Search results for: outlet mass flow rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14530

Search results for: outlet mass flow rate

11860 Assuming the Decision of Having One (More) Child: The New Dimensions of the Post Communist Romanian Family

Authors: Horea-Serban Raluca-Ioana, Istrate Marinela

Abstract:

The first part of the paper analyzes the dynamics of the total fertility rate both at the national and regional level, pointing out the regional disparities in the distribution of this indicator. At the same time, we also focus on the collapse of the number of live births, on the changes in the fertility rate by birth rank, as well as on the failure of acquiring the desired number of children. The second part of the study centres upon a survey applied to urban families with 3 and more than 3 offspring. The preliminary analysis highlights the fact that an increased fertility (more than 3rd rank) is triggered by the parents’ above the average material condition and superior education. The current situation of Romania, which is still passing through a period of relatively rapid demographic changes, marked by numerous convulsions, requires a new approach, in compliance with the recent interpretations appropriate to a new post-transitional demographic regime.

Keywords: fertility rate, family size intention, third birth rank, regional disparities

Procedia PDF Downloads 329
11859 Policy to Improve in vitro Fertilization Outcome in Women with Poor Ovarian Response: Frozen Embryo Transfer (ET) of Accumulated Vitrified Embryos vs. Frozen ET of Accumulated Vitrified Embryos plus Fresh ET

Authors: Hwang Kwon

Abstract:

Objective: To assess the efficacy of embryo transfer (ET) of accumulated vitrified embryos and compare pregnancy outcomes between ET of thawed embryos following accumulation of vitrified embryos (frozen ET) and ET of fresh and thawed frozen embryos following accumulation of vitrified embryos (fresh ET + frozen ET). Study design: Patients were poor ovarian responders defined according to the Bologna criteria as well as a subgroup of women whose previous IVF-ET cycle through controlled ovarian stimulation (COS) yielded one or no embryos. Sixty-four frozen ETs were performed following accumulation of vitrified embryos (ACCE )(ACCE Frozen) and 51 fresh + frozen ETs were performed following accumulation of vitrified embryos (ACCE Fresh + Frozen). Positive βhCG rate, clinical pregnancy rate, ongoing pregnancy rate, and good quality embryos (%, ±SD) were compared between two groups. Results: There were more good quality embryos in the ACCE Fresh + Frozen group than in the ACCE Frozen group: 60±34.7 versus 42.9±28.9, respectively (p=0.03). Positive βhCG rate [18/64(28.2%) vs. 13/51(25.5%); p=0.75] and clinical pregnancy rate [12/64 (18.8%) vs. 11/51 (10.9%); p=0.71] were comparable between the two groups. Conclusion: Accumulation of vitrified embryos is an effective method in patients with poor ovarian response who fulfill the Bologna criteria. Pregnancy outcomes were comparable between the two groups.

Keywords: accumulation of embryos, frozen embryo transfer, poor responder, Bologna criteria

Procedia PDF Downloads 230
11858 Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study

Authors: Nikoo Soleimani

Abstract:

Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction.

Keywords: torsional ultrasonic assisted drilling, torque, bone drilling, rotational speed, feed rate

Procedia PDF Downloads 161
11857 Effects of Butea superba Roxb. on Skeletal Muscle Functions and Parvalbumin Levels of Orchidectomized Rat

Authors: Surapong Vongvatcharanon, Fardeela Binalee, Wandee Udomuksorn, Ekkasit Kumarnsit, Uraporn Vongvatcharanon

Abstract:

Hypogonadism is characterized by a decline in sex hormone levels, especially testosterone. It has been shown to be an important contributor to the decrease in muscle mass, muscle strength and performance, a condition known as sarcopenia. Preparations from Butea superba Roxb. (red Kwao Krua) have been reported to have androgenic properties. The active compounds are proposed to be flavonoids and flavonoid glycosides. Treatment with B. superba has been shown to improve erectile dysfunction in males. Parvalbumin (PV) is a relaxing factor and identified in fast twitch fibers. Alterations of the PV levels affects skeletal muscle functions. This study aimed to investigate the effects of orhchidectomy, testosterone replacement and different doses of Butea superba Roxb. on the structure, performance, levels of parvalbumin, parvalbumin and androgen receptor immunoreactivities in the extensor digitorum longus (EDL) and gastrocnemius muscles of orchidectomized rats. Twelve-week old male Wistar rats were randomly divided into 6 groups; sham-operated (SHAM), orchidectomized (BS-0), orchidectomized group that was treated with testosterone replacement of 6 µg/kg (TP) or an orchidectomized group that was treated with various doses of an extract from Butea superba Roxb.; 5 mg/kg (BS-5), 50 mg/kg (BS-50) and 500 mg/kg (BS-500) all for 90 days. The testosterone level, epididymis, seminal vesicle, prostate gland, vas deference weight, muscle fiber size, strength and endurance in both the EDL and gastrocnemius muscle were decreased in the BS-0 group but increased in the testosterone replacement group. Treatment with the B. superba Roxb. extract replacement group improved muscle fiber size, strength and endurance, but not total testosterone levels, or the epididymis, seminal vesicle, prostate gland, vas deference weight. Furthermore, the parvalbumin level, parvalbumin and androgen receptor immunoreactivities were reduced in the BS-0 group but increased in the testosterone replacement group and the B. superba Roxb. extract groups for both the EDL and gastrocnemius muscle. This study indicated that the reduction of testosterone level led to a decrease of the androgen receptor density resulting in a decline in the muscle mass and parvalbumin levels. The decrease of parvalbumin levels affected muscle performance. Testosterone replacement increased the androgen receptor density and led to an increase of muscle mass and parvalbumin levels. The increase in the parvalbumin levels may result in an improvement of muscle performance. This may explain one mechanism of testosterone on muscle mass and strength in the testosterone dependent sarcopenia. The B. superba Roxb. extract groups also had improved muscle mass, strength and endurance, parvalbumin level, parvalbumin and androgen immunoreactivities compared to the BS-O group . Butea superba Roxb. Extracts contains a flavonoid (3, 7, 3'-Trihydroxy-4'-methoxyflavone), flavonoiglycoside (3, 3'-dihydroxy-4'-methoxyflavone-7-O-β-D-glucopyranoside) and isoflavanolignans (butesuperins A and butesuperins B) all known to inhibit the cAMP phosphodiesterase enzyme. Therefore, cAMP signaling may have adaptive effects on skeletal muscle by increasing muscle mass, strength and endurance.

Keywords: Butea superba, parvalbumin, skeletal muscle, orchidectomy

Procedia PDF Downloads 427
11856 Influence of the Growth Rate on Eutectic Microstructures and Physical Properties of Aluminum–Silicon-Cobalt Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

Al-12.6wt.%Si-%2wt.Co alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate at constant temperature gradient using by Bridgman–type growth apparatus. The values of microstructures (λ) was measured from transverse sections of the samples. The microhardness (HV), ultimate tensile strength (σ) and electrical resistivity (ρ) of the directional solidification samples were also measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and the relationships between them were experimentally obtained by using regression analysis. The results obtained in present work were compared with the previous similar experimental results obtained for binary and ternary alloys.

Keywords: directional solidification, Al-Si-Co alloy, mechanical properties, electrical properties

Procedia PDF Downloads 289
11855 Socioeconomic Disparities in the Prevalence of Obesity in Adults with Diabetes in Israel

Authors: Yael Wolff Sagy, Yiska Loewenberg Weisband, Vered Kaufman Shriqui, Michal Krieger, Arie Ben Yehuda, Ronit Calderon Margalit

Abstract:

Background: Obesity is both a risk factor and common comorbidity of diabetes. Obesity impedes the achievement of glycemic control, and enhances damage caused by hyperglycemia to blood vessels; thus it increases diabetes-related complications. This study assessed the prevalence of obesity and morbid obesity among Israeli adults with diabetes, and estimated disparities associated with sex and socioeconomic position (SEP). Methods: A cross-sectional study was conducted in the setting of the Israeli National Program for Quality Indicators in Community Healthcare. Data on all the Israeli population is retrieved from electronic medical records of the four health maintenance organizations (HMOs). The study population included all Israeli patients with diabetes aged 20-64 with documented body mass index (BMI) in 2016 (N=180,451). Diabetes was defined as the existence of one or more of the following criteria: (a) Plasma glucose level >200 mg% in at least two tests conducted at least one month apart in the previous year; (b) HbA1c>6.5% at least once in the previous year (c) at least three prescriptions of diabetes medications were dispensed during the previous year. Two measures were included: the prevalence of obesity (defined as last BMI≥ 30 kg/m2 and <35 kg/m2) and the prevalence of morbid obesity (defined as last BMI≥ 35 kg/m2) in individuals aged 20-64 with diabetes. The cut-off value for morbid obesity was set in accordance with the eligibility criteria for bariatric surgery in diabetics. Data were collected by the HMOs and aggregated by age, sex and SEP. SEP was based on statistical areas ranking by the Israeli Central Bureau of Statistics and divided into 4 categories, ranking from 1 (lowest) to 4 (highest). Results: BMI documentation among adults with diabetes was 84.9% in 2016. The prevalence of obesity in the study population was 30.5%. Although the overall rate was similar in both sexes (30.8% in females, 30.3% in males), SEP disparities were stronger in females (32.7% in SEP level 1 vs. 27.7% in SEP level 4; 18.1% relative difference) compared to males (30.6% in SEP level 1 vs. 29.3% in SEP level 4; 4.4% relative difference). The overall prevalence of morbid obesity in this population was 20.8% in 2016. The rate among females was almost double compared to the rate in males (28.1% and 14.6%, respectively). In both sexes, the prevalence of morbid obesity was strongly associated with lower SEP. However, in females, disparities between SEP levels were much stronger (34.3% in SEP level 1 vs. 18.7% in SEP level 4; 83.4% relative difference) compared to SEP-disparities in males (15.7% in SEP level 1 vs. 12.3% in SEP level 4; 27.6% relative difference). Conclusions: The overall prevalence of BMI≥ 30 kg/m2 among adults with diabetes in Israel exceeds 50%; and the prevalence of morbid obesity suggests that 20% meet the BMI-criteria for bariatric surgery. Prevalence rates show major SEP- and sex-disparities; especially strong SEP disparities in morbid obesity among females. These findings highlight the need for greater consideration of different population groups when implementing interventions.

Keywords: diabetes, health disparities, health policy, obesity, socio-economic position

Procedia PDF Downloads 216
11854 The Effects of Pilates and McKenzie Exercises on Quality of Life and Lumbar Spine Position Sense in Patients with Low Back Pain: A Comparative Study with a 4-Week Follow-Up

Authors: Vahid Mazloum, Mansour Sahebozamani, Amirhossein Barati, Nouzar Nakhaee, Pouya Rabiei

Abstract:

Non-specific chronic low back pain (NSCLBP) is a common condition with no exact diagnosis and mechanism for its occurrence. Recently, different therapeutic exercises have taken into account to manage NSCLBP. So, the aim of this study has mainly been placed on comparing the effects of Pilates and Mackenzie exercises on quality of life (QOL) lumbar spine position sense (LSPS) in patients with NSCLBP. In this randomized clinical trial, 47 patients with NSCLBP were voluntarily divided into three groups of Pilates (n=16) (with mean age 37.1 ± 9.5 years, height 168.9 ± 7.4 cm, body mass 76.1 ± 5.9 k), McKenzie (n=15) (with mean age 42.7 ± 8.1 years, height 165.7 ± 6.8, body mass 74.1 ± 4.8 kg) and control (n=16) (with mean age 39.3 ± 9.8 years, height 168.1 ± 8.1 cm, body mass 74.2 ± 5.8 kg). Primary outcome included QOL and secondary was LSPS. Both variables were assessed by the WHOQOL-BREF questionnaires and electrogoniameter, respectively. The measurements were performed at baseline, following a 6-week intervention, and after a 4-week follow-up. The ANCOVA test at P < 0.05 was administrated to analyze the collected data using SPSS software. There was a statistically significant difference between experimental groups and the control group to improve QOL. But, no difference was seen regarding the effects of two exercises on LSPS (p < 0.05). Both Pilates and Mackenzie exercises demonstrated improvement in QOL after 6-week intervention and a 4-week follow-up while none of them considerably affected LSPS. Further studies are required to establish a supporting evidence for the effectiveness of two exercises on NSCLBP.

