Search results for: carbon content and stock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9434

Search results for: carbon content and stock

6764 Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture

Authors: Kiza Rusati Pacifique, Ki-il Song

Abstract:

The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field.

Keywords: damping ratio, electrical resistivity, ground improvement, inorganic binder, longitudinal wave velocity, unconfined compression strength

Procedia PDF Downloads 338
6763 Determination of Vitamin C Red Guava (Psidium guajava Linn) Fruit Juice, with Variation of Beverage Packaging by Titrimetic Method Using 2,6- Dichlorophenol Indophenol

Authors: Novriyanti Lubis, Riska Prasetiawati, Wulan Septiani

Abstract:

The quantitative analysis of vitamin C content from variations beverage packaging containing red guava (Psidium Guajava Linn) fruit juice had been done. In this study, four samples were obtained from the shopping center in Garut and Bandung City. Samples were tested quantitatively by 2,6-dichlorophenol indophenol titration method. The results showed different concentration of 4 samples consist of tetra pack packaging, tin, glass, and plastic bottles, such as; 17.99 mg/100 gr, 31.46 mg/100 gr, 13.00 mg/100 gr, and 12.01 mg/100 gr, respectively. These results indicated that the packaging variations affected the level of vitamin C content which was characterized by decreased levels of vitamin C. It means the levels of vitamin C from this research were not in accordance with nutritional value information on the packaging. Tetra pack packaging was the most stable compared to other packaging even though it had a shorter expired date than with other.

Keywords: vitamin C, variations beverage packaging, red guava, titration 2, 6- dichlorophenol indophenol

Procedia PDF Downloads 231
6762 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 192
6761 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance

Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar

Abstract:

The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.

Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth

Procedia PDF Downloads 325
6760 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo

Abstract:

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst

Procedia PDF Downloads 372
6759 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 230
6758 The Rebound Effect of Energy Efficiency in Residential Energy Demand: Case of Saudi Arabia

Authors: Mohammad Aldubyan, Fateh Belaid, Anwar Gasim

Abstract:

This paper aims at linking to link residential energy efficiency to the rebound effect concept, a well-known behavioral phenomenon in which service consumption increases when consumers notice a reduction in monetary spending on energy due to improvements in energy efficiency. It provides insights on into how and why the rebound effect happens when energy efficiency improves and whether this phenomenon is positive or negative. It also shows one technique to estimate the rebound effect on the national residential level. The paper starts with a bird’s eye view of the rebound effect and then dives in in-depth into measuring the rebound effect and evaluating its impact. Finally, the paper estimates the rebound effect in the Saudi residential sector through by linking pre-estimated price elasticities of demand to the Saudi residential building stock.

Keywords: energy efficiency, rebound effect, energy consumption, residential electricity demand

Procedia PDF Downloads 103
6757 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore

Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan

Abstract:

The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.

Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore

Procedia PDF Downloads 285
6756 Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice

Authors: Zhenxiang Zhou

Abstract:

The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations.

Keywords: triose phosphate utilization, sink limitation, panicle pruning, oryza sativa

Procedia PDF Downloads 86
6755 Finite Element Molecular Modeling: A Structural Method for Large Deformations

Authors: A. Rezaei, M. Huisman, W. Van Paepegem

Abstract:

Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.

Keywords: finite element, large deformation, molecular mechanics, structural method

Procedia PDF Downloads 145
6754 Polyhydroxybutyrate Production in Bacteria Isolated from Estuaries along the Eastern Coast of India

Authors: Shubhashree Mahalik, Dhanesh Kumar, Jatin Kumar Pradhan

Abstract:

