 strain (Group 2). The contralateral quarter of each cow was inoculated with PBS (vehicle). Clinical signs of infection (temperature, milk and udder appearance, milk yield) were monitored for 30 days. Blood and milk samples were taken to determine bacterial counts in milk, SCC, white blood cell populations and cytokines. Differences in disease presentation in vivo between groups were observed, with two animals from Group 2 developing clinical mastitis and requiring antibiotic treatment, while one animal from Group 1 did not develop an infection for the duration of the study. Fever (temperature > 39.5⁰C) was observed in 3 animals from Group 2 and in none from Group 1. Significant differences in SCC and bacterial load between groups were observed in the initial stages of infection (week 1). Data is also being collected on cytokines and chemokines secreted during the course of infection. The results of this study suggest that a strain from lineage CC151 may cause more severe clinical mastitis, while a strain from lineage CC97 may cause mild, subclinical mastitis. Diversity between strains of S. aureus may therefore influence the clinical presentation of mastitis, which in turn may influence disease detection and treatment needs.Keywords: Bovine mastitis, host immune response, host-pathogen interactions, Staphylococcus aureus
Procedia PDF Downloads 15731 Amniotic Fluid Mesenchymal Stem Cells Selected for Neural Specificity Ameliorates Chemotherapy Induced Hearing Loss and Pain Perception
Authors: Jan F. Talts, Amit Saxena, Kåre Engkilde
Abstract:
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by anti-neoplastic agents, with a prevalence from 19 % to 85 %. Clinically, CIPN is a mostly sensory neuropathy leading to pain and to motor and autonomic changes. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors, especially because currently, there is no single effective method of preventing CIPN. Hearing loss is the most common form of sensory impairment in humans and can be caused by ototoxic chemical compounds such as chemotherapy (platinum-based antineoplastic agents).In rodents, single or repeated cisplatin injections induce peripheral neuropathy and hearing impairment mimicking human disorder, allowing studying the efficacy of new pharmacological candidates in chemotherapy-induced hearing loss and peripheral neuropathy. RNA sequencing data from full term amniotic fluid (TAF) mesenchymal stemcell (MSC) clones was used to identify neural-specific markers present on TAF-MSC. Several prospective neural markers were tested by flow cytometry on cultured TAF-MSC. One of these markers was used for cell-sorting using Tyto MACSQuant cell sorter, and the neural marker positive cell population was expanded for several passages to the final therapeutic product stage. Peripheral neuropathy and hearing loss was induced in mice by administration of cisplatin in three week-long cycles. The efficacy of neural-specific TAF-MSC in treating hearing loss and pain perception was evaluated by administration of three injections of 3 million cells/kg by intravenous route or three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment. Auditory brainstem responses (ABR) are electric potentials recorded from scalp electrodes, and the first ABR wave represents the summed activity of the auditory nerve fibers contacting the inner hair cells. For ABR studies, mice were anesthetized, then earphones were placed in the left ear of each mouse, an active electrode was placed in the vertex of the skull, a reference electrode under the skin of the mastoid bone, and a ground electrode in the neck skin. The stimuli consisted of tone pips of five frequencies (2, 4, 6, 12, 16, and 24 kHz) at various sound levels (from 0 to 90 dB) ranging to cover the mouse auditory frequency range. The von Frey test was used to assess the onset and maintenance of mechanical allodynia over time. Mice were placed in clear plexiglass cages on an elevated mesh floor and tested after 30 min of habituation. Mechanical paw withdrawal threshold was examined using an electronic von Frey anesthesiometer. Cisplatin groups treated with three injections of 3 million cells/kg by intravenous route and three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment presented, a significant increase of hearing acuity characterized by a decrease of ABR threshold and a decrease of neuropathic pain characterized by an increase of von Frey paw withdrawal threshold compared to controls only receiving cisplatin. This study shows that treatment with MSCselected for neural specificity presents significant positive efficacy on the chemotherapy-induced neuropathic pain and the chemotherapy-induced hearing loss.Keywords: mesenchymal stem cell, peripheral neuropathy, amniotic fluid, regenerative medicine
Procedia PDF Downloads 16630 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era
Authors: Loha Hashimy, Isabella Castillo
Abstract:
In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers
Procedia PDF Downloads 8429 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique
Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang
Abstract:
AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage
Procedia PDF Downloads 26228 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp
Authors: Lalit Ahuja, Nancy Das, Yashas Shetty
Abstract:
LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module
Procedia PDF Downloads 6727 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector
Authors: Sanaz Moayer, Fang Huang, Scott Gardner
Abstract:
In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management
Procedia PDF Downloads 41526 The Study of Adsorption of RuP onto TiO₂ (110) Surface Using Photoemission Deposited by Electrospray
Authors: Tahani Mashikhi
Abstract:
