Search results for: carbon reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7510

Search results for: carbon reduction

4840 Role of Fracturing, Brecciation and Calcite Veining in Fluids Flow and Permeability Enhancement in Low-Porosity Rock Masses: Case Study of Boulaaba Aptian Dolostones, Kasserine, Central Tunisia

Authors: Mohamed Khali Zidi, Mohsen Henchiri, Walid Ben Ahmed

Abstract:

In the context of a hypogene hydrothermal travertine system, including low-porosity brittle bedrock and rock-mass permeability in Aptian dolostone of Boulaaba, Kasserine is enhanced through faulting and fracturing. This permeability enhancement related to the deformation modes along faults and fractures is likely to be in competition with permeability reduction when microcracks, fractures, and faults all become infilled with breccias and low-permeability hydrothermal precipitates. So that, fault continual or intermittent reactivation is probably necessary for them to keep their potential as structural high-permeability conduits. Dilational normal faults in strong mechanical stratigraphy associated with fault segments with dip changes are sites for porosity and permeability in groundwater infiltration and flow, hydrocarbon reservoirs, and also may be important sources of mineralization. The brecciation mechanism through dilational faulting and gravitational collapse originates according to hosting lithologies chaotic clast-supported breccia in strong lithologies such as sandstones, limestones, and dolostones, and matrix-supported cataclastic in weaker lithologies such as marls and shales. Breccias contribute to controlling fluid flow when the porosity is sealed either by low-permeability hydrothermal precipitates or by fine matrix materials. All these mechanisms of fault-related rock-mass permeability enhancement and reduction can be observed and analyzed in the region of Sidi Boulaaba, Kasserine, central Tunisia, where dilational normal faulting occurs in mechanical strong dolostone layering alternating with more weak marl and shale lithologies, has originated a variety of fault voids (fluid conduits) breccias (chaotic, crackle and mosaic breccias) and carbonate cement.

Keywords: travertine, Aptian dolostone, Boulaaba, fracturing

Procedia PDF Downloads 65
4839 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu

Authors: Kaleeswari R. K., Seevagan L .

Abstract:

Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.

Keywords: soil quality index, soil attributes, soil mapping, and rice soil

Procedia PDF Downloads 86
4838 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes

Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen

Abstract:

Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.

Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades

Procedia PDF Downloads 164
4837 Culture Medium Design Based on Whey for the Growth and Bacteriocin Production of Strains of Pediococcus pentosaceus

Authors: Carolina Gutierrez-Cortes, Hector Suarez, Gustavo Buitrago

Abstract:

Bacteriocins are antimicrobial peptides produced by bacteria as a competitive strategy for substrate and habitat. Those peptides have a potential use as food biopreservatives due to their antimicrobial activity against foodborne pathogens, avoiding the use of additives that can be harmful to consumers. The industrial production of bacteriocins is currently expensive; one of the options to be competitive is the development of economic culture media, for example, with the use of agro-industrial wastes such as whey. This study evaluated the growth and production of bacteriocins from four strains: Pediococcus pentosaceus 63, Pediococcus pentosaceus 145, Pediococcus pentosaceus 146 and Pediococcus pentosaceus 147 isolated from ‘minas cheese’ (artisanal cheese made from raw milk in the state of Minas Gerais, Brazil) in order to select a strain with growth at high rates and higher antimicrobial activity against Listeria monocytogenes 104 after incubation on the culture medium designed with whey and other components. The media used were: MRS broth, modified MRS broth (using different sources of carbon and nitrogen and different amounts of micronutrients) and a culture medium designed by a factorial design using whey and other components. The final biomass concentrations of the four strains in MRS broth after 24 hours of incubation were very similar 9.25, 9.33, 9.25 and 9.22 (log CFU/mL) for P. pentosaceus 63, P. pentosaceus 145, P. pentosaceus 146 and P. pentosaceus 147 respectively. In the same assays, antimicrobial activity of 3200 AU/mL for the first three and of 12800 AU/mL for P. pentosaceus 147 were obtained. Culture of P. pentosaceus 63 on modified MRS broth, showed the effect of some sources of carbon on the activity of bacteriocin, obtaining 12800 AU/mL with dextrose and 25600 AU/mL with maltose. Cultures of P. pentosaceus 145, 146 and 147 with these same sugars presented activity of 12800 AU/mL. It was observed that the modified MRS medium using whey increased the antimicrobial activity of the strains at 16000, 6400, 16000 and 19200 AU/mL for each strain respectively, keeping the biomass at values close to 9 log units. About nitrogen sources, it was observed that the combination of peptone (10 g /L), meat extract (10 g/L) and yeast extract (5 g/L) promoted the highest activity (12800 AU/mL), and in all cases MgSO4, MnSO4, K2HPO4 and ammonium citrate at low concentrations adversely affected bacteriocin production. Because P. pentosaceus 147 showed the highest antimicrobial activity in the presence of whey, it was used to evaluate the culture medium (peptone (10 g/L), meat extract (8 g/L), yeast extract (2 g/L), Tween® 80 (1 g/L), ammonium citrate (2 g/L), sodium acetate (5 g/L), MgSO4 (0.2 g/L), MnSO4 (0.04 g/L)). With the designed medium added with whey, 9.34 log units of biomass concentration and 19200 AU/mL were achieved for P. pentosaceus 147. The above suggest that the new medium promotes the antimicrobial activity of P. pentosaceus 147 allowing the use of an economic medium using whey.

Keywords: antimicrobial activity, bacteriocins, pediococcus, whey

Procedia PDF Downloads 226
4836 Budget Impact Analysis of a Stratified Treatment Cascade for Hepatitis C Direct Acting Antiviral Treatment in an Asian Middle-Income Country through the Use of Compulsory and Voluntary Licensing Options

Authors: Amirah Azzeri, Fatiha H. Shabaruddin, Scott A. McDonald, Rosmawati Mohamed, Maznah Dahlui

Abstract:

Objective: A scaled-up treatment cascade with direct-acting antiviral (DAA) therapy is necessary to achieve global WHO targets for hepatitis C virus (HCV) elimination in Malaysia. Recently, limited access to Sofosbuvir/Daclatasvir (SOF/DAC) is available through compulsory licensing, with future access to Sofosbuvir/Velpatasvir (SOF/VEL) expected through voluntary licensing due to recent agreements. SOF/VEL has superior clinical outcomes, particularly for cirrhotic stages, but has higher drug acquisition costs compared to SOF/DAC. It has been proposed that a stratified treatment cascade might be the most cost-efficient approach for Malaysia whereby all HCV patients are treated with SOF/DAC except for patients with cirrhosis who are treated with SOF/VEL. This study aimed to conduct a five-year budget impact analysis from the provider perspective of the proposed stratified treatment cascade for HCV treatment in Malaysia. Method: A disease progression model that was developed based on model-predicted HCV epidemiology data in Malaysia was used for the analysis, where all HCV patients in scenario A were treated with SOF/DAC for all disease stages while in scenario B, SOF/DAC was used only for non-cirrhotic patients and SOF/VEL was used for the cirrhotic patients. The model projections estimated the annual numbers of patients in care and the numbers of patients to be initiated on DAA treatment nationally. Healthcare costs associated with DAA therapy and disease stage monitoring was included to estimate the downstream cost implications. For scenario B, the estimated treatment uptake of SOF/VEL for cirrhotic patients were 25%, 50%, 75%, 100% and 100% for 2018, 2019, 2020, 2021 and 2022 respectively. Healthcare costs were estimated based on standard clinical pathways for DAA treatment described in recent guidelines. All costs were reported in US dollars (conversion rate US$1=RM4.09, the price year 2018). Scenario analysis was conducted for 5% and 10% reduction of SOF/VEL acquisition cost anticipated from the competitive market pricing of generic DAA in Malaysia. Results: The stratified treatment cascade with SOF/VEL in Scenario B was found to be cost-saving compared to Scenario A. A substantial portion of the cost reduction was due to the costs associated with DAA therapy which resulted in USD 40 thousand (year 1) to USD 443 thousand (year 5) savings annually, with cumulative savings of USD 1.1 million after 5 years. Cost reductions for disease stage monitoring were seen in year three onwards which resulted in cumulative savings of USD 1.1 thousand. Scenario analysis estimated cumulative savings of USD 1.24 to USD 1.35 million when the acquisition cost of SOF/VEL was reduced. Conclusion: A stratified treatment cascade with SOF/VEL was expected to be cost-saving and can results in a budget impact reduction in overall healthcare expenditure in Malaysia compared to treatment with SOF/DAC. The better clinical efficacy with SOF/VEL is expected to halt patients’ HCV disease progression and may reduce downstream costs of treating advanced disease stages. The findings of this analysis may be useful to inform healthcare policies for HCV treatment in Malaysia.

