Search results for: recurrent neural networks
1328 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 2301327 Measuring Innovative and Entrepreneurial Networks Performance
Authors: Luís Farinha, João J. Ferreira
Abstract:
Nowadays innovation represents a challenge crucial to remaining globally competitive. This study seeks to develop a conceptual model aimed at measuring the dynamic interactions of the triple/quadruple helix, balancing innovation and entrepreneurship initiatives as pillars of regional competitiveness – the Regional Helix Scoreboard (RHS). To this aim, different strands of literature are identified according to their focus on specific regional competitiveness governance mechanisms. We put forward an overview of the state-of-the-art of research and is duly assessed in order to develop and propose a framework of analysis that enables an integrated approach in the context of collaborative dynamics. We conclude by presenting the RHS for the study of regional competitiveness dynamics, which integrates and associates different backgrounds and identifies a number of key performance indicators for research challenges.Keywords: entrepreneurship, KPIs, innovation, performance measurement, regional competitiveness, regional helix scoreboard
Procedia PDF Downloads 3281326 Features Valuation of Intellectual Capital in the Organization
Authors: H. M. Avanesyan
Abstract:
Economists have been discussing the importance of intangible assets for the success of organization for many years. The term intellectual capital was popularized in the 1990s by Thomas Stewart. “Intellectual capital is the knowledge, applied experience, enterprise processes and technology customer relationship and professional skills which are valuable assets to an organization.” Human capital – includes employee brainpower, competence, skills, experience and knowledge. Customer capital – includes relations and networks with partners, suppliers, distributors, and customers. The objective of the article is to assess one of the key components of organizational culture – organizational values. The focus of the survey was on assessing how intellectual capital presented in these values of the organization. In the conclusion section the article refers to underestimation of intellectual capital by the organization management and the various possible negative effects of the latter.Keywords: human capital, intellectual capital, organizational culture, management, social identity, organization
Procedia PDF Downloads 4631325 Filter for the Measurement of Supraharmonics in Distribution Networks
Authors: Sivaraman Karthikeyan
Abstract:
Due to rapidly developing power electronics devices and technologies such as power line communication or self-commutating converters, voltage and current distortion, as well as interferences, have increased in the frequency range of 2 kHz to 150 kHz; there is an urgent need for regulation of electromagnetic compatibility (EMC) standards in this frequency range. Measuring or testing compliance with emission and immunity limitations necessitates the use of precise, repeatable measuring methods. Appropriate filters to minimize the fundamental component and its harmonics below 2 kHz in the measuring signal would improve the measurement accuracy in this frequency range leading to better analysis. This paper discusses filter suggestions in the current measurement standard and proposes an infinite impulse response (IIR) filter design that is optimized for a low number of poles, strong fundamental damping, and high accuracy above 2 kHz. The new filter’s transfer function is delivered as a result. An analog implementation is derived from the overall design.Keywords: supraharmonics, 2 kHz, 150 kHz, filter, analog filter
Procedia PDF Downloads 1431324 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility
Authors: B. Casper
Abstract:
The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning
Procedia PDF Downloads 1261323 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment
Authors: Ibrahim Ozkan
Abstract:
In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading
Procedia PDF Downloads 1431322 Maritime Transportation and Environmental Pollution: Emerging Trends and Challenges
Authors: Emil Mathew
Abstract:
Liberalisation policies adopted by a large number of countries, implementation of technological innovations with development in communication networks and continuous reduction in transport costs contributed towards the growth of international transportation of goods over the last 50 to 60 years. The present paper examines the environmental externalities of maritime transportation, that is, externalities associated with the movement of cargoes, as distinct from those emanate from production and consumption of goods. Though shipping is less polluting compared to other modes of transportation, considering the huge volume of goods transported and future growth prospects, it is important to examine environmental externalities of maritime transportation. It focuses on varied types of environmental externalities of maritime transportation and suggests that appropriate policies may be adopted by international agencies to address this issue without adversely affecting the course of international trade and also its possibility to get diverted to alternate modes of transportation.Keywords: externalities of globalisation, maritime environment, maritime externality, transportation externality