Odisha is one of the coastal states situated on the eastern part of India with 480 km long coastline. The coastal Odisha is referred to as "Gift of Six Rivers". Balasore, a major coastal district of Odisha is bounded by Bay of Bengal in the East having 26 km long seashore. It is lined with several estuaries rich in biodiversity.Several studies have been carried out on the macro flora and fauna of this area but very few documented information are available regarding microbial biodiversity. In the present study, an attempt has been made to isolate and identify bacteria found along the estuaries of Balasore.Many marine microorganisms are sources of natural products which makes them potential industrial organisms. So the ability of the isolated bacteria to secrete one such industrially significant product, PHB (Polyhydroxybutyrate) has been elucidated. Several rounds of sampling, pure culture, morphological, biochemical and phylogenetic screening led to the identification of two PHB producing strains. Isolate 5 was identified to be Brevibacillus sp. and has maximum similarity to Brevibacillus parabrevis (KX83268). The isolate was named as Brevibacillus sp.KEI-5. Isolate 8 was identified asLysinibacillus sp. having closest similarity withLysinibacillus boroni-tolerance (KP314269) and named as Lysinibacillus sp. KEI-8.Media, temperature, carbon, nitrogen and salinity requirement were optimized for both isolates. Submerged fermentation of both isolates in Terrific Broth media supplemented with optimized carbon and nitrogen source at 37°C led to significant accumulation of PHB as detected by colorimetric method.

Keywords: Bacillus, estuary, marine, Odisha, polyhydroxy butyrate

Procedia PDF Downloads 346
6753 Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source

Authors: Priya Tomar, Pallavi Mittal

Abstract:

Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose.

Keywords: bioremediation, decolourization, black liquor, mycoremediation

Procedia PDF Downloads 406
6752 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 159
6751 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 230
6750 Facilitating Conditions Mediating SME’s Intention to Use Social Media for Knowledge Sharing

Authors: Stevens Phaphadi Mamorobela

Abstract:

The Covid-19 pandemic has accelerated the use of social media in SMEs to stay abreast with information about the latest news and developments and to predict the future world of business. The national shutdown regulations for curbing the spread of the Covid-19 virus resulted in SMEs having to distribute large volumes of information through social media platforms to collaborate and conduct business remotely. How much of the information shared on social media is used by SMEs as significant knowledge for economic rent is yet to be known. This study aims to investigate the facilitating conditions that enable SMEs’ intention to use social media as a knowledge-sharing platform to create economic rent and to cope with the Covid-19 challenges. A qualitative research approach was applied where semi-structured interviews were conducted with 13 SME owners located in the Gauteng province in South Africa to identify and explain the facilitating conditions of SMEs towards their intention to use social media as a knowledge-sharing tool in the Covid-19 era. The study discovered that the national lockdown regulations towards curbing the spread of the Covid-19 pandemic had compelled SMEs to adopt digital technologies that enabled them to quickly transform their business processes to cope with the challenges of the pandemic. The facilitating conditions, like access to high bandwidth internet coverage in the Gauteng region, enable SMEs to have strong intentions to use social media to distribute content and to reach out to their target market. However, the content is shared informally using diverse social media platforms without any guidelines for transforming content into rent-yielding knowledge.

Keywords: facilitating conditions, knowledge sharing, social media, intention to use, SME

Procedia PDF Downloads 101
6749 Making Use of Content and Language Integrated Learning for Teaching Entrepreneurship and Neuromarketing to Master Students: Case Study

Authors: Svetlana Polskaya

Abstract:

The study deals with the issue of using the Content and Language Integrated Learning (CLIL) concept when teaching Master Program students majoring in neuromarketing and entrepreneurship. Present-day employers expect young graduates to conduct professional communication with their English-speaking peers and demonstrate proper knowledge of the industry’s terminology and jargon. The idea of applying CLIL was the result of the above-mentioned students possessing high proficiency in English, thus, not requiring any further knowledge of the English language in terms of traditional grammar or lexis. Due to this situation, a CLIL-type program was devised, allowing learners to acquire new knowledge of entrepreneurship and neuromarketing spheres combined with simultaneous honing their English language practical usage. The case study analyzes CLIL application within this particular program as well as the experience accumulated in the process.