Countries worldwide rely on electric power as a critical economic growth and progress factor. Renewable energy sources, often referred to as alternative energy sources, such as wind, solar energy, geothermal energy, biomass, and hydropower, have garnered significant interest in response to the rising consumption of fossil fuels. Dye-sensitized solar cells (DSSCs) are a highly promising alternative for energy production as they possess numerous advantages compared to traditional silicon solar cells and thin-film solar cells. These include their low cost, high flexibility, straightforward preparation methodology, ease of production, low toxicity, different colors, semi-transparent quality, and high power conversion efficiency. A solar cell, also known as a photovoltaic cell, is a device that converts the energy of light from the sun into electrical energy through the photovoltaic effect. The Gratzel cell is the initial dye-sensitized solar cell made from colloidal titanium dioxide. The operational mechanism of DSSCs relies on various key elements, such as a layer composed of wide band gap semiconducting oxide materials (e.g. titanium dioxide [TiO₂]), as well as a photosensitizer or dye that absorbs sunlight to inject electrons into the conduction band, the electrolyte utilizes the triiodide/iodide redox pair (I− /I₃−) to regenerate dye molecules and a counter electrode made of carbon or platinum facilitates the movement of electrons across the circuit. Electrospray deposition permits the deposition of fragile, non-volatile molecules in a vacuum environment, including dye sensitizers, complex molecules, nanoparticles, and biomolecules. Surface science techniques, particularly X-ray photoelectron spectroscopy, are employed to examine dye-sensitized solar cells. This study investigates the possible application of electrospray deposition to build high-quality layers in situ in a vacuum. Two distinct categories of dyes can be employed as sensitizers in DSSCs: organometallic semiconductor sensitizers and purely organic dyes. Most organometallic dyes, including Ru533, RuC, and RuP, contain a ruthenium atom, which is a rare element. This ruthenium atom enhances the efficiency of dye-sensitized solar cells (DSSCs). These dyes are characterized by their high cost and typically appear as dark purple powders. On the other hand, organic dyes, such as SQ2, RK1, D5, SC4, and R6, exhibit reduced efficacy due to the lack of a ruthenium atom. These dyes appear in green, red, orange, and blue powder-colored. This study will specifically concentrate on metal-organic dyes. The adsorption of dye molecules onto the rutile TiO₂ (110) surface has been deposited in situ under ultra-high vacuum conditions by combining an electrospray deposition method with X-ray photoelectron spectroscopy. The X-ray photoelectron spectroscopy (XPS) technique examines chemical bonds and interactions between molecules and TiO₂ surfaces. The dyes were deposited at varying times, from 5 minutes to 40 minutes, to achieve distinct layers of coverage categorized as sub-monolayer, monolayer, few layers, or multilayer. Based on the O 1s photoelectron spectra data, it can be observed that the monolayer establishes a strong chemical bond with the Ti atoms of the oxide substrate by deprotonating the carboxylic acid groups through 2M-bidentate bridging anchors. The C 1s and N 1s photoelectron spectra indicate that the molecule remains intact at the surface. This can be due to the existence of all functional groups and a ruthenium atom, where the binding energy of Ru 3d is consistent with Ru2+.Keywords: deposit, dye, electrospray, TiO₂, XPS
Procedia PDF Downloads 4525 Reviving the Past, Enhancing the Future: Preservation of Urban Heritage Connectivity as a Tool for Developing Liveability in Historical Cities in Jordan, Using Salt City as a Case Study
Authors: Sahar Yousef, Chantelle Niblock, Gul Kacmaz
Abstract:
Salt City, in the context of Jordan’s heritage landscape, is a significant case to explore when it comes to the interaction between tangible and intangible qualities of liveable cities. Most city centers, including Jerash, Salt, Irbid, and Amman, are historical locations. Six of these extraordinary sites were designated UNESCO World Heritage Sites. Jordan is widely acknowledged as a developing country characterized by swift urbanization and unrestrained expansion that exacerbate the challenges associated with the preservation of historic urban areas. The aim of this study is to conduct an examination and analysis of the existing condition of heritage connectivity within heritage city centers. This includes outdoor staircases, pedestrian pathways, footpaths, and other public spaces. Case study-style analysis of the urban core of As-Salt is the focus of this investigation. Salt City is widely acknowledged for its substantial tangible and intangible cultural heritage and has been designated as ‘The Place of Tolerance and Urban Hospitality’ by UNESCO since 2021. Liveability in urban heritage, particularly in historic city centers, incorporates several factors that affect our well-being; its enhancement is a critical issue in contemporary society. The dynamic interaction between humans and historical materials, which serves as a vehicle for the expression of their identity and historical narrative, constitutes preservation that transcends simple conservation. This form of engagement enables people to appreciate the diversity of their heritage recognising their previous and planned futures. Heritage preservation is inextricably linked to a larger physical and emotional context; therefore, it is difficult to examine it in isolation. Urban environments, including roads, structures, and other infrastructure, are undergoing unprecedented physical design and construction requirements. Concurrently, heritage reinforces a sense of affiliation with a particular location or space and unifies individuals with their ancestry, thereby defining their identity. However, a considerable body of research has focused on the conservation of heritage buildings in a fragmented manner without considering their integration within a holistic urban context. Insufficient attention is given to the significance of the physical and social roles played by the heritage staircases and baths that serve as connectors between these valued historical buildings. In doing so, the research uses a methodology that is based on consensus. Given that liveability is considered a complex matter with several dimensions. The discussion starts by making initial observations on the physical context and societal norms inside the urban center while simultaneously establishing the definitions of liveability and connectivity and examining the key criteria associated with these concepts. Then, identify the key elements that contribute to liveable connectivity within the framework of urban heritage in Jordanian city centers. Some of the outcomes that will be discussed in the presentation are: (1) There is not enough connectivity between heritage buildings as can be seen, for example, between buildings in Jada and Qala'. (2) Most of the outdoor spaces suffer from physical issues that hinder their use by the public, like in Salalem. (3) Existing activities in the city center are not well attended because of lack of communication between the organisers and the citizens.Keywords: connectivity, Jordan, liveability, salt city, tangible and intangible heritage, urban heritage