Keywords: Malaysia, direct acting antiviral, compulsory licensing, voluntary licensing

Procedia PDF Downloads 164
4835 Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin

Authors: Cristina Opris, Bogdan Cojocaru, Madalina Tudorache, Simona M. Coman, Vasile I. Parvulescu, Camelia Bala, Bahir Duraki, Jeroen A. Van Bokhoven

Abstract:

The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: superparamagnetic core-shell catalysts, environmental production of fuels, renewable lignin, recyclable catalysts

Procedia PDF Downloads 328
4834 Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats

Authors: Cóndor C. José, Rodrigues E. Camila, Noronha L. Irene, Dos Santos Fernando, Irigoyen M. Claudia, Andrade Lúcia

Abstract:

Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP).

Keywords: baroreflex response, heart rate variability, sepsis, wharton’s jelly-derived mesenchymal stem cells

Procedia PDF Downloads 302
4833 Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility

Authors: Tayebeh Sahraeibelverdi, Ahmad Shirazi Hadi Veladi, Mazdak Radmalekshah

Abstract:

Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further.

Keywords: optical ring resonator, strain gauge, strain sensor, surface mechanical property analysis

Procedia PDF Downloads 126
4832 Coordinated Multi-Point Scheme Based on Channel State Information in MIMO-OFDM System

Authors: Su-Hyun Jung, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with less resources.

Keywords: adaptive beamforming, CoMP, LTE-A, ICI reduction

Procedia PDF Downloads 469
4831 Development of a New Method for the Evaluation of Heat Tolerant Wheat Genotypes for Genetic Studies and Wheat Breeding

Authors: Hameed Alsamadany, Nader Aryamanesh, Guijun Yan

Abstract:

Heat is one of the major abiotic stresses limiting wheat production worldwide. To identify heat tolerant genotypes, a newly designed system involving a large plastic box holding many layers of filter papers positioned vertically with wheat seeds sown in between for the ease of screening large number of wheat geno types was developed and used to study heat tolerance. A collection of 499 wheat geno types were screened under heat stress (35ºC) and non-stress (25ºC) conditions using the new method. Compared with those under non-stress conditions, a substantial and very significant reduction in seedling length (SL) under heat stress was observed with an average reduction of 11.7 cm (P<0.01). A damage index (DI) of each geno type based on SL under the two temperatures was calculated and used to rank the genotypes. Three hexaploid geno types of Triticum aestivum [Perenjori (DI= -0.09), Pakistan W 20B (-0.18) and SST16 (-0.28)], all growing better at 35ºC than at 25ºC were identified as extremely heat tolerant (EHT). Two hexaploid genotypes of T. aestivum [Synthetic wheat (0.93) and Stiletto (0.92)] and two tetraploid genotypes of T. turgidum ssp dicoccoides [G3211 (0.98) and G3100 (0.93)] were identified as extremely heat susceptible (EHS). Another 14 geno types were classified as heat tolerant (HT) and 478 as heat susceptible (HS). Extremely heat tolerant and heat susceptible geno types were used to develop re combinant inbreeding line populations for genetic studies. Four major QTLs, HTI4D, HTI3B.1, HTI3B.2 and HTI3A located on wheat chromosomes 4D, 3B (x2) and 3A, explaining up to 34.67 %, 28.93 %, 13.46% % and 11.34% phenotypic variation, respectively, were detected. The four QTLs together accounted for 88.40% of the total phenotypic variation. Random wheat geno types possessing the four heat tolerant alleles performed significantly better under the heat condition than those lacking the heat tolerant alleles indicating the importance of the four QTLs in conferring heat tolerance in wheat. Molecular markers are being developed for marker assisted breeding of heat tolerant wheat.