Procedia PDF Downloads 2821321 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting
Procedia PDF Downloads 2691320 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4011319 Social Support in Adherence to Therapy in Bioenterics Intragastric Balloon
Authors: Mariela González, Zoraide Lugli
Abstract:
Objective: to determine the relationship between perceived social support and adherence to therapy in patients who have been placed BioEnteric intragastric balloon (BIB). Material and method: 75 obese (56 women and 19 men) between 18 and 65 years (M = 39.29, SD = 11.82), who attended five centers in the city of Caracas, where he carried out this procedure. We used Social Support Scale and treatment adherence behavior respectively. The procedure was contacted the centers and the sample was selected. Subsequently, the inventories were applied before and the month after the before and three months after the balloon set. Results: Show that participants were characterized by moderate levels in the variables. On the other hand, those who perceive that they perceived support from friends are those who report adherence to therapy. Conclusions: From the results, it is suggested promote social support networks, which could be essential to achieve and maintain adherence to therapy in patients with BioEnterics intragastric balloon.Keywords: BioEnteric intragastric balloon, perceived social support, adherence to therapy, patients
Procedia PDF Downloads 3431318 The Role of Named Entity Recognition for Information Extraction
Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov
Abstract:
Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area
Procedia PDF Downloads 781317 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN
Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar
Abstract:
Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis
Procedia PDF Downloads 3781316 Effectiveness of N-Acetylcysteine in the Treatment of Adults with Trichotillomania: An Evidenced Based Review
Authors: Teresa Sarmento de Beires, Sofia Padilha, Pedro Arantes, Joana Ribeiro, Andreia Eiras
Abstract:
Background: Trichotillomania is a psychiatric condition that is very challenging to treat, with no first-line medications approved by any medical agency. It is defined as a recurrent compulsive habit of pulling out one's own hair, usually from the scalp and eyebrows area, but it can also affect eyelashes or any other hair-bearing area. N-acetylcysteine, a glutamate modulator, has been studied as a possible treatment for several psychiatric and neurological disorders, considering its role in attenuating pathophysiological processes responsible for compulsive behaviors and, therefore, trichotillomania. Objective: This study aims to determine the efficacy of N-acetylcysteine in the treatment of adults with trichotillomania. Methodology: The authors researched guidelines, standards of clinical guidance, systematic reviews, meta-analyses, and randomized clinical trials, published in the last 20 years using the MeSH terms: "Trichotillomania” and “N-acetylcysteine” in the following databases: PubMed, Cochrane library, National Guideline Clearing House, National Institute of Health and Care Excellence (NICE), Canadian Medical Association Practice Guidelines and Database of Abstracts of Reviews of Effectiveness (DARE). The Strength of Recommendation Taxonomy (SORT) Scale, from the American Family Physician, was used to evaluate the level of evidence and assign the strength of recommendation. Results: The research found fifteen articles, among which only three were eligible according to the inclusion criteria: 1. systematic review and 2. meta-analyses. There was evidence of a probable beneficial effect of N-acetylcysteine on treatment response and reduction of trichotillomania symptom severity in adults, with moderate certainty in the effect estimate. There was no evidence of effectiveness with the use of inositol, antioxidants, naltrexone, or selective serotonin reuptake inhibitors (SSRIs) in the treatment of adults with trichotillomania. Clomipramine and Olanzapine showed potential treatment benefits, with low certainty. N-acetylcysteine had the least severe side effect profile in adults compared with the other potentially beneficial pharmacological treatments. Conclusion: Evidence points towards the effectiveness of N-acetylcysteine in the treatment of adults with trichotillomania, which exhibits a good tolerability profile with minimal adverse effects. Therefore, the authors attribute a level of evidence 2, the strength of recommendation B, to the prescription of N-acetylcysteine in the treatment of adults suffering from trichotillomania (SORT analysis). Further investigation is needed in order to extract high-quality conclusions from the meta-analysis.Keywords: trichotillomania, hair pulling, treatment, n-acetylcysteine
Procedia PDF Downloads 1011315 Biosensor for Determination of Immunoglobulin A, E, G and M
Authors: Umut Kokbas, Mustafa Nisari
Abstract:
Immunoglobulins, also known as antibodies, are glycoprotein molecules produced by activated B cells that transform into plasma cells and result in them. Antibodies are critical molecules of the immune response to fight, which help the immune system specifically recognize and destroy antigens such as bacteria, viruses, and toxins. Immunoglobulin classes differ in their biological properties, structures, targets, functions, and distributions. Five major classes of antibodies have been identified in mammals: IgA, IgD, IgE, IgG, and IgM. Evaluation of the immunoglobulin isotype can provide a useful insight into the complex humoral immune response. Evaluation and knowledge of immunoglobulin structure and classes are also important for the selection and preparation of antibodies for immunoassays and other detection applications. The immunoglobulin test measures the level of certain immunoglobulins in the blood. IgA, IgG, and IgM are usually measured together. In this way, they can provide doctors with important information, especially regarding immune deficiency diseases. Hypogammaglobulinemia (HGG) is one of the main groups of primary immunodeficiency disorders. HGG is caused by various defects in B cell lineage or function that result in low levels of immunoglobulins in the bloodstream. This affects the body's immune response, causing a wide range of clinical features, from asymptomatic diseases to severe and recurrent infections, chronic inflammation and autoimmunity Transient infant hypogammaglobulinemia (THGI), IgM deficiency (IgMD), Bruton agammaglobulinemia, IgA deficiency (SIgAD) HGG samples are a few. Most patients can continue their normal lives by taking prophylactic antibiotics. However, patients with severe infections require intravenous immune serum globulin (IVIG) therapy. The IgE level may rise to fight off parasitic infections, as well as a sign that the body is overreacting to allergens. Also, since the immune response can vary with different antigens, measuring specific antibody levels also aids in the interpretation of the immune response after immunization or vaccination. Immune deficiencies usually occur in childhood. In Immunology and Allergy clinics, apart from the classical methods, it will be more useful in terms of diagnosis and follow-up of diseases, if it is fast, reliable and especially in childhood hypogammaglobulinemia, sampling from children with a method that is more convenient and uncomplicated. The antibodies were attached to the electrode surface via the poly hydroxyethyl methacrylamide cysteine nanopolymer. It was used to evaluate the anodic peak results obtained in the electrochemical study. According to the data obtained, immunoglobulin determination can be made with a biosensor. However, in further studies, it will be useful to develop a medical diagnostic kit with biomedical engineering and to increase its sensitivity.Keywords: biosensor, immunosensor, immunoglobulin, infection
Procedia PDF Downloads 1011314 Trauma inside and Out: A Descriptive Cross-Sectional Study of Family, Community and Psychological Wellbeing amongst Pediatric Victims of Interpersonal Violence
Authors: Mary Bernardin, Margie Batek, Joseph Moen, David Schnadower
Abstract:
Background: Exposure to violence not only has negative psychological impact on children but is a risk factor for children becoming recurrent victims of violence. However, little is known regarding the degree to which child victims of violence are exposed to trauma at home and in their community, or its association with specific psychological diagnoses. Objective: The aims of this study were to perform in-depth characterizations of family, community and psychological wellness amongst pediatric victims of interpersonal violence. Methods: As standard of care at the Saint Louis Children’s Hospital pediatric emergency department (ED), social workers perform in-depth interviews with all children presenting due to violent interpersonal encounters. In this retrospective cross-sectional study, we collected data from social work interviews on family structure, exposure to violence in the community and the home, as well as history of psychological diagnoses amongst children ages 8-19 years who presented to the ED for injuries related to interpersonal violence from 2014-2017. Results: A total of 407 patients presenting to the ED for an interpersonal violent encounter were analyzed. The average age of studied youths was 14.7 years (SD 2.5). Youths were 97.5% African American ethnicity and 66.6% male. 67.8% described their home having a nonnuclear family structure, 50% of which reported living with a single mother. Of the 21% who reported having incarcerated family members, 56.3% reported their father being incarcerated, 15% reported their mother being incarcerated, and 12.5% reported multiple family members being incarcerated. 11.3% reported witnessing domestic violence in their home. 12.8% of youths reported some form of child abuse. The type of child abuse was not specified in 29.3% of cases, but physical abuse (32.8%) followed by sexual abuse (22.4%) were the most commonly reported. 14.5% had history of placement in foster care and/or adoption. 64% reported having witnessed violence in their community. 