Procedia PDF Downloads 7024 Female Subjectivity in William Faulkner's Light in August
Authors: Azza Zagouani
Abstract:
Introduction: In the work of William Faulkner, characters often evade the boundaries and categories of patriarchal standards of order. Female characters like Lena Grove and Joanna Burden cross thresholds in attempts to gain liberation, while others fail to do so. They stand as non-conformists and refuse established patterns of feminine behavior, such as marriage and motherhood after. They refute submissiveness, domesticity and abstinence to reshape their own identities. The presence of independent and creative women represents new, unconventional images of female subjectivity. This paper will examine the structures of submission and oppression faced by Lena and Joanna, and will show how, in the end, they reshape themselves and their identities, and disrupt or even destroy patriarchal structures. Objectives: Participants will understand through the examples of Lena Grove and Joanna Burden that female subjectivities are constructions, and are constantly subject to change. Approaches: Two approaches will be used in the analysis of the subjectivity formation of Lena Grove and Joanna Burden. Following the arguments propounded by Judith Butler, We explore the ways in which Lena Grove maneuvers around the restrictions and the limitations imposed on her without any physical or psychological violence. She does this by properly performing the roles prescribed to her gendered body. Her repetitious performances of these roles are both the ones that are constructed to confine women and the vehicle for her travel. Her performance parodies the prescriptive roles and thereby reveals that they are cultural constructions. Second, We will explore the argument propounded by Kristeva that subjectivity is always in a state of development because we are always changing in context with changing circumstances. For example, in Light in August, Lena Grove changes the way she defines herself in light of the events of the novel. Also, Kristeva talks about stages of development: the semiotic stage and the symbolic stage. In Light in August, Joanna shows different levels of subjectivity as time passes. Early in the novel, Joanna is very connected to her upbringing. This suggests Kristeva’s concept of the semiotic, in which the daughter identifies closely to her parents. Kristeva relates the semiotic to a strong daughter/mother connection, but in the novel it is strong daughter/father/grandfather identification instead. Then as Joanna becomes sexually involved with Joe, she breaks off, and seems to go into an identity crisis. To me, this represents Kristeva’s move from the semiotic to the symbolic. When Joanna returns to a religious fanaticism, she is returning to a semiotic state. Detailed outline: At the outset of this paper, We will investigate the subjugation of women: social constraints, and the formation of the feminine identity in Light in August. Then, through the examples of Lena Grove’s attempt to cross the boundaries of community moralities and Joanna Burden’s refusal to submit to the standards of submissiveness, domesticity, and obstinance, We will reveal the tension between progressive conceptions of individual freedom and social constraints that limit this freedom. In the second part of the paper, We will underscore the rhetoric of femininity in Light in August: subjugation through naming. The implications of both female’s names offer a powerful contrast between the two different forms of subjectivity. Conclusion: Through Faulkner’s novel, We demonstrate that female subjectivity is an open-ended issue. The spiral shaping of its form maintains its characteristics as a process changing according to different circumstances.Keywords: female subjectivity, Faulkner’s light August, gender, sexuality, diversity
Procedia PDF Downloads 39723 When It Wasn’t There: Understanding the Importance of High School Sports
Authors: Karen Chad, Louise Humbert, Kenzie Friesen, Dave Sandomirsky
Abstract:
Background: The pandemic of COVID-19 presented many historical challenges to the sporting community. For organizations and individuals, sport was put on hold resulting in social, economic, physical, and mental health consequences for all involved. High school sports are seen as an effective and accessible pathway for students to receive health, social, and academic benefits. Studies examining sport cessation due to COVID-19 found substantial negative outcomes on the physical and mental well-being of participants in the high school setting. However, the pandemic afforded an opportunity to examine sport participation and the value people place upon their engagement in high school sport. Study objectives: (1) Examine the experiences of students, parents, administrators, officials, and coaches during a year without high school sports; (2) Understand why participants are involved in high school sports; and (3) Learn what supports are needed for future involvement. Methodology: A mixed method design was used, including semi-structured interviews and a survey (SurveyMonkey software), which was disseminated electronically to high school students, coaches, school administrators, parents, and officials. Results: 1222 respondents completed the survey. Findings showed: (1) 100% of students participate in high school sports to improve their mental health, with >95% said it keeps them active and healthy, helps them make friends and teaches teamwork, builds confidence and positive self-perceptions, teaches resiliency, enhances connectivity to their school, and supports academic learning; (2) Top three reasons teachers coach is their desire to make a difference in the lives of students, enjoyment, and love of the sport, and to give back. Teachers said what they enjoy most is contributing to and watching athletes develop, direct involvement with student sport success, and the competitiveatmosphere; (3) 90% of parents believe playing sports is a valuable experience for their child, 95% said it enriches student academic learning and educational experiences, and 97% encouraged their child to play school sports; (4) Officials participate because of their enjoyment and love of the sport, experience, and expertise, desire to make a difference in the lives of children, the competitive/sporting atmosphere and growing the sport. 