Keywords: bread wheat, heat tolerance, screening, RILs, QTL mapping, association analysis

Procedia PDF Downloads 551
4830 The Nursing Rounds System: Effect of Patient's Call Light Use, Bed Sores, Fall and Satisfaction Level

Authors: Bassem Saleh, Hussam Nusair, Nariman Al Zubadi, Shams Al Shloul, Usama Saleh

Abstract:

The nursing round system (NRS) means checking patients on an hourly basis during the A (0700–2200 h) shift and once every 2 h during the B (2200–0700 h) by the assigned nursing staff. The overall goal of this prospective study is to implement an NRS in a major rehabilitation centre—Sultan Bin Abdulaziz Humanitarian City—in the Riyadh area of the Kingdom of Saudi Arabia. The purposes of this study are to measure the effect of the NRS on: (i) the use of patient call light; (ii) the number of incidences of patients’ fall; (iii) the number of incidences of hospital-acquired bed sores; and (iv) the level of patients’ satisfaction. All patients hospitalized in the male stroke unit will be involved in this study. For the period of 8 weeks (17 December 2009–17 February 2010) All Nursing staff on the unit will record each call light and the patient’s need. Implementation of the NRS would start on 18 February 2010 and last for 8 weeks, until 18 April 2010. Data collected throughout this period will be compared with data collected during the 8 weeks period immediately preceding the implementation of the NRS (17 December 2009–17 February 2010) in order to measure the impact of the call light use. The following information were collected on all subjects involved in the study: (i) the Demographic Information Form; (ii) authors’ developed NRS Audit Form; (iii) Patient Call Light Audit Form; (iv) Patient Fall Audit Record; (v) Hospital-Acquired Bed Sores Audit Form; and (vi) hospital developed Patient Satisfaction Records. The findings suggested that a significant reduction on the use of call bell (P < 0.001), a significant reduction of fall incidence (P < 0.01) while pressure ulcer reduced by 50% before and after the implementation of NRS. In addition, the implementation of NRS increased patient satisfaction by 7/5 (P < 0.05).

Keywords: call light, patient-care management, patient safety, patient satisfaction, rounds

Procedia PDF Downloads 374
4829 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: debonding, dynamic response, finite element modelling, novel FRP beams

Procedia PDF Downloads 117
4828 Economic Analysis of Policy Instruments for Energy Efficiency

Authors: Etidel Labidi

Abstract:

Energy efficiency improvement is one of the means to reduce energy consumption and carbon emissions. Recently, some developed countries have implemented the tradable white certificate scheme (TWC) as a new policy instrument based on market approach to support energy efficiency improvements. The major focus of this paper is to compare the White Certificates (TWC) scheme as an innovative policy instrument for energy efficiency improvement to other policy instruments: energy taxes and regulations setting a minimum level of energy efficiency. On the basis of our theoretical discussion and numerical simulation, we show that the white certificates system is the most interesting policy instrument for saving energy because it generates the most important level of energy savings and the least increase in energy service price.