Keywords: CLIL, entrepreneurship, neuromarketing, foreign language acquisition, proficiency level

Procedia PDF Downloads 82
6748 Investigation of TEC Using YOUTHSAT RaBIT Payload Data for Low Latitude Regions

Authors: Perumalla Naveen Kumar

Abstract:

Global Positioning System (GPS) is used for civilian and military user positioning applications. The accuracy of GPS is degrading mainly because of ionospheric error. It is very important to analyze the effects of ionosphere on the performance of satellite systems especially in the low latitude regions. These variations depend on the Total Electron Content (TEC) in the ionosphere. To investigate the variations in the atmosphere, a mini satellite known as YOUTHSAT is launched by India. This is the outcome of the collaboration between India and USSR. One of the YOUTHSAT Indian payload is RaBIT (Radio Beacon for Ionospheric Tomography). In this paper, YOUTHSAT RaBIT payload data for the three typical days of 2011 are considered. The analysis is carried out for four Indian stations. The variations of Slant TEC, elevation angle and azimuth angles are analyzed with respect to local time. The obtained results are encouraging.

Keywords: Global Positioning System (GPS), Total Electron Content (TEC), YOUTHSAT, Radio Beacon for Ionospheric Tomography (RaBIT)

Procedia PDF Downloads 379
6747 Remote Sensing Study of Wind Energy Potential in Agsu District

Authors: U. F. Mammadova

Abstract:

Natural resources is the main self-supplying way which is being studied in the paper. Ecologically clean and independent clean energy stock is wind one. This potential is first studied by applying remote sensing way. In any coordinate of the district, wind energy potential has been determined by measuring the potential by applying radar technique which gives a possibility to reveal 2 D view. At several heights, including 10,50,100,150,200 ms, the measurements have been realized. The achievable power generation for m2 in the district was calculated. Daily, hourly, and monthly wind energy potential data were graphed and schemed in the paper. The energy, environmental, and economic advantages of wind energy for the Agsu district were investigated by analyzing radar spectral measurements after the remote sensing process.

Keywords: wind potential, spectral radar analysis, ecological clean energy, ecological safety

Procedia PDF Downloads 79
6746 Evaluation of Developmental Toxicity and Teratogenicity of Perfluoroalkyl Compounds Using FETAX

Authors: Hyun-Kyung Lee, Jehyung Oh, Young Eun Jeong, Hyun-Shik Lee

Abstract:

Perfluoroalkyl compounds (PFCs) are environmental toxicants that persistently accumulate in the human blood. Their widespread detection and accumulation in the environment raise concerns about whether these chemicals might be developmental toxicants and teratogens in the ecosystem. We evaluated and compared the toxicity of PFCs of containing various numbers of carbon atoms (C8-11 carbons) on vertebrate embryogenesis. We assessed the developmental toxicity and teratogenicity of various PFCs. The toxic effects on Xenopus embryos were evaluated using different methods. We measured teratogenic indices (TIs) and investigated the mechanisms underlying developmental toxicity and teratogenicity by measuring the expression of organ-specific biomarkers such as xPTB (liver), Nkx2.5 (heart), and Cyl18 (intestine). All PFCs that we tested were found to be developmental toxicants and teratogens. Their toxic effects were strengthened with increasing length of the fluorinated carbon chain. Furthermore, we produced evidence showing that perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFuDA) are more potent developmental toxicants and teratogens in an animal model compared to the other PFCs we evaluated [perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA)]. In particular, severe defects resulting from PFDA and PFuDA exposure were observed in the liver and heart, respectively, using the whole mount in situ hybridization, real-time PCR, pathologic analysis of the heart, and dissection of the liver. Our studies suggest that most PFCs are developmental toxicants and teratogens, however, compounds that have higher numbers of carbons (i.e., PFDA and PFuDA) exert more potent effects.

Keywords: PFC, xenopus, fetax, development

Procedia PDF Downloads 348
6745 Determination of Phytostearol in Serial Grains

Authors: Sumonthip Kongtun Janphuk

Abstract:

Ten cereal grains that usually used as ingredients in healthy products were studied for phytosteryl glucoside contents. β-sitosteryl glucoside in 10 cereal grains, including Phasecolus vulgaris L. (kidney bean), Sorghum bicolor (sorghum), Moringa oleifera Lam. (drumstick), Nelumbo nucifera (lotus), Vigna radiate L. (mung bean), Coix lacrymajobi (job’tears), Oryza sativa. (red rice), Glycine max L. Merrill. (soybean),Cucurbita maschata Decne (pumpkin) and Helianthas annuus (sunflower seeds), were analyzed using Thin-layer chromatography (TLC) and High-Performance liquid chromatography (HPLC). All grains were extracted with methanol before analysis. Red bean showed the maximum phytosteryl glucoside content of 0.42% w/w. The content of others were as follows: pumpkin seed 0.173%, mung bean 0.099 %, soybean 0.07%, dried moringa seed 0.067%, lotus seed 0.044%, sorghum 0.032%, sunflower seed 0.016%, Job's tears 0.012%, and brown rice 0.006%.

