Search results for: bird song processing
1539 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation
Authors: Ayan Chakraborty, BV. Rathish Kumar
Abstract:
Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional
Procedia PDF Downloads 1941538 The Evolution of Amazon Alexa: From Voice Assistant to Smart Home Hub
Authors: Abrar Abuzaid, Maha Alaaeddine, Haya Alesayi
Abstract:
This project is centered around understanding the usage and impact of Alexa, Amazon's popular virtual assistant, in everyday life. Alexa, known for its integration into devices like Amazon Echo, offers functionalities such as voice interaction, media control, providing real-time information, and managing smart home devices. Our primary focus is to conduct a straightforward survey aimed at uncovering how people use Alexa in their daily routines. We plan to reach out to a wide range of individuals to get a diverse perspective on how Alexa is being utilized for various tasks, the frequency and context of its use, and the overall user experience. The survey will explore the most common uses of Alexa, its impact on daily life, features that users find most beneficial, and improvements they are looking for. This project is not just about collecting data but also about understanding the real-world applications of a technology like Alexa and how it fits into different lifestyles. By examining the responses, we aim to gain a practical understanding of Alexa's role in homes and possibly in workplaces. This project will provide insights into user satisfaction and areas where Alexa could be enhanced to meet the evolving needs of its users. It’s a step towards connecting technology with everyday life, making it more accessible and user-friendlyKeywords: Amazon Alexa, artificial intelligence, smart speaker, natural language processing
Procedia PDF Downloads 661537 Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge
Authors: N. Moradi, C. M. Lopez-Vazquez, H. Garcia Hernandez, F. Rubio Rincon, D. Brdanovic, Mark van Loosdrecht
Abstract:
Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant.Keywords: digestate sludge, emerging contaminants, ozone, UV-AOP
Procedia PDF Downloads 1061536 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus
Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti
Abstract:
Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel
Procedia PDF Downloads 1981535 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces
Procedia PDF Downloads 3891534 Effect of Thermal Pretreatment on Functional Properties of Chicken Protein Hydrolysate
Authors: Nutnicha Wongpadungkiat, Suwit Siriwatanayotin, Aluck Thipayarat, Punchira Vongsawasdi, Chotika Viriyarattanasak
Abstract:
Chicken products are major export product of Thailand. With a dramatically increasing consumption of chicken product in the world, there are abundant wastes from chicken meat processing industry. Recently, much research in the development of value-added products from chicken meat industry has focused on the production of protein hydrolysate, utilized as food ingredients for human diet and animal feed. The present study aimed to determine the effect of thermal pre-treatment on functional properties of chicken protein hydrolysate. Chicken breasts were heated at 40, 60, 80 and 100ºC prior to hydrolysis by Alcalase at 60ºC, pH 8 for 4 hr. The hydrolysate was freeze-dried, and subsequently used for assessment of its functional properties molecular weight by gel electrophoresis (SDS-PAGE). The obtained results show that increasing the pre-treatment temperature increased oil holding capacity and emulsion stability while decreasing antioxidant activity and water holding capacity. The SDS-PAGE analysis showed the evidence of protein aggregation in the hydrolysate treated at the higher pre-treatment temperature. These results suggest the connection between molecular weight of the hydrolysate and its functional properties.Keywords: chicken protein hydrolysate, enzymatic hydrolysis, thermal pretreatment, functional properties
Procedia PDF Downloads 2731533 General Time-Dependent Sequenced Route Queries in Road Networks
Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost
Abstract:
Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.Keywords: trip planning, time dependent, sequenced route query, road networks
Procedia PDF Downloads 3261532 Biotech Processes to Recover Valuable Fraction from Buffalo Whey Usable in Probiotic Growth, Cosmeceutical, Nutraceutical and Food Industries
Authors: Alberto Alfano, Sergio D’ambrosio, Darshankumar Parecha, Donatella Cimini, Chiara Schiraldi.