Keywords: energy savings, energy efficiency, energy policy, white certificates

Procedia PDF Downloads 335
4827 Membranes for Direct Lithium Extraction (DLE)

Authors: Amir Razmjou, Elika Karbassi Yazdi

Abstract:

Several direct lithium extraction (DLE) technologies have been developed for Li extraction from different brines. Although laboratory studies showed that they can technically recover Li to 90%, challenges still remain in developing a sustainable process that can serve as a foundation for the lithium dependent low-carbon economy. There is a continuing quest for DLE technologies that do not need extensive pre-treatments, fewer materials, and have simplified extraction processes with high Li selectivity. Here, an overview of DLE technologies will be provided with an emphasis on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li ion selectivity. We have used a variety of building blocks such as nano-clay, organic frameworks, Graphene/oxide, MXene, etc., to fabricate the membranes. Molecular dynamic simulation (MD) and density functional theory (DFT) were used to reveal new mechanisms by which high Li selectivity was obtained.

Keywords: lithium recovery, membrane, lithium selectivity, decarbonization

Procedia PDF Downloads 112
4826 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance

Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier

Abstract:

Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.

Keywords: durability, PEMFC, recovery procedure, reversible degradation

Procedia PDF Downloads 134
4825 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems

Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan

Abstract:

Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.

Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling

Procedia PDF Downloads 84
4824 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage

Procedia PDF Downloads 393
4823 Temperature Dependent Tribological Properties of Graphite

Authors: Pankaj Kumar Das, Niranjan Kumar, Prasun Chakraborti

Abstract:

Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear.

Keywords: high temperature tribology, oxidation, turbostratic graphite, wear

Procedia PDF Downloads 514
4822 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study

Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist

Abstract:

A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.

Keywords: energy system, cooperation, simulation method, excess heat, district heating

Procedia PDF Downloads 226
4821 Coffee Consumption and Glucose Metabolism: a Systematic Review of Clinical Trials

Authors: Caio E. G. Reis, Jose G. Dórea, Teresa H. M. da Costa

Abstract:

Objective: Epidemiological data shows an inverse association of coffee consumption with risk of type 2 diabetes mellitus. However, the clinical effects of coffee consumption on the glucose metabolism biomarkers remain controversial. Thus, this paper reviews clinical trials that evaluated the effects of coffee consumption on glucose metabolism. Research Design and Methods: We identified studies published until December 2014 by searching electronic databases and reference lists. We included randomized clinical trials which the intervention group received caffeinated and/or decaffeinated coffee and the control group received water or placebo treatments and measured biomarkers of glucose metabolism. The Jadad Score was applied to evaluate the quality of the studies whereas studies that scored ≥ 3 points were considered for the analyses. Results: Seven clinical trials (total of 237 subjects) were analyzed involving adult healthy, overweight and diabetic subjects. The studies were divided in short-term (1 to 3h) and long-term (2 to 16 weeks) duration. The results for short-term studies showed that caffeinated coffee consumption may increase the area under the curve for glucose response, while for long-term studies caffeinated coffee may improve the glycemic metabolism by reducing the glucose curve and increasing insulin response. These results seem to show that the benefits of coffee consumption occur in the long-term as has been shown in the reduction of type 2 diabetes mellitus risk in epidemiological studies. Nevertheless, until the relationship between long-term coffee consumption and type 2 diabetes mellitus is better understood and any mechanism involved identified, it is premature to make claims about coffee preventing type 2 diabetes mellitus. Conclusion: The findings suggest that caffeinated coffee may impairs glucose metabolism in short-term but in the long-term the studies indicate reduction of type 2 diabetes mellitus risk. More clinical trials with comparable methodology are needed to unravel this paradox.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 466
4820 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1

Authors: Mohamed Mehdi Kadri

Abstract:

The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.

Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin

Procedia PDF Downloads 99
4819 A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation

Authors: Marko Spasojevic, Ying Hei Chui, Yuxiang Chen

Abstract:

Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities.