Keywords: pilates, Mackenzie, preconception, low back pain, physical health

Procedia PDF Downloads 192
11853 Anthropometry in Macedonian Senior Football and Basketball Players

Authors: L. Todorovska, E. Sivevska, B. Dejanova, J. Pluncevic, S. Petrovska, V. Antevska, S. Mancevska, I. Karadjozova

Abstract:

Objective: The aim of this longitudinal study was to describe anthropometric and performance characteristics and to explore their differences between senior football (F) and basketball (B) players. Subjects and methods: 25 F (aged 23±2.5 y) and 25 B (aged 22±4.2 y) from Macedonian national teams and elite sport clubs were annually tested during 2 consecutive years. Full anthropometric profiles (stature, weight, five circumferences, four bone diameters, seven skin-folds and nine calculated parameters with standard formulas) were collected. Body composition was determined with InBody720 System. Physical capacity was tested with ergo metric test of Bruce (Custo med GmbH, Germany). Results: B were taller (p<0.001) and heavier (p<0.01), but leaner (p<0.001). F had higher percentage of muscle mass (p<0.01) and body fat (p< 0.001). F had higher VO2max (p<0.05) and lower hard rate (p<0.01). The differences in physical performance were not significant (p>0.05) within the groups during the 2-years period. Conclusions: These results suggest that there are distinct differences in anthropometric profile between Macedonian senior football and basketball players during the two competitive seasons.

Keywords: anthropometry, basketball players, football players, Macedonia

Procedia PDF Downloads 491
11852 Dynamic and Thermal Characteristics of Three-Dimensional Turbulent Offset Jet

Authors: Ali Assoudi, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec

Abstract:

Studying the flow characteristics of a turbulent offset jet is an important topic among researchers across the world because of its various engineering applications. Some of the common examples include: injection and carburetor systems, entrainment and mixing process in gas turbine and boiler combustion chambers, Thrust-augmenting ejectors for V/STOL aircrafts and HVAC systems, environmental dischargers, film cooling and many others. An offset jet is formed when a jet discharges into a medium above a horizontal solid wall parallel to the axis of the jet exit but which is offset by a certain distance. The structure of a turbulent offset-jet can be described by three main regions. Close to the nozzle exit, an offset jet possesses characteristic features similar to those of free jets. Then, the entrainment of fluid between the jet, the offset wall and the bottom wall creates a low pressure zone, forcing the jet to deflect towards the wall and eventually attaches to it at the impingement point. This is referred to as the Coanda effect. Further downstream after the reattachment point, the offset jet has the characteristics of a wall jet flow. Therefore, the offset jet has characteristics of free, impingement and wall jets, and it is relatively more complex compared to these types of flows. The present study examines the dynamic and thermal evolution of a 3D turbulent offset jet with different offset height ratio (the ratio of the distance from the jet exit to the impingement bottom wall and the jet nozzle diameter). To achieve this purpose a numerical study was conducted to investigate a three-dimensional offset jet flow through the resolution of the different governing Navier–Stokes’ equations by means of the finite volume method and the RSM second-order turbulent closure model. A detailed discussion has been provided on the flow and thermal characteristics in the form of streamlines, mean velocity vector, pressure field and Reynolds stresses.

Keywords: offset jet, offset ratio, numerical simulation, RSM

Procedia PDF Downloads 305
11851 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections

Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei

Abstract:

A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.

Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles

Procedia PDF Downloads 610
11850 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications

Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray

Abstract:

The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.

Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model

Procedia PDF Downloads 130
11849 Determination of Geotechnical Properties of Travertine Lithotypes in Van-Turkey

Authors: Ali Ozvan, Ismail Akkaya, Mucip Tapan

Abstract:

Travertine is generally a weak or medium strong rock, and physical, mechanical and structural properties of travertines are direct impacts on geotechnical studies. New settlement areas were determined on travertine units after two destructive earthquakes which occurred on October 23rd, 2011 (M=7.1) and November 9th, 2011 (M=5.6) in Tabanlı and Edremit districts of Van province in Turkey, respectively. In the study area, the travertines have different lithotype and engineering properties such as strong crystalline crust, medium strong shrub, and weak reed which can affect mechanical and engineering properties of travertine and each level have different handicaps. Travertine has a higher strength when compared to the soil ground; however, it can have different handicaps such as having poor rock mass, karst caves and weathering alteration. Physico-mechanical properties of travertine in the study area are determined by laboratory tests and field observations. Uniaxial compressive strength (UCS) values were detected by indirect methods, and the strength map of different lithotype of Edremit travertine was created in order to define suitable settlement areas. Also, rock mass properties and underground structure were determined by bore holes, field studies, and geophysical method. The reason of this study is to investigate the relationship between lithotype and physicomechanical properties of travertines. According to the results, lithotype has an effect on physical, mechanical and rock mass properties of travertine levels. It is detected by several research methods that various handicaps may occur on such areas when the active tectonic structure of the area is evaluated along with the karstic cavities within the travertine and different lithotype qualities.

Keywords: travertine, lithotype, geotechnical parameters, Van earthquake

Procedia PDF Downloads 232
11848 Effect of the Orifice Plate Specifications on Coefficient of Discharge

Authors: Abulbasit G. Abdulsayid, Zinab F. Abdulla, Asma A. Omer

Abstract:

On the ground that the orifice plate is relatively inexpensive, requires very little maintenance and only calibrated during the occasion of plant turnaround, the orifice plate has turned to be in a real prevalent use in gas industry. Inaccuracy of measurement in the fiscal metering stations may highly be accounted to be the most vital factor for mischarges in the natural gas industry in Libya. A very trivial error in measurement can add up a fast escalating financial burden to the custodian transactions. The unaccounted gas quantity transferred annually via orifice plates in Libya, could be estimated in an extent of multi-million dollars. As the oil and gas wealth is the solely source of income to Libya, every effort is now being exerted to improve the accuracy of existing orifice metering facilities. Discharge coefficient has become pivotal in current researches undertaken in this regard. Hence, increasing the knowledge of the flow field in a typical orifice meter is indispensable. Recently and in a drastic pace, the CFD has become the most time and cost efficient versatile tool for in-depth analysis of fluid mechanics, heat and mass transfer of various industrial applications. Getting deeper into the physical phenomena lied beneath and predicting all relevant parameters and variables with high spatial and temporal resolution have been the greatest weighing pros counting for CFD. In this paper, flow phenomena for air passing through an orifice meter were numerically analyzed with CFD code based modeling, giving important information about the effect of orifice plate specifications on the discharge coefficient for three different tappings locations, i.e., flange tappings, D and D/2 tappings compared with vena contracta tappings. Discharge coefficients were paralleled with discharge coefficients estimated by ISO 5167. The influences of orifice plate bore thickness, orifice plate thickness, beveled angle, perpendicularity and buckling of the orifice plate, were all duly investigated. A case of an orifice meter whose pipe diameter of 2 in, beta ratio of 0.5 and Reynolds number of 91100, was taken as a model. The results highlighted that the discharge coefficients were highly responsive to the variation of plate specifications and under all cases, the discharge coefficients for D and D/2 tappings were very close to that of vena contracta tappings which were believed as an ideal arrangement. Also, in general sense, it was appreciated that the standard equation in ISO 5167, by which the discharge coefficient was calculated, cannot capture the variation of the plate specifications and thus further thorough considerations would be still needed.