Keywords: cereal grains, phytosterol, β-sitosteryl glucoside, food analysis.

Procedia PDF Downloads 385
6744 Learning about the Strengths and Weaknesses of Urban Climate Action Plans

Authors: Prince Dacosta Aboagye, Ayyoob Sharifi

Abstract:

Cities respond to climate concerns mainly through their climate action plans (CAPs). A comprehensive content analysis of the dynamics in existing urban CAPs is not well represented in the literature. This literature void presents a difficulty in appreciating the strengths and weaknesses of urban CAPs. Here, we perform a qualitative content analysis (QCA) on CAPs from 278 cities worldwide and use text-mining tools to map and visualize the relevant data. Our analysis showed a decline in the number of CAPs developed and published following the global COVID-19 lockdown period. Evidently, megacities are leading the deep decarbonisation agenda. We also observed a transition from developing mainly mitigation-focused CAPs pre-COP21 to both mitigation and adaptation CAPs. A lack of inclusiveness in local climate planning was common among European and North American cities. The evidence is a catalyst for understanding the trends in existing urban CAPs to shape future urban climate planning.

Keywords: urban, climate action plans, strengths, weaknesses

Procedia PDF Downloads 90
6743 Tensile and Flexural Behavior of Particulate Filled/Polymer Matrix Composites

Authors: M. Alsaadi, A. Erkliğ, M. Bulut

Abstract:

This paper experimentally investigates the flexural and tensile properties of the industrial wastes sewage sludge ash (SSA) and fly ash (FA), and conventional ceramic powder silicon carbide (SiC) filled polyester composites. Four weight fractions (5, 10, 15 and 20 wt%) for each micro filler were used for production of composites. Then, test samples were produced according to ASTM. The resulting degree of particle dispersion in the polymer matrix was visualized by using scanning electron microscope (SEM). Results from this study showed that the tensile strength increased up to its maximum value at filler content 5 wt% of SSA, FA and SiC. Flexural strength increased with addition of particulate filler up to its maximum value at filler content 5 wt% of SSA and FA while for SiC decreased for all weight fractions gradually. The addition of SSA, FA and SiC fillers resulted in increase of tensile and flexural modulus for all the particulate composites. Industrial waste SSA can be used as an additive with polymer to produce composite materials.

Keywords: particle-reinforcement, sewage sludge ash, polymer matrix composites, mechanical properties

Procedia PDF Downloads 368
6742 The Meaning in Life and the Content of Mental Images of Temporal Mental Simulations in Poles and Americans

Authors: Katarzyna Pasternak

Abstract:

Experiencing the meaning of life is widely recognised as a vital element of well-being and central human motivation. Studies have shown that a higher meaning of life is associated, among other things, with a higher quality of life, higher levels of happiness and better declared health. The subject of the study is the meaning in life measured with The Meaning in Life Questionnaire and the presence of such emotions as nostalgia, awe and hope, and the content of imaginations measured after temporal mental simulations in Americans and Poles. The respondents had to imagine themselves in future, in 40 years and describe two events that would take place at that time. Next, participants assessed the importance of the events described by them, recognised whether during their journey through time they felt awe, hope and nostalgia, and answered the questionnaire examining the meaning in life. 204 (102 from Poland 102 from the USA ) people aged 21 to 60 participated in the study. The study checked whether there were differences in the content of the imaginations of the respondents from Poland and USA, and whether there were statistically significant difference between the declared sense of meaning in life among participants from both countries. The result of the study hane shown that there were no differences in the overall result obtained by the participants in The Meaning in Life Questionnaire , while there were statistically significant differences among the subscales of the questionnaire. It turned out that Americans have a higher presence of meaning in life than Poles, but they obtained lower results in searching of meaning in life. Studies have also shown that there was a statistically significant difference between Poles and Americans in feeling awe after a mental simulation. Poles felt higher level of awe. Images about the future differed between Poles and Americans. Poles judged that the events they described were very important to them. Interestingly, the content of American participants’ imaginations was dominated by topics related to the future of the world, ecology and world peace. There were also ideas about nice moments spent with friends and family. Among Poles, ideas related to professional career and development as well as family events dominated. Research shows that despite the lack of differences in the general meaning in life, Poles are more focused on searching for meaning in life than Americans. The study shows interesting differences between the two cultures.