Keywords: hygrothermal analysis, insulated sheathing, moisture performance, nail joints, wood shear wall

Procedia PDF Downloads 128
4818 The Functional Roles of Right Dorsolateral Prefrontal Cortex and Ventromedial Prefrontal Cortex in Risk-Taking Behavior

Authors: Aline M. Dantas, Alexander T. Sack, Elisabeth Bruggen, Peiran Jiao, Teresa Schuhmann

Abstract:

Risk-taking behavior has been associated with the activity of specific prefrontal regions of the brain, namely the right dorsolateral prefrontal cortex (DLPFC) and the ventromedial prefrontal cortex (VMPFC). While the deactivation of the rDLPFC has been shown to lead to increased risk-taking behavior, the functional relationship between VMPFC activity and risk-taking behavior is yet to be clarified. Correlational evidence suggests that the VMPFC is involved in valuation processes that involve risky choices, but evidence on the functional relationship is lacking. Therefore, this study uses brain stimulation to investigate the role of the VMPFC during risk-taking behavior and replicate the current findings regarding the role of the rDLPFC in this same phenomenon. We used continuous theta-burst stimulation (cTBS) to inhibit either the VMPFC or DLPFC during the execution of the computerized Maastricht Gambling Task (MGT) in a within-subject design with 30 participants. We analyzed the effects of such stimulation on risk-taking behavior, participants’ choices of probabilities and average values, and response time. We hypothesized that, compared to sham stimulation, VMPFC inhibition leads to a reduction in risk-taking behavior by reducing the appeal to higher-value options and, consequently, the attractiveness of riskier options. Right DLPFC (rDLPFC) inhibition, on the other hand, should lead to an increase in risk-taking due to a reduction in cognitive control, confirming existent findings. Stimulation of both the rDLPFC and the VMPFC led to an increase in risk-taking behavior and an increase in the average value chosen after both rDLPFC and VMPFC stimulation compared to sham. No significant effect on chosen probabilities was found. A significant increase in response time was observed exclusively after rDLPFC stimulation. Our results indicate that inhibiting DLPFC and VMPFC separately leads to similar effects, increasing both risk-taking behavior and average value choices, which is likely due to the strong anatomical and functional interconnection of the VMPFC and rDLPFC.

Keywords: decision-making, risk-taking behavior, brain stimulation, TMS

Procedia PDF Downloads 106
4817 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications

Authors: Fawad Ali, Mohammad Albakri

Abstract:

The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.

Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization

Procedia PDF Downloads 18
4816 Simulation Approach for Analyzing Transportation Energy System in South Korea

Authors: Sungjun Hong, Youah Lee, Jongwook Kim

Abstract:

In the last COP21 held in Paris on 2015, Korean government announced that Intended Nationally Determined Contributions (INDC) was 37% based on BAU by 2030. The GHG reduction rate of the transportation sector is the strongest among all sectors by 2020. In order to cope with Korean INDC, Korean government established that 3rd eco-friendly car deployment national plans at the end of 2015. In this study, we make the energy system model for estimating GHG emissions using LEAP model.

Keywords: INDC, greenhouse gas, LEAP, transportation

Procedia PDF Downloads 205
4815 Well-Being of Elderly with Nanonutrients

Authors: Naqvi Shraddha Rathi

Abstract:

During the aging process, physical frailty may develop. A more sedentary lifestyle, a reduction in metabolic cell mass and, consequently, lower energy expenditure and dietary intake are important contributors to the progression of frailty. A decline in intake is in turn associated with the risk of developing a suboptimal nutritional state or multiple micro nutrient deficiencies.The tantalizing potential of nanotechnology is to fabricate and combine nano scale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm.