Keywords: CFD, discharge coefficients, orifice meter, orifice plate specifications

Procedia PDF Downloads 119
11847 Dynamics of a Susceptible-Infected-Recovered Model along with Time Delay, Modulated Incidence, and Nonlinear Treatment

Authors: Abhishek Kumar, Nilam

Abstract:

As we know that, time delay exists almost in every biological phenomenon. Therefore, in the present study, we propose a susceptible–infected–recovered (SIR) epidemic model along with time delay, modulated incidence rate of infection, and Holling Type II nonlinear treatment rate. The present model aims to provide a strategy to control the spread of epidemics. In the mathematical study of the model, it has been shown that the model has two equilibriums which are named as disease-free equilibrium (DFE) and endemic equilibrium (EE). Further, stability analysis of the model is discussed. To prove the stability of the model at DFE, we derived basic reproduction number, denoted by (R₀). With the help of basic reproduction number (R₀), we showed that the model is locally asymptotically stable at DFE when the basic reproduction number (R₀) less than unity and unstable when the basic reproduction number (R₀) is greater than unity. Furthermore, stability analysis of the model at endemic equilibrium has also been discussed. Finally, numerical simulations have been done using MATLAB 2012b to exemplify the theoretical results.

Keywords: time delayed SIR epidemic model, modulated incidence rate, Holling type II nonlinear treatment rate, stability

Procedia PDF Downloads 159
11846 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field

Authors: Lina Ismail Jassim, Robiah Yunus

Abstract:

To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.

Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley

Procedia PDF Downloads 310
11845 Computer Simulation Approach in the 3D Printing Operations of Surimi Paste

Authors: Timilehin Martins Oyinloye, Won Byong Yoon

Abstract:

Simulation technology is being adopted in many industries, with research focusing on the development of new ways in which technology becomes embedded within production, services, and society in general. 3D printing (3DP) technology is fast developing in the food industry. However, the limited processability of high-performance material restricts the robustness of the process in some cases. Significantly, the printability of materials becomes the foundation for extrusion-based 3DP, with residual stress being a major challenge in the printing of complex geometry. In many situations, the trial-a-error method is being used to determine the optimum printing condition, which results in time and resource wastage. In this report, the analysis of 3 moisture levels for surimi paste was investigated for an optimum 3DP material and printing conditions by probing its rheology, flow characteristics in the nozzle, and post-deposition process using the finite element method (FEM) model. Rheological tests revealed that surimi pastes with 82% moisture are suitable for 3DP. According to the FEM model, decreasing the nozzle diameter from 1.2 mm to 0.6 mm, increased the die swell from 9.8% to 14.1%. The die swell ratio increased due to an increase in the pressure gradient (1.15107 Pa to 7.80107 Pa) at the nozzle exit. The nozzle diameter influenced the fluid properties, i.e., the shear rate, velocity, and pressure in the flow field, as well as the residual stress and the deformation of the printed sample, according to FEM simulation. The post-printing stability of the model was investigated using the additive layer manufacturing (ALM) model. The ALM simulation revealed that the residual stress and total deformation of the sample were dependent on the nozzle diameter. A small nozzle diameter (0.6 mm) resulted in a greater total deformation (0.023), particularly at the top part of the model, which eventually resulted in the sample collapsing. As the nozzle diameter increased, the accuracy of the model improved until the optimum nozzle size (1.0 mm). Validation with 3D-printed surimi products confirmed that the nozzle diameter was a key parameter affecting the geometry accuracy of 3DP of surimi paste.

Keywords: 3D printing, deformation analysis, die swell, numerical simulation, surimi paste

Procedia PDF Downloads 70
11844 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 578
11843 Accumulation of Phlorotannins in Abalone Haliotis discus Hannai after Feeding with Eisenia bicyclis

Authors: Bangoura Issa, Ji-Young Kang, M. T. H. Chowdhury, Ji-Eun Lee, Yong-Ki Hong

Abstract:

Investigation was carried out for the production of value-added abalone Haliotis discus hannai containing bioactive phlorotannin by feeding phlorotannin-rich seaweed Eisenia bicyclis 2 weeks prior to harvesting. Accumulation of phlorotannins was proceded by feeding with E. bicyclis after 4 days of starvation. HPLC purification afforded two major phlorotannins. Mass spectrometry and 1H-nuclear magnetic resonance analysis clarified their structures to be as 7-phloroeckol and eckol. Throughout the feeding period of 20 days, 7-phloroeckolol was accumulated in the muscle (foot muscle tissue) up to 0.18±0.12 mg g-1 dry weight of tissue after 12 days. Eckol reached 0.21±0.03 mg g-1 dry weight of tissue after 18 days. By feeding Laminaria japonica as reference, abalone showed no detection of phlorotannins in the muscle tissue. Seaweed consumption and growth rate of abalone revealed almost similar when feed with E. bicyclis or L. japonicain 20 days. Phlorotannins reduction to half-maximal accumulation values took 1.0 day and 2.7 days for 7-phloroeckol and eckol respectively, after replacing the feed to L. japonica.

Keywords: abalone, accumulation, eisenia bicyclis, phlorotannins

Procedia PDF Downloads 385
11842 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: laser cladding, temperature, profile, microstructure

Procedia PDF Downloads 224
11841 The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line

Authors: Seyede Sanaz Seyedebrahimi, Shima Rahimi, Shohreh Fakhari, Ali Jalili

Abstract:

Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required.

Keywords: CXCR4, dexamethasone, metformin, migration, multiple myeloma

Procedia PDF Downloads 158
11840 The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil

Authors: Nkiru I. Ibeakuzie, Paul D. J. Watson, John F. Pescatore

Abstract:

In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility.

Keywords: fractal dimension, particle size distribution, cement stabilization, cement content

Procedia PDF Downloads 221
11839 Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV

Authors: Xiaolai Zhang, Haitao Zhang, Qiwen Sun, Weixin Qian, Weiyong Ying

Abstract:

High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed.

Keywords: Fischer-Tropsch synthesis, Fixed fluidized bed, LDV, Velocity

Procedia PDF Downloads 407
11838 Clinical Parameters Response to Low Level Laser Versus Monochromatic Near Infrared Photo Energy in Diabetic Patient with Peripheral Neuropathy

Authors: Abeer Ahmed Abdehameed

Abstract:

Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common micro vascular complications of type 2 diabetes. Loss of sensation is thought to contribute to lake of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low level laser (LLL) and monochromatic near infrared photo energy (MIRE) on pain , cutaneous sensation, static stability and index of lower limb blood flow in diabetic with peripheral neuropathy. Methods: Forty subjects with diabetic peripheral neuropathy were recruited for study. They were divided into two groups: The ( MIRE) group that included (20) patients and (LLL) group included (20) patients. All patients in the study had been subjected to various physical assessment procedures including pain, cutaneous sensation, Doppler flow meter and static stability assessments. The baseline measurements were followed by treatment sessions that conducted twice a week for 6 successive weeks. Results: The statistical analysis of the data had revealed significant improvement of the pain in both groups, with significant improvement in cutaneous sensation and static balance in (MIRE) group compared to (LLL) group; on the other hand results showed no significant differences on lower limb blood flow in both groups. Conclusion: Low level laser and monochromatic near infrared therapy can improve painful symptoms in patients with diabetic neuropathy. On the other hand (MIRE) is useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.

Keywords: diabetic neuropathy, doppler flow meter, low level laser, monochromatic near infrared photo energy

Procedia PDF Downloads 315
11837 Forest Soil Greenhouse Gas Real-Time Analysis Using Quadrupole Mass Spectrometry

Authors: Timothy L. Porter, T. Randy Dillingham

Abstract:

Vegetation growth and decomposition, along with soil microbial activity play a complex role in the production of greenhouse gases originating in forest soils. The absorption or emission (respiration) of these gases is a function of many factors relating to the soils themselves, the plants, and the environment in which the plants are growing. For this study, we have constructed a battery-powered, portable field mass spectrometer for use in analyzing gases in the soils surrounding trees, plants, and other areas. We have used the instrument to sample in real-time the greenhouse gases carbon dioxide and methane in soils where plant life may be contributing to the production of gases such as methane. Gases such as isoprene, which may help correlate gas respiration to microbial activity have also been measured. The instrument is composed of a quadrupole mass spectrometer with part per billion or better sensitivity, coupled to battery-powered turbo and diaphragm pumps. A unique ambient air pressure differentially pumped intake apparatus allows for the real-time sampling of gases in the soils from the surface to several inches below the surface. Results show that this instrument is capable of instant, part-per-billion sensitivity measurement of carbon dioxide and methane in the near surface region of various forest soils. We have measured differences in soil respiration resulting from forest thinning, forest burning, and forest logging as compared to pristine, untouched forests. Further studies will include measurements of greenhouse gas respiration as a function of temperature, microbial activity as measured by isoprene production, and forest restoration after fire.