4% of officials said it was financially motivated; (5) 100% of administrators said high school sports are important for everyone. 80% believed the pandemic will decrease teachers coaching and increase student mental health and well-being. When there was no sport, many athletes got a part-time job and tried to stay active, with limited success. Coaches, officials, and parents spent more time with family. All participants did little physical activity, were bored; and struggled with mental health and poor physical health. Respondents recommended better communication, promotion, and branding of high school sport benefits, equitable funding for all sports, athlete development, compensation and recognition for coaching, and simple processes to strengthen the high school sport model. Conclusions: High school sport is an effective vehicle for athletes, parents, coaches, administrators, and officials to derive many positive outcomes. When it is taken away, serious consequences prevail. Paying attention to important success factors will be important for the effectiveness of high school sports.Keywords: physical activity, high school, sports, pandemic
Procedia PDF Downloads 14522 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6021 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance
Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec
Abstract:
The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV
Procedia PDF Downloads 13820 The Multiplier Effects of Intelligent Transport System to Nigerian Economy
Authors: Festus Okotie
Abstract:
Nigeria is the giant of Africa with great and diverse transport potentials yet to be fully tapped into and explored.it is the most populated nation in Africa with nearly 200 million people, the sixth largest oil producer overall and largest oil producer in Africa with proven oil and gas reserves of 37 billion barrels and 192 trillion cubic feet, over 300 square kilometers of arable land and significant deposits of largely untapped minerals. A world bank indicator which measures trading across border ranked Nigeria at 183 out of 185 countries in 2017 and although different governments in the past made efforts through different interventions such as 2007 ports reforms led by Ngozi Okonjo-Iweala, a former minister of Finance and world bank managing director also attempted to resolve some of the challenges such as infrastructure shortcomings, policy and regulatory inconsistencies, overlapping functions and duplicated roles among the different MDA’S. It is one of the fundamental structures smart nations and cities are using to improve the living conditions of its citizens and achieving sustainability. Examples of some of its benefits includes tracking high pedestrian areas, traffic patterns, railway stations, planning and scheduling bus times, it also enhances interoperability, creates alerts of transport situation and has swift capacity to share information among the different platforms and transport modes. It also offers a comprehensive approach to risk management, putting emergency procedures and response capabilities in place, identifying dangers, including vandalism or violence, fare evasion, and medical emergencies. The Nigerian transport system is urgently in need of modern infrastructures such as ITS. Smart city transport technology helps cities to function productively, while improving services for businesses and lives of is citizens. This technology has the ability to improve travel across traditional modes of transport, such as cars and buses, with immediate benefits for city dwellers and also helps in managing transport systems such as dangerous weather conditions, heavy traffic, and unsafe speeds which can result in accidents and loss of lives. Intelligent transportation systems help in traffic control such as permitting traffic lights to react to changing traffic patterns, instead of working on a fixed schedule in traffic. Intelligent transportation systems is very important in Nigeria’s transportation sector and so would require trained personnel to drive its efficiency to greater height because the purpose of introducing it is to add value and at the same time reduce motor vehicle miles and traffic congestion which is a major challenge around Tin can island and Apapa Port, a major transportation hub in Nigeria. The need for the federal government, state governments, houses of assembly to organise a national transportation workshop to begin the process of addressing the challenges in our nation’s transport sector is highly expedient and so bills that will facilitate the implementation of policies to promote intelligent transportation systems needs to be sponsored because of its potentials to create thousands of jobs for our citizens, provide farmers with better access to cities and a better living condition for Nigerians.Keywords: intelligent, transport, system, Nigeria
Procedia PDF Downloads 11619 Chemopreventive Properties of Cannabis sativa L. var. USO31 in Relation to Its Phenolic and Terpenoid Content
Authors: Antonella Di Sotto, Cinzia Ingallina, Caterina Fraschetti, Simone Circi, Marcello Locatelli, Simone Carradori, Gabriela Mazzanti, Luisa Mannina, Silvia Di Giacomo
Abstract:
Cannabis sativa L. is one of the oldest cultivated plant species known not only for its voluptuous use but also for the wide application in food, textile, and therapeutic industries. Recently, the progress of biotechnologies applied to medicinal plants has allowed to produce different hemp varieties with low content of psychotropic phytoconstituents (tetrahydrocannabinol < 0.2% w/v), thus leading to a renewed industrial and therapeutic interest for this plant. In this context, in order to discover new potential remedies of pharmaceutical and/or nutraceutical interest, the chemopreventive properties of different organic and hydroalcoholic extracts, obtained from the inflorescences of C. sativa L. var. USO31, collected in June and September harvesting, were assessed. Particularly, the antimutagenic activity towards the oxidative DNA-damage induced by tert-butyl hydroperoxide (t-BOOH) was evaluated, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging power of the samples were assessed as possible mechanisms of antimutagenicity. Furthermore, the ability of the extracts to inhibit the glucose-6-phosphate dehydrogenase (G6PD), whose overexpression has been found to play a critical role in neoplastic transformation and tumor progression, has been studied as a possible chemopreventive strategy. A careful phytochemical characterization of the extracts for phenolic and terpenoid composition has been obtained by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) methods. Under our experimental condition, all the extracts were found able to interfere with the tBOOH-induced mutagenicity in WP2uvrAR strain, although with different potency and effectiveness. The organic extracts from both the harvesting periods were found to be the main effective antimutagenic samples, reaching about a 55% inhibition of the tBOOH-mutagenicity at the highest concentration tested (250 μg/ml). All the extracts exhibited radical scavenger activity against DPPH and ABTS radicals, with a higher potency of the hydroalcoholic samples. The organic extracts were also able to inhibit the G6PD enzyme, being the samples from September harvesting the highly potent (about 50% inhibition respect to the vehicle). At the phytochemical analysis, all the extracts resulted to contain both polar and apolar phenolic compounds. The HPLC analysis revealed the presence of catechin and rutin as the major constituents of the hydroalcoholic extracts, with lower levels of quercetin and ferulic acid. The monoterpene carvacrol was found to be an ubiquitarian constituent. At GC-MS analysis, different terpenoids, among which caryophyllene sesquiterpenes, were identified. This evidence suggests a possible role of both polyphenols and terpenoids in the chemopreventive properties of the extracts from the inflorescences of C. sativa var. USO31. According to the literature, carvacrol and caryophyllene sesquiterpenes can contribute to the strong antimutagenicity although the role of all the hemp phytocomplex cannot be excluded. In conclusion, present results highlight a possible interest for the inflorescences of C. sativa var. USO31 as source of bioactive molecules and stimulate further studies in order to characterize its possible application for nutraceutical and pharmaceutical purposes.Keywords: antimutagenicity, glucose-6-phosphate dehydrogenase, hemp inflorescences, nutraceuticals, sesquiterpenes
Procedia PDF Downloads 15718 Shared Versus Pooled Automated Vehicles: Exploring Behavioral Intentions Towards On-Demand Automated Vehicles
Authors: Samira Hamiditehrani
Abstract:
Automated vehicles (AVs) are emerging technologies that could potentially offer a wide range of opportunities and challenges for the transportation sector. The advent of AV technology has also resulted in new business models in shared mobility services where many ride hailing and car sharing companies are developing on-demand AVs including shared automated vehicles (SAVs) and pooled automated vehicles (Pooled AVs). SAVs and Pooled AVs could provide alternative shared mobility services which encourage sustainable transport systems, mitigate traffic congestion, and reduce automobile dependency. However, the success of on-demand AVs in addressing major transportation policy issues depends on whether and how the public adopts them as regular travel modes. To identify conditions under which individuals may adopt on-demand AVs, previous studies have applied human behavior and technology acceptance theories, where Theory of Planned Behavior (TPB) has been validated and is among the most tested in on-demand AV research. In this respect, this study has three objectives: (a) to propose and validate a theoretical model for behavioral intention to use SAVs and Pooled AVs by extending the original TPB model; (b) to identify the characteristics of early adopters of SAVs, who prefer to have a shorter and private ride, versus prospective users of Pooled AVs, who choose more affordable but longer and shared trips; and (c) to investigate Canadians’ intentions to adopt on-demand AVs for regular trips. Toward this end, this study uses data from an online survey (n = 3,622) of workers or adult students (18 to 75 years old) conducted in October and November 2021 for six major Canadian metropolitan areas: Toronto, Vancouver, Ottawa, Montreal, Calgary, and Hamilton. To accomplish the goals of this study, a base bivariate ordered probit model, in which both SAV and Pooled AV adoptions are estimated as ordered dependent variables, alongside a full structural equation modeling (SEM) system are estimated. The findings of this study indicate that affective motivations such as attitude towards AV technology, perceived privacy, and subjective norms, matter more than sociodemographic and travel behavior characteristic in adopting on-demand AVs. Also, the results of second objective provide evidence that although there are a few affective motivations, such as subjective norms and having ample knowledge, that are common between early adopters of SAVs and PooledAVs, many examined motivations differ among SAV and Pooled AV adoption factors. In other words, motivations influencing intention to use on-demand AVs differ among the service types. Likewise, depending on the types of on-demand AVs, the sociodemographic characteristics of early adopters differ significantly. In general, findings paint a complex picture with respect to the application of constructs from common technology adoption models to the study of on-demand AVs. Findings from the final objective suggest that policymakers, planners, the vehicle and technology industries, and the public at large should moderate their expectations that on-demand AVs may suddenly transform the entire transportation sector. Instead, this study suggests that SAVs and Pooled AVs (when they entire the Canadian market) are likely to be adopted as supplementary mobility tools rather than substitutions for current travel modesKeywords: automated vehicles, Canadian perception, theory of planned behavior, on-demand AVs
Procedia PDF Downloads 7217 Adequate Nutritional Support and Monitoring in Post-Traumatic High Output Duodenal Fistula