Keywords: meaning in life, mental simulations, imaginations, temporal mental simulations, future, cultural differences

Procedia PDF Downloads 100
6741 Preservation of Phenytoin and Sodium Valproate Induced Bone Loss by Raloxifene through Modulating Serum Estradiol and TGF-β3 Content in Bone of Female Mice

Authors: Divya Vohora, Md. Jamir Anwar

Abstract:

Antiepileptic drugs (AEDs)-induced adverse consequences on bone are now well recognized. Despite this, there is limited data on the effect of anti-osteoporotic therapies on AEDs-induced bone loss. Both phenytoin (PHT) and sodium valproate (SVP) inhibit human aromatase enzyme and stimulate microsomal catabolism of oestrogens. Estrogen deficiency states are known to reduce the deposition of transforming growth factor-β (TGF-β3), a bone matrix protein, having anti-osteoclastic property. Thus, an attempt was made to investigate the effect of raloxifene, a selective oestrogen receptor modulator, in comparison with CVD supplementation, on PHT and SVP-induced alterations in bone in mice. Further, the effect of raloxifene on seizures and on the antiepileptic efficacy of AEDs was also investigated. Swiss strains of female mice were treated with PHT (35 mg/kg, p.o.) and SVP (300 mg/kg, p.o.) for 120 days to induce bone loss as evidenced by reduced bone mineral density (BMD) and altered bone turnover markers in lumbar bones (alkaline phosphatase, tartarate resistant acid phosphatase, hydroxyproline) and urine (calcium). The bone loss was accompanied by reduced serum estradiol levels and bone TGF-β3 content. Preventive and curative treatment with raloxifene ameliorated bony alterations and was more effective than CVD. Deprived estrogen levels (that in turn reduced lumbar TGF-β3 content) following PHT and SVP, thus, might represent one of the various mechanisms of AEDs-induced bone loss. Raloxifene preserved the bony changes without interfering with their antiepileptic efficacy, and hence raloxifene could be a potential therapeutic option in the management of PHT and SVP-induced bone disease if clinically approved.

Keywords: antiepileptic drugs, osteoporosis, raloxifene, TGF-β3

Procedia PDF Downloads 336
6740 An Initiative for Improving Pre-Service Teachers’ Pedagogical Content Knowledge in Mathematics

Authors: Taik Kim

Abstract:

Mathematics anxiety has an important consequence for teacher practices that influence students’ attitudes and achievement. Elementary prospective teachers have the highest levels of mathematics anxiety in comparison with other college majors. In his teaching practice, the researcher developed a highly successful teaching model to reduce pre-service teachers’ higher math anxiety and simultaneously to improve their pedagogical math content knowledge. There were eighty one participants from 2015 to 2018 who took the Mathematics for Elementary Teachers I and II. As the analysis data indicated, elementary prospective teachers’ math anxiety was greatly reduced with improving their math pedagogical knowledge. U.S encounters a critical shortage of well qualified educators. To solve the issue, it is essential to engage students in a long-term commitmentto shape better teachers, who will, in turn, produce k-12 school students that are better-prepared for college students. It is imperative that new instructional strategies are implemented to improve student learning and address declining interest, poor preparedness, a lack of diverse representation, and low persistence of students in mathematics. Many four year college students take math courses from the math department in the College of Arts& Science and then take methodology courses from the College of Education. Before taking pedagogy, many students struggle in learning mathematics and lose their confidence. Since the content course focus on college level math, instead of pre service teachers’ teaching area, per se elementary math, they do not have a chance to improve their teaching skills on topics which eventually they teach. The research, a joint appointment of math and math education, has been involved in teaching content and pedagogy. As the result indicated, participants were able to math content at the same time how to teach. In conclusion, the new initiative to use several teaching strategies was able not only to increase elementary prospective teachers’ mathematical skills and knowledge but also to improve their attitude toward mathematics. We need an innovative teaching strategy which implements evidence-based tactics in redesigning a education and math to improve pre service teachers’math skills and which can improve students’ attitude toward math and students’ logical and reasoning skills. Implementation of these best practices in the local school district is particularly important because K-8 teachers are not generally familiar with lab-based instruction. At the same time, local school teachers will learn a new way how to teach math. This study can be a vital teacher education model expanding throughout the State and nationwide. In summary, this study yields invaluable information how to improve teacher education in the elementary level and, eventually, how to enhance K-8 students’ math achievement.