30.2% reported having lost friends or family due to violence, and of those, 26.4% reported the loss of a cousin, 18.9% the loss of a friend, 16% the loss of their father, and 12.3% the loss of their brother due to violence. Of the 22.4% youths with psychiatric diagnose(s), 48.4% had multiple diagnoses, the most common of which were ADD/ADHD (62.6%), followed by depression (31.9%), bipolar disorder (27.5%) and anxiety (15.4%). Conclusions: A remarkable proportion of children presenting to EDs due to interpersonal violence have a history of exposure to instability and violence in their homes and communities. Additionally, psychological diagnoses are frequent among pediatric victims of violence. More research is needed to better understand the association between trauma exposure, psychological health and violent victimization amongst children.Keywords: community violence, emergency department, pediatric interpersonal violence, pediatric trauma, psychological effects of trauma
Procedia PDF Downloads 2351313 Model of Multi-Criteria Evaluation for Railway Lines
Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek
Abstract:
The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.Keywords: railway track, multi-criteria methods, evaluation, transportation model
Procedia PDF Downloads 4671312 Innovation as Entrepreneurial Drives in the Romanian Automotive Industry
Authors: Alina Petronela Negrea, Valentin Cojanu
Abstract:
The article examines the synergy between innovation and entrepreneurship by means of a qualitative research on actors in the automotive industry in the Romanian southern region, Muntenia. The region is of particular interest because most of the industry suppliers are located there, as well as because it gathers the full range of key actors involved in the innovation process. The research design aims (1) to reflect entrepreneurs’ approach to and perception on innovation; (2) to underline forces driving or stifling innovation in the automotive industry; and (3) to evaluate the awareness of the existing knowledge database and the communication channels through which it is transferred within and between innovation networks. Empirical evidence results from triangula¬tion of three data collection methods: statistical data and other publicly available materials; semi - structured inter¬views, and experiential visits. The conclusions emphasize the convergent opinion of the entrepreneurs about the vital role of innovation in their investment plans.Keywords: automotive industry, entrepreneurship, innovation, Romania
Procedia PDF Downloads 5491311 Design and Implementation of 2D Mesh Network on Chip Using VHDL
Authors: Boudjedra Abderrahim, Toumi Salah, Boutalbi Mostefa, Frihi Mohammed
Abstract:
Nowadays, using the advancement of technology in semiconductor device fabrication, many transistors can be integrated to a single chip (VLSI). Although the growth chip density potentially eases systems-on-chip (SoCs) integrating thousands of processing element (PE) such as memory, processor, interfaces cores, system complexity, high-performance interconnect and scalable on-chip communication architecture become most challenges for many digital and embedded system designers. Networks-on-chip (NoCs) becomes a new paradigm that makes possible integrating heterogeneous devices and allows many communication constraints and performances. In this paper, we are interested for good performance and low area for implementation and a behavioral modeling of network on chip mesh topology design using VHDL hardware description language with performance evaluation and FPGA implementation results.Keywords: design, implementation, communication system, network on chip, VHDL
Procedia PDF Downloads 3761310 DAG Design and Tradeoff for Full Live Virtual Machine Migration over XIA Network
Authors: Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, Haiying Jiang
Abstract:
Traditional TCP/IP network is showing lots of shortages and research for future networks is becoming a hotspot. FIA (Future Internet Architecture) and FIA-NP (Next Phase) are supported by US NSF for future Internet designing. Moreover, virtual machine migration is a significant technique in cloud computing. As a network application, it should also be supported in XIA (expressive Internet Architecture), which is in both FIA and FIA-NP projects. This paper is an experimental study aims at verifying the feasibility of VM migration over XIA. We present three ways to maintain VM connectivity and communication states concerning DAG design and routing table modification. VM migration experiments are conducted intra-AD and inter-AD with KVM instances. The procedure is achieved by a migration control protocol which is suitable for the characters of XIA. Evaluation results show that our solutions can well supports full live VM migration over XIA network respectively, keeping services seamless.Keywords: DAG, downtime, virtual machine migration, XIA
Procedia PDF Downloads 8541309 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: real estate price, least-square, grey correlation, macroeconomics
Procedia PDF Downloads 1961308 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 4101307 Subjective Time as a Marker of the Present Consciousness