Authors: Richa Jaiswal, Vidisha Sharma, Amulya Rattan, Sushma Sagar, Subodh Kumar, Amit Gupta, Biplab Mishra, Maneesh Singhal
Abstract:
Background: Adequate nutritional support and daily patient monitoring have an independent therapeutic role in the successful management of high output fistulae and early recovery after abdominal trauma. Case presentation: An 18-year-old girl was brought to AIIMS emergency with alleged history of fall of a heavy weight (electric motor) over abdomen. She was evaluated as per Advanced Trauma Life Support(ATLS) protocols and diagnosed to have significant abdominal trauma. After stabilization, she was referred to Trauma center. Abdomen was guarded and focused assessment with sonography for trauma(FAST) was found positive. Complete duodenojejunal(DJ) junction transection was found at laparotomy, and end-to-end repair was done. However, patient was re-explored in view of biliary peritonitis on post-operative day3, and anastomotic leak was found with sloughing of duodenal end. Resection of non-viable segments was done followed by side-to-side anastomosis. Unfortunately, the anastomosis leaked again, this time due to a post-anastomotic kink, diagnosed on dye study. Due to hostile abdomen, the patient was planned for supportive care, with plan of build-up and delayed definitive surgery. Percutaneous transheptic biliary drainage (PTBD) and STSG were required in the course as well. Nutrition: In intensive care unit (ICU), major goals of nutritional therapy were to improve wound healing, optimize nutrition, minimize enteral feed associated complications, reduce biliary fistula output, and prepare the patient for definitive surgeries. Feeding jejunostomy (FJ) was started from day 4 at the rate of 30ml/h along with total parenteral nutrition (TPN) and intra-venous (IV) micronutrients support. Due to high bile output, bile refeed started from day 13.After 23 days of ICU stay, patient was transferred to general ward with body mass index (BMI)<11kg/m2 and serum albumin –1.5gm%. Patient was received in the ward in catabolic phase with high risk of refeeding syndrome. Patient was kept on FJ bolus feed at the rate of 30–50 ml/h. After 3–4 days, while maintaining patient diet book log it was observed that patient use to refuse feed at night and started becoming less responsive with every passing day. After few minutes of conversation with the patient for a couple of days, she complained about enteral feed discharge in urine, mild pain and sign of dumping syndrome. Dye study was done, which ruled out any enterovesical fistula and conservative management were planned. At this time, decision was taken for continuous slow rate feeding through commercial feeding pump at the rate of 2–3ml/min. Drastic improvement was observed from the second day in gastro-intestinal symptoms and general condition of the patient. Nutritional composition of feed, TPN and diet ranged between 800 and 2100 kcal and 50–95 g protein. After STSG, TPN was stopped. Periodic diet counselling was given to improve oral intake. At the time of discharge, serum albumin level was 2.1g%, weight – 38.6, BMI – 15.19 kg/m2. Patient got discharge on an oral diet. Conclusion: Successful management of post-traumatic proximal high output fistulae is a challenging task, due to impaired nutrient absorption and enteral feed associated complications. Strategic- and goal-based nutrition support can salvage such critically ill patients, as demonstrated in the present case.Keywords: nutritional monitoring, nutritional support, duodenal fistula, abdominal trauma
Procedia PDF Downloads 26116 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers
Authors: Margarita Dufresne
Abstract:
This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel
Procedia PDF Downloads 7115 Empowering Women Entrepreneurs in Rural India through Developing Online Communities of Purpose Using Social Technologies
Authors: Jayanta Basak, Somprakash Bandyopadhyay, Parama Bhaumik, Siuli Roy
Abstract:
To solve the life and livelihood related problems of socially and economically backward rural women in India, several Women Self-Help Groups (WSHG) are formed in Indian villages. WSHGs are micro-communities (with 10-to 15 members) within a village community. WSHGs have been conceived not just to promote savings and provide credit, but also to act as a vehicle of change through the creation of women micro-entrepreneurs at the village level. However, in spite of huge investment and volume of people involved in the whole process, the success is still limited. Most of these entrepreneurial activities happen in small household workspaces where sales are limited to the inconsistent and unpredictable local markets. As a result, these entrepreneurs are perennially trapped in the vicious cycle of low risk taking ability, low investment capacity, low productivity, weak market linkages and low revenue. Market separation including customer-producer separation is one of the key problems in this domain. Researchers suggest that there are four types of market separation: (i) spatial, (ii) financial, (iii) temporal, and (iv) informational, which in turn impacts the nature of markets and marketing. In this context, a large group of intermediaries (the 'middleman') plays important role in effectively reducing the factors that separate markets by utilizing the resource of rural entrepreneurs, their products and thus, accelerate market development. The rural entrepreneurs are heavily dependent on these middlemen for marketing of their products and these middlemen exploit rural entrepreneurs by creating a huge informational separation between the rural producers and end-consumers in the market and thus hiding the profit margins. The objective of this study is to develop a transparent, online communities of purpose among rural and urban entrepreneurs using internet and web 2.0 technologies in order to decrease market separation and improve mutual awareness of available and potential products and market demands. Communities of purpose are groups of people who have an ability to influence, can share knowledge and learn from others, and be committed to achieving a common purpose. In this study, a cluster of SHG women located in a village 'Kandi' of West Bengal, India has been studied closely for six months. These women are primarily engaged in producing garments, soft toys, fabric painting