Keywords: quality of education and improvement method, teacher education, innovative teaching and learning methodologies, math education

Procedia PDF Downloads 100
6739 Compare Hot Forming and Cold Forming in Rolling Process

Authors: Ali Moarrefzadeh

Abstract:

In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current.

Keywords: hot forming, cold forming, metal, rolling, simulation

Procedia PDF Downloads 524
6738 Development of Biodegradable Wound Healing Patch of Curcumin

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.

Keywords: wound healing, biodegradable, polymers, patch

Procedia PDF Downloads 473
6737 Structural Insulated Panels

Authors: R. Padmini, G. V. Manoj Kumar

Abstract:

Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.

Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources

Procedia PDF Downloads 432
6736 Effects of Temperature and Enzyme Concentration on Quality of Pineapple and Pawpaw Blended Juice

Authors: Ndidi F. Amulu, Calistus N. Ude, Patrick E. Amulu, Nneka N. Uchegbu

Abstract:

The effects of temperature and enzyme concentration on the quality of mixed pineapple and pawpaw blended fruits juice were studied. Extracts of the two fruit juices were separately treated at 70  for 15 min each so as to inactivate micro-organisms. They were analyzed and blended in different proportions of 70% pawpaw and 30% pineapple, 60% pawpaw and 40% pineapple, 50% pineapple and 50% pawpaw, 40% pawpaw and 60% pineapple. The characterization of the fresh pawpaw and pineapple juice before blending showed that the juices have good quality. The high water content of the product may have affected the viscosity, vitamin C content and total soluble solid of the blended juice to be low. The effects of the process parameters on the quality showed that better quality of the blended juice can be obtained within the optimum temperature range of (50-70 °C) and enzyme concentration range (0.12-0.18 w/v). The ratio of mix 60% pineapple juice: 40% pawpaw juice has better quality. This showed that pawpaw and pineapple juices can blend effectively to produce a quality juice.

Keywords: clarification, pawpaw, pineapple, viscosity, vitamin C

Procedia PDF Downloads 301
6735 Growing Vetiver (Chrysopogon zizanioides L.) on Contaminated Soils with Heavy Metals in Bulgaria

Authors: Violina Angelova, Huu Q. Lee

Abstract:

A field study was conducted to evaluate the efficacy of Vetiver (Chrysopogon zizanioides L.) for phytoremediation of contaminated soils. The experiment was performed on agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.5, 3.5, and 15 km) from the source of pollution. The concentrations of Pb, Zn, and Cd in vetiver (roots and leaves) were determined. Correlations between the content of the heavy metal mobile forms extracted with DTPA and their content in the roots and leaves of the Vetiver have been established. The Vetiver is tolerant to heavy metals and can be grown on soils contaminated with heavy metals. Plants are characterized by low ability to absorb and accumulate Pb, Cd, and Zn and have no signs of toxicity (chlorosis and necrosis) at 36.8 mg/kg Cd, 1158.8 mg/kg Pb and 1526.2 mg/kg Zn in the soil. Vetiver plants can be classified as Pb, Cd and Zn excluder, therefore, this plant has the suitable potential for the phytostabilization of heavy metal contaminated soils. Acknowledgements: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI 04/9).

Keywords: contaminated soils, heavy metals, phytoremediation, vetiver

Procedia PDF Downloads 220