Keywords: aging, cells frailty, micronutrients, biochemical reactivity

Procedia PDF Downloads 399
4814 Respiratory Bioaerosol Dynamics: Impact of Salinity on Evaporation

Authors: Akhil Teja Kambhampati, Mark A. Hoffman

Abstract:

In the realm of infectious disease research, airborne viral transmission stands as a paramount concern due to its pivotal role in propagating pathogens within densely populated regions. However, amidst this landscape, the phenomenon of hygroscopic growth within respiratory bioaerosols remains relatively underexplored. Unlike pure water aerosols, the unique composition of respiratory bioaerosols leads to varied evaporation rates and hygroscopic growth patterns, influenced by factors such as ambient humidity, temperature, and airflow. This study addresses this gap by focusing on the behaviors of single respiratory bioaerosol utilizing salinity to induce saliva-like hygroscopic behavior. By employing mass, momentum, and energy equations, the study unveils the intricate interplay between evaporation and hygroscopic growth over time. The numerical model enables temporal analysis of bioaerosol characteristics, including size, temperature, and trajectory. The analysis reveals that due to evaporation, there is a reduction in initial size, which shortens the lifetime and distance traveled. However, when hygroscopic growth begins to influence the bioaerosol size, the rate of size reduction slows significantly. The interplay between evaporation and hygroscopic growth results in bioaerosol size within the inhalation range of humans and prolongs the traveling distance. Findings procured from the analysis are crucial for understanding the spread of infectious diseases, especially in high-risk environments such as healthcare facilities and public transportation systems. By elucidating the nuanced behaviors of respiratory bioaerosols, this study seeks to inform the development of more effective preventative strategies against pathogens propagation in the air, thereby contributing to public health efforts on a global scale.

Keywords: airborne viral transmission, high-risk environments, hygroscopic growth, evaporation, numerical modeling, pathogen propagation, preventative strategies, public health, respiratory bioaerosols

Procedia PDF Downloads 39
4813 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System

Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold

Abstract:

In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.

Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber

Procedia PDF Downloads 147
4812 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 153
4811 Policy Initiatives That Increase Mass-Market Participation of Fuel Cell Electric Vehicles

Authors: Usman Asif, Klaus Schmidt

Abstract:

In recent years, the development of alternate fuel vehicles has helped to reduce carbon emissions worldwide. As the number of vehicles will continue to increase in the future, the energy demand will also increase. Therefore, we must consider automotive technologies that are efficient and less harmful to the environment in the long run. Battery Electric Vehicles (BEVs) have gained popularity in recent years because of their lower maintenance, lower fuel costs, and lower carbon emissions. Nevertheless, BEVs show several disadvantages, such as slow charging times and lower range than traditional combustion-powered vehicles. These factors keep many people from switching to BEVs. The authors of this research believe that these limitations can be overcome by using fuel cell technology. Fuel cell technology converts chemical energy into electrical energy from hydrogen power and therefore serves as fuel to power the motor and thus replacing heavy lithium batteries that are expensive and hard to recycle. Also, in contrast to battery-powered electric vehicle technology, Fuel Cell Electric Vehicles (FCEVs) offer higher ranges and lower fuel-up times and therefore are more competitive with electric vehicles. However, FCEVs have not gained the same popularity as electric vehicles due to stringent legal frameworks, underdeveloped infrastructure, high fuel transport, and storage costs plus the expense of fuel cell technology itself. This research will focus on the legal frameworks for hydrogen-powered vehicles, and how a change in these policies may affect and improve hydrogen fueling infrastructure and lower hydrogen transport and storage costs. These policies may also facilitate reductions in fuel cell technology costs. In order to attain a better framework, a number of countries have developed conceptual roadmaps. These roadmaps have set out a series of objectives to increase the access of FCEVs to their respective markets. This research will specifically focus on policies in Japan, Europe, and the USA in their attempt to shape the automotive industry of the future. The researchers also suggest additional policies that may help to accelerate the advancement of FCEVs to mass-markets. The approach was to provide a solid literature review using resources from around the globe. After a subsequent analysis and synthesis of this review, the authors concluded that in spite of existing legal challenges that have hindered the advancement of fuel-cell technology in the automobile industry in the past, new initiatives that enhance and advance the very same technology in the future are underway.

Keywords: fuel cell electric vehicles, fuel cell technology, legal frameworks, policies and regulations

Procedia PDF Downloads 117