Abstract:
The main objective of this study regards the setup of an efficient small-scale platform for the conversion of local renewable waste materials, such as whey, into added-value products, thereby reducing environmental impact and costs deriving from the disposal of processing waste products. The buffalo milk whey derived from the cheese-making process, called second cheese whey, is the main by-product of the dairy industry. Whey is the main and most polluting by-product obtained from cheese manufacturing consisting of lactose, lactic acid, proteins, and salts, making whey an added-value product. In Italy, and in particular, in the Campania region, soft cheese production needs a large volume of liquid waste, especially during late spring and summer. This project is part of a circular economy perspective focused on the conversion of potentially polluting and difficult to purify waste into a resource to be exploited, and it embodies the concept of the three “R”: reduce, recycle, and reuse. Special focus was paid to the production of health-promoting biomolecules and biopolymers, which may be exploited in different segments of the food and pharmaceutical industries. These biomolecules may be recovered through appropriate processes and reused in an attempt to obtain added value products. So, ultrafiltration and nanofiltration processes were performed to fractionate bioactive components starting from buffalo milk whey. In this direction, the present study focused on the implementation of a downstream process that converts waste generated from food and food processing industries into added value products with potential applications. Owing to innovative downstream and biotechnological processes, rather than a waste product may be considered a resource to obtain high added value products, such as food supplements (probiotics), cosmeceuticals, biopolymers, and recyclable purified water. Besides targeting gastrointestinal disorders, probiotics such as Lactobacilli have been reported to improve immunomodulation and protection of the host against infections caused by viral and bacterial pathogens. Interestingly, also inactivated microbial (probiotic) cells and their metabolic products, indicated as parabiotic and postbiotics, respectively, have a crucial role and act as mediators in the modulation of the host’s immune function. To boost the production of biomass (both viable and/or heat inactivated cells) and/or the synthesis of growth-related postbiotics, such as EPS, efficient and sustainable fermentation processes are necessary. Based on a “zero-waste” approach, wastes generated from local industries can be recovered and recycled to develop sustainable biotechnological processes to obtain probiotics as well as post and parabiotic, to be tested as bioactive compounds against gastrointestinal disorders. The results have shown it was possible to recover an ultrafiltration retentate with suitable characteristics to be used in skin dehydration, to perform films (i.e., packaging for food industries), or as a wound repair agent and a nanofiltration retentate to recover lactic acid and carbon sources (e.g., lactose, glucose..) used for microbial cultivation. On the side, the last goal is to obtain purified water that can be reused throughout the process. In fact, water reclamation and reuse provide a unique and viable opportunity to augment traditional water supplies, a key issue nowadays.Keywords: biotech process, downstream process, probiotic growth, from waste to product, buffalo whey
Procedia PDF Downloads 731531 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach
Authors: Alev Atak
Abstract:
In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.Keywords: financial sentiment, machine learning, information disclosure, risk
Procedia PDF Downloads 961530 Role of Speech Language Pathologists in Vocational Rehabilitation
Authors: Marlyn Mathew
Abstract:
Communication is the key factor in any vocational /job set-up. However many persons with disabilities suffer a deficit in this very area in terms of comprehension, expression and cognitive skills making it difficult for them to get employed appropriately or stay employed. Vocational Rehabilitation is a continuous and coordinated process which involves the provision of vocational related services designed to enable a person with disability to obtain and maintain employment. Therefore the role of the speech language pathologist is crucial in assessing the communication deficits and needs of the individual at the various phases of employment- right from the time of seeking a job and attending interview with suitable employers and also at regular intervals of the employment. This article discusses the various communication deficits and the obstacles faced by individuals with special needs including but not limited to cognitive- linguistic deficits, execution function deficits, speech and language processing difficulties and strategies that can be introduced in the workplace to overcome these obstacles including use of visual cues, checklists, flow charts. The paper also throws light on the importance of educating colleagues and work partners about the communication difficulties faced by the individual. This would help to reduce the communication barriers in the workplace, help colleagues develop an empathetic approach and also reduce misunderstandings that can arise as a result of the communication impairment.Keywords: vocational rehabilitation, disability, speech language pathologist, cognitive, linguistics
Procedia PDF Downloads 1391529 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: driver support systems, intelligent transportation systems, fuzzy logic, real time data processing
Procedia PDF Downloads 5201528 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite
Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala
Abstract:
The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂
Procedia PDF Downloads 1351527 Mathematical Modeling of the Effect of Pretreatment on the Drying Kinetics, Energy Requirement and Physico-Functional Properties of Yam (Dioscorea Rotundata) and Cocoyam (Colocasia Esculenta)
Authors: Felix U. Asoiro, Kingsley O. Anyichie, Meshack I. Simeon, Chinenye E. Azuka