on clothes, etc. These women were equipped with internet-enabled smart-phones where they can use chat applications in local language and common social networking websites like Facebook, Instagram, etc. A few handicraft experts and micro-entrepreneurs from the city (the 'seed') were included in their mobile messaging app group that enables the creation of a 'community of purpose' in order to share thoughts and ideas on product designs, market trends, and practices, and thus decrease the rural-urban market separation. After six months of regular group interaction in mobile messaging app among these rural-urban community members, it is observed that SHG women are empowered now to share their product images, design ideas, showcase, and promote their products in global marketplace using some common social networking websites through which they can also enhance and augment their community of purpose.Keywords: communities of purpose, market separation, self-help group, social technologies
Procedia PDF Downloads 25514 A Comprehensive Approach to Create ‘Livable Streets’ in the Mixed Land Use of Urban Neighborhoods: A Case Study of Bangalore Street
Authors: K. C. Tanuja, Mamatha P. Raj
Abstract:
"People have always lived on streets. They have been the places where children first learned about the world, where neighbours met, the social centres of towns and cities, the rallying points for revolts, the scenes of repression. The street has always been the scene of this conflict, between living and access, between resident and traveller, between street life and the threat of death.” Livable Streets by Donald Appleyard. Urbanisation is happening rapidly all over the world. As population increasing in the urban settlements, its required to provide quality of life to all the inhabitants who live in. Urban design is a place making strategic planning. Urban design principles promote visualising any place environmentally, socially and economically viable. Urban design strategies include building mass, transit development, economic viability and sustenance and social aspects. Cities are wonderful inventions of diversity- People, things, activities, ideas and ideologies. Cities should be smarter and adjustable to present technology and intelligent system. Streets represent the community in terms of social and physical aspects. Streets are an urban form that responds to many issues and are central to urban life. Streets are for livability, safety, mobility, place of interest, economic opportunity, balancing the ecology and for mass transit. Urban streets are places where people walk, shop, meet and engage in different types of social and recreational activities which make urban community enjoyable. Streets knit the urban fabric of activities. Urban streets become livable with the introduction of social network enhancing the pedestrian character by providing good design features which in turn should achieve the minimal impact of motor vehicle use on pedestrians. Livable streets are the spatial definition to the public right of way on urban streets. Streets in India have traditionally been the public spaces where social life happened or created from ages. Streets constitute the urban public realm where people congregate, celebrate and interact. Streets are public places that can promote social interaction, active living and community identity. Streets as potential contributors to a better living environment, knitting together the urban fabric of people and places that make up a community. Livable streets or complete streets are making our streets as social places, roadways and sidewalks accessible, safe, efficient and useable for all people. The purpose of this paper is to understand the concept of livable street and parameters of livability on urban streets. Streets to be designed as the pedestrians are the main users and create spaces and furniture for social interaction which serves for the needs of the people of all ages and abilities. The problems of streets like congestion due to width of the street, traffic movement and adjacent land use and type of movement need to be redesigned and improve conditions defining the clear movement path for vehicles and pedestrians. Well-designed spatial qualities of street enhances the street environment, livability and then achieves quality of life to the pedestrians. A methodology been derived to arrive at the typologies in street design after analysis of existing situation and comparing with livable standards. It was Donald Appleyard‟s Livable Streets laid out the social effects on streets creating the social network to achieve Livable Streets.Keywords: livable streets, social interaction, pedestrian use, urban design
Procedia PDF Downloads 15113 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning
Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz
Abstract:
Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.Keywords: crystallinity, electrospinning, PVDF, voltage polarity
Procedia PDF Downloads 13412 Transport Hubs as Loci of Multi-Layer Ecosystems of Innovation: Case Study of Airports
Authors: Carolyn Hatch, Laurent Simon
Abstract:
Urban mobility and the transportation industry are undergoing a transformation, shifting from an auto production-consumption model that has dominated since the early 20th century towards new forms of personal and shared multi-modality [1]. This is shaped by key forces such as climate change, which has induced a shift in production and consumption patterns and efforts to decarbonize and improve transport services through, for instance, the integration of vehicle automation, electrification and mobility sharing [2]. Advanced innovation practices and platforms for experimentation and validation of new mobility products and services that are increasingly complex and multi-stakeholder-oriented are shaping this new world of mobility. Transportation hubs – such as airports - are emblematic of these disruptive forces playing out in the mobility industry. Airports are emerging as the core of innovation ecosystems on and around contemporary mobility issues, and increasingly recognized as complex public/private nodes operating in many societal dimensions [3,4]. These include urban development, sustainability transitions, digital experimentation, customer experience, infrastructure development and data exploitation (for instance, airports generate