Authors: Anastasiya Paltarzhitskaya
Abstract:
Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future.Keywords: temporal consciousness, time perception, memory, present
Procedia PDF Downloads 751306 Identifying the Needs for Renewal of Urban Water Infrastructure Systems: Analysis of Material, Age, Types and Areas: Case Study of Linköping in Sweden
Authors: Eman Hegazy, Stefan Anderberg, Joakim Krook
Abstract:
Urban water infrastructure is crucial for efficient and reliable water supply in growing cities. With the growth of cities, the need for maintenance and renewal of these systems increases but often goes unfulfilled due to a variety of reasons, such as limited funding, political priorities, or lack of public awareness. Neglecting the renewal needs of these systems can lead to frequent malfunctions and reduced quality and reliability of water supply, as well as increased costs and health and environmental hazards. It is important for cities to prioritize investment in water infrastructure and develop long-term plans to address renewal needs. Drawing general conclusions about the rate of renewal of urban water infrastructure systems at an international or national level can be challenging due to the influence of local management decisions. In many countries, the responsibility for water infrastructure management lies with the municipal authorities, who are responsible for making decisions about the allocation of resources for repair, maintenance, and renewal. These decisions can vary widely based on factors such as local finances, political priorities, and public perception of the importance of water infrastructure. As a result, it is difficult to make generalizations about the rate of renewal across different countries or regions. In Sweden, the situation is not different, and the information from Svenskt Vatten indicates that the rate of renewal varies across municipalities and can be insufficient, leading to a buildup of maintenance and renewal needs. This study aims to examine the adequacy of the rate of renewal of urban water infrastructure in Linköping case city in Sweden. Using a case study framework, the study will assess the current status of the urban water system and the need for renewal. The study will also consider the role of factors such as proper identification processes, limited funding, competing for political priorities, and local management decisions in contributing to insufficient renewal. The study investigates the following questions: (1) What is the current status of water and sewerage networks in terms of length, age distribution, and material composition, estimated total water leakage in the network per year, damages, leaks, and outages occur per year, both overall and by district? (2) What are the main causes of these damages, leaks, and interruptions, and how are they related to lack of maintenance and renewal? (3) What is the current status of renewal work for the water and sewerage networks, including the renewal rate and changes over time, recent renewal material composition, and the budget allocation for renewal and emergency repairs? (4) What factors influence the need for renewal and what conditions should be considered in the assessment? The findings of the study provide insights into the challenges facing urban water infrastructure and identify strategies for improving the rate of renewal to ensure a reliable and sustainable water supply.Keywords: case study, infrastructure, management, renewal need, Sweden
Procedia PDF Downloads 1021305 Knowledge Acquisition as Determinant of Outputs of Innovative Business in Regions of the Czech Republic
Authors: P. Hajek, J. Stejskal
Abstract:
The aim of this paper is to analyze the ability to identify and acquire knowledge from external sources at the regional level in the Czech Republic. The results show that the most important sources of knowledge for innovative activities are sources within the businesses themselves, followed by customers and suppliers. Furthermore, the analysis of relationships between the objective of the innovative activity and the ability to identify and acquire knowledge implies that knowledge obtained from a) customers aims at replacing outdated products and increasing product quality; b) suppliers aims at increasing capacity and flexibility of production; and c) competing businesses aims at growing market share and increasing the flexibility of production and services. Regions should therefore direct their support especially into development and strengthening of networks within the value chain.Keywords: knowledge, acquisition, innovative business, Czech republic, region
Procedia PDF Downloads 3711304 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation
Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana
Abstract:
This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.Keywords: brain computer interface (BCI), gait trainer, spinal cord injury (SCI), neurorehabilitation
Procedia PDF Downloads 1591303 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 301302 Quality and Quantity in the Strategic Network of Higher Education Institutions
Authors: Juha Kettunen
Abstract:
This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.