Keywords: forest, soil, greenhouse, quadrupole

Procedia PDF Downloads 117
11836 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 321
11835 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 486
11834 Prandtl Number Influence Analysis on Droplet Migration in Natural Convection Flow Using the Level Set Method

Authors: Isadora Bugarin, Taygoara F. de Oliveira

Abstract:

Multiphase flows have currently been placed as a key solution for technological advances in energy and thermal sciences. The comprehension of droplet motion and behavior on non-isothermal flows is, however, rather limited. The present work consists of an investigation of a 2D droplet migration on natural convection inside a square enclosure with differentially heated walls. The investigation in question concerns the effects on drop motion of imposing different combinations of Prandtl and Rayleigh numbers while defining the drop on distinct initial positions. The finite differences method was used to compute the Navier-Stokes and energy equations for a laminar flow, considering the Boussinesq approximation. Also, a high order level set method was applied to simulate the two-phase flow. A previous analysis developed by the authors had shown that for fixed values of Rayleigh and Prandtl, the variation of the droplet initial position at the beginning of the simulation delivered different patterns of motion, in which for Ra≥10⁴ the droplet presents two very specific behaviors: it can travel through a helical path towards the center or define cyclic circular paths resulting in closed paths when reaching the stationary regime. Now, when varying the Prandtl number for different Rayleigh regimes, it was observed that this particular parameter also affects the migration of the droplet, altering the motion patterns as its value is increased. On higher Prandtl values, the drop performs wider paths with larger amplitudes, traveling closer to the walls and taking longer time periods to finally reach the stationary regime. It is important to highlight that drastic drop behavior changes on the stationary regime were not yet observed, but the path traveled from the begging of the simulation until the stationary regime was significantly altered, resulting in distinct turning over frequencies. The flow’s unsteady Nusselt number is also registered for each case studied, enabling a discussion on the overall effects on heat transfer variations.

Keywords: droplet migration, level set method, multiphase flow, natural convection in enclosure, Prandtl number

Procedia PDF Downloads 124
11833 Effect of Capillary Forces on Wet Granular Avalanches

Authors: Ahmed Jarray, Vanessa Magnanimo, Stefan Luding

Abstract:

Granular avalanches are ubiquitous in nature and occur in numerous industrial processes associated with particulate systems. When a small amount of liquid is added to a pile of particles, pendular bridges form and the particles are attracted by capillary forces, creating complex structure and flow behavior. We have performed an extensive series of experiments to investigate the effect of capillary force and particle size on wet granular avalanches, and we established a methodology that ensures the control of the granular flow in a rotating drum. The velocity of the free surface and the angle of repose of the particles in the rotating drum are determined using particle tracking method. The capillary force between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. We show that the strength of the capillary forces between two adjacent particles can be deliberately manipulated through surface modification of the glass beads, thus, under the right conditions; we demonstrate that the avalanche dynamics can be controlled. The results show that the avalanche amplitude decreases when increasing the capillary force. We also find that liquid-induced cohesion increases the width of the gliding layer and the dynamic angle of repose, however, it decreases the velocity of the free surface.

Keywords: avalanche dynamics, capillary force, granular material, granular flow

Procedia PDF Downloads 278
11832 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures

Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.

Abstract:

Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.

Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays

Procedia PDF Downloads 158
11831 Medium-Scale Multi-Juice Extractor for Food Processing

Authors: Flordeliza L. Mercado, Teresito G. Aguinaldo, Helen F. Gavino, Victorino T. Taylan

Abstract:

Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis.

Keywords: food processing, fruits and vegetables, juice extraction, multi-juice extractor

Procedia PDF Downloads 326