massive and often untapped data flows, with significant potential for use, commercialization and social benefit). Yet airport innovation practices have not been well documented in the innovation literature. This paper addresses this gap by proposing a model of airport innovation that aims to equip airport stakeholders to respond to these new and complex innovation needs in practice. The methodology involves: 1 – a literature review bringing together key research and theory on airport innovation management, open innovation and innovation ecosystems in order to evaluate airport practices through an innovation lens; 2 – an international benchmarking of leading airports and their innovation practices, including such examples as Aéroports de Paris, Schipol in Amsterdam, Changi in Singapore, and others; and 3 – semi-structured interviews with airport managers on key aspects of organizational practice, facilitated through a close partnership with the Airport Council International (ACI), a major stakeholder in this research project. Preliminary results find that the most successful airports are those that have shifted to a multi-stakeholder, platform ecosystem model of innovation. The recent entrance of new actors in airports (Google, Amazon, Accor, Vinci, Airbnb and others) have forced the opening of organizational boundaries to share and exchange knowledge with a broader set of ecosystem players. This has also led to new forms of governance and intermediation by airport actors to connect complex, highly distributed knowledge, along with new kinds of inter-organizational collaboration, co-creation and collective ideation processes. Leading airports in the case study have demonstrated a unique capacity to force traditionally siloed activities to “think together”, “explore together” and “act together”, to share data, contribute expertise and pioneer new governance approaches and collaborative practices. In so doing, they have successfully integrated these many disruptive change pathways and forced their implementation and coordination towards innovative mobility outcomes, with positive societal, environmental and economic impacts. This research has implications for: 1 - innovation theory, 2 - urban and transport policy, and 3 - organizational practice - within the mobility industry and across the economy.Keywords: airport management, ecosystem, innovation, mobility, platform, transport hubs
Procedia PDF Downloads 18111 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems
Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana
Abstract:
Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP
Procedia PDF Downloads 19810 Relevance of Dosing Time for Everolimus Toxicity in Respect to the Circadian P-Glycoprotein Expression in Mdr1a::Luc Mice
Authors: Narin Ozturk, Xiao-Mei Li, Sylvie Giachetti, Francis Levi, Alper Okyar
Abstract:
P-glycoprotein (P-gp, MDR1, ABCB1) is a transmembrane protein acting as an ATP-dependent efflux pump and functions as a biological barrier by extruding drugs and xenobiotics out of cells in healthy tissues especially in intestines, liver and brain as well as in tumor cells. The circadian timing system controls a variety of biological functions in mammals including xenobiotic metabolism and detoxification, proliferation and cell cycle events, and may affect pharmacokinetics, toxicity and efficacy of drugs. Selective mTOR (mammalian target of rapamycin) inhibitor everolimus is an immunosuppressant and anticancer drug that is active against many cancers, and its pharmacokinetics depend on P-gp. The aim of this study was to investigate the dosing time-dependent toxicity of everolimus with respect to the intestinal P-gp expression rhythms in mdr1a::Luc mice using Real Time-Biolumicorder (RT-BIO) System. Mdr1a::Luc male mice were synchronized with 12 h of Light and 12 h of Dark (LD12:12, with Zeitgeber Time 0 – ZT0 – corresponding Light onset). After 1-week baseline recordings, everolimus (5 mg/kg/day x 14 days) was administered orally at ZT1-resting period- and ZT13-activity period- to mdr1a::Luc mice singly housed in an innovative monitoring device, Real Time-Biolumicorder units which let us monitor real-time and long-term gene expression in freely moving mice. D-luciferin (1.5 mg/mL) was dissolved in drinking water. Mouse intestinal mdr1a::Luc oscillation profile reflecting P-gp gene expression and locomotor activity pattern were recorded every minute with the photomultiplier tube and infrared sensor respectively. General behavior and clinical signs were monitored, and body weight was measured every day as an index of toxicity. Drug-induced body weight change was expressed relative to body weight on the initial treatment day. Statistical significance of differences between groups was validated with ANOVA. Circadian rhythms were validated with Cosinor Analysis. Everolimus toxicity changed as a function of drug timing, which was least following dosing at ZT13, near the onset of the activity span in male mice. Mean body weight loss was nearly twice as large in mice treated with 5 mg/kg everolimus at ZT1 as compared to ZT13 (8.9% vs. 5.4%; ANOVA, p < 0.001). Based on the body weight loss and clinical signs upon everolimus treatment, tolerability for the drug was best following dosing at ZT13. Both rest-activity and mdr1a::Luc expression displayed stable 24-h periodic rhythms before everolimus and in both vehicle-treated controls. Real-time bioluminescence pattern of mdr1a revealed a circadian rhythm with a 24-h period with an acrophase at ZT16 (Cosinor, p < 0.001). Mdr1a expression remained rhythmic in everolimus-treated mice, whereas down-regulation was observed in P-gp expression in 2 of 4 mice. The study identified the circadian pattern of intestinal P-gp expression with an unprecedented precision. The circadian timing depending on the P-gp expression rhythms may play a crucial role in the tolerability/toxicity of everolimus. The circadian changes in mdr1a genes deserve further studies regarding their relevance for in vitro and in vivo chronotolerance of mdr1a-transported anticancer drugs. Chronotherapy with P-gp-effluxed anticancer drugs could then be applied according to their rhythmic patterns in host and tumor to jointly maximize treatment efficacy and minimize toxicity.Keywords: circadian rhythm, chronotoxicity, everolimus, mdr1a::Luc mice, p-glycoprotein
Procedia PDF Downloads 342