Keywords: balanced scorecard, higher education, social networking, strategic planning
Procedia PDF Downloads 3471301 The Impact of Brand Hate and Love: A Thematic Analysis of Online Emotions in Response to Disney’s Corporate Activism
Authors: Roxana D. Maiorescu-Murphy
Abstract:
Companies have recently embraced political activism as an alleged responsibility toward the communities they operate in. As a result of its recency, there is little understanding of the impact of corporate activism on consumers. In addition, embracing corporate activism engenders polarizing opinions, potentially leading to a crisis of morality shown in past literature to flourish in online settings. The present study contributes to the literature on communication management, which currently lacks research on stakeholder perceptions toward corporate activism in general and from the perspective of the stakeholders’ emotions of brand hate versus a love that they display before a specific corporate act of activism. For this purpose, the study analyzed online reactions on Twitter following Disney’s stance against Florida’s House Bill 1577 enacted in April 2022. Dubbed the “Don’t Say Gay Bill” by the left wing and the “Parental Rights Bill” by the conservative movement, the legislation triggered polarizing opinions in society and among Disney’s stakeholders, as the company announce it was taking action against it. Given the scarcity of research on corporate political activism and crises of morality, the current study enacted the case study methodology. Consequently, it answered to the research questions of how online stakeholders responded to Disney’s stance as well as why they formed such an opinion. The data were collected from Twitter over a seven-day period of analysis, namely from March 28- April 3, 2022. The period of analysis started on the day Disney announced its stance (March 28, 2022) until the reactions to its announcement petered out significantly (April 3, 2022). The final sample of analysis consisted of N=1,344 and represented Twitter comments in response to the company’s political announcement. The data were analyzed using the grounded theory methodology, which implied multiple exposures to the text and the undertaking of an inductive-deductive approach that led to the emergence of several recurrent themes. The findings revealed that the stakeholders’ prior emotions toward the company (brand hate versus brand love) did not play a greater role in their (dis)agreement with the latter’s activism than the users’ political stances. Specifically, whether they despised or hated Disney prior to this incident was less significant than their personal political stances. Above all, users were more inclined to transition from brand love to brand hate and vice versa based on the political side they viewed Disney to fall under.Keywords: corporate political advocacy, crisis management, brand hate, brand love
Procedia PDF Downloads 1181300 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 2981299 Food Supply Chain Optimization: Achieving Cost Effectiveness Using Predictive Analytics
Authors: Jayant Kumar, Aarcha Jayachandran Sasikala, Barry Adrian Shepherd
Abstract:
Public Distribution System is a flagship welfare programme of the Government of India with both historical and political significance. Targeted at lower sections of society,it is one of the largest supply chain networks in the world. There has been several studies by academics and planning commission about the effectiveness of the system. Our study focuses on applying predictive analytics to aid the central body to keep track of the problem of breach of service level agreement between the two echelons of food supply chain. Each shop breach is leading to a potential additional inventory carrying cost. Thus, through this study, we aim to show that aided with such analytics, the network can be made more cost effective. The methods we illustrate in this study are applicable to other commercial supply chains as well.Keywords: PDS, analytics, cost effectiveness, Karnataka, inventory cost, service level JEL classification: C53
Procedia PDF Downloads 533