Abstract:
The work was aimed at studying the effects of microwave drying (450 W) and hot air oven drying on the drying kinetics and physico-functional properties of yams and cocoyams species. The yams and cocoyams were cut into chips of thicknesses of 3mm, 5mm, 7mm, 9mm, and 11mm. The drying characteristics of yam and cocoyam chips were investigated under microwave drying and hot air oven temperatures (50oC – 90oC). Drying methods, temperature, and thickness had a significant effect on the drying characteristics and physico-functional properties of yam and cocoyam. The result of the experiment showed that an increase in the temperature increased the drying time. The result also showed that the microwave drying method took lesser time to dry the samples than the hot air oven drying method. The iodine affinity of starch for yam was higher than that of cocoyam for the microwaved dried samples over those of hot air oven-dried samples. The results of the analysis would be useful in modeling the drying behavior of yams and cocoyams under different drying methods. It could also be useful in the improvement of shelf life for yams and cocoyams as well as designs of efficient systems for drying, handling, storage, packaging, processing, and transportation of yams and cocoyams.Keywords: coco yam, drying, microwave, modeling, energy consumption, iodine affinity, drying ate
Procedia PDF Downloads 1131526 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA
Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen
Abstract:
To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis
Procedia PDF Downloads 1531525 The Pyrolysis of Leather and Textile Waste in Carbonised Materials as an Element of the Circular Economy Model
Authors: Maciej Życki, Anna Kowalik-klimczak, Monika Łożyńska, Wioletta Barszcz, Jolanta Drabik Anna Kowalik-klimczak
Abstract:
The rapidly changing fashion trends generate huge amounts of leather and textile waste globally. The complexity of these types of waste makes recycling difficult in economic terms. Pyrolysis is suggested for this purpose, which transforms heterogeneous and complex waste into added-value products e.g. active carbons and soil fertilizer. The possibility of using pyrolysis for the valorization of leather and textile waste has been analyzed in this paper. In the first stage, leather and textile waste were subjected to TG/DTG thermogravimetric and DSC calorimetric analysis. These analyses provided basic information about thermochemical transformations and degradation rates during the pyrolysis of these types of waste and enabled the selection of the pyrolysis temperature. In the next stage, the effect of gas type using pyrolysis was investigated on the physicochemical properties, composition, structure, and formation of the specific surfaces of carbonized materials produced by means of a thermal treatment without oxygen access to the reaction chamber. These studies contribute some data about the thermal management and pyrolytic processing of leather and textile waste into useful carbonized materials, according to the circular economy model.Keywords: pyrolysis, leather and textiles waste, composition and structure of carbonized materials, valorisation of waste, circular economy model
Procedia PDF Downloads 141524 Syntactic Analyzer for Tamil Language
Authors: Franklin Thambi Jose.S
Abstract:
Computational Linguistics is a branch of linguistics, which deals with the computer and linguistic levels. It is also said, as a branch of language studies which applies computer techniques to linguistics field. In Computational Linguistics, Natural Language Processing plays an important role. This came to exist because of the invention of Information Technology. In computational syntax, the syntactic analyser breaks a sentence into phrases and clauses and identifies the sentence with the syntactic information. Tamil is one of the major Dravidian languages, which has a very long written history of more than 2000 years. It is mainly spoken in Tamilnadu (in India), Srilanka, Malaysia and Singapore. It is an official language in Tamilnadu (in India), Srilanka, Malaysia and Singapore. In Malaysia Tamil speaking people are considered as an ethnic group. In Tamil syntax, the sentences in Tamil are classified into four for this research, namely: 1. Main Sentence 2. Interrogative Sentence 3. Equational Sentence 4. Elliptical Sentence. In computational syntax, the first step is to provide required information regarding the head and its constituent of each sentence. This information will be incorporated to the system using programming languages. Now the system can easily analyse a given sentence with the criteria or mechanisms given to it. Providing needful criteria or mechanisms to the computer to identify the basic types of sentences using Syntactic parser in Tamil language is the major objective of this paper.Keywords: tamil, syntax, criteria, sentences, parser
Procedia PDF Downloads 5181523 Evaluation of Hazelnut Hulls as an Alternative Forage Resource for Ruminant Animals
Authors: N. Cetinkaya, Y. S. Kuleyin
Abstract:
The aim of this study was to estimate the digestibility of the fruit internal skin of different varieties of hazelnuts to propose hazelnut fruit skin as an alternative feed source as roughage in ruminant nutrition. In 2015, the fruit internal skins of three different varieties of round hazelnuts (RH), pointed hazelnuts (PH) and almond hazelnuts (AH) were obtained from hazelnut processing factory then their crude nutrients analysis were carried out. Organic matter digestibility (OMD) and metabolisable energy (ME) values of hazelnut fruit skins were estimated from gas measured by in vitro gas production method. Their antioxidant activities were determined by spectrophotometric method. Crude nutrient values of three different varieties were; organic matter (OM): 87.83, 87.81 and 87.78%), crude protein (CP): 5.97, 5.93 and 5.89%, neutral detergent fiber (NDF): 30.30, 30.29 and 30.29%, acid detergent fiber (ADF): 48.68, 48.67 and 48.66% and acid detergent lignin (ADL): 25.43, 25.43 and 25.39% respectively. OMD from 24 h incubation time of RH, PH and AH were 22.04, 22.46 and 22.74%; MEGP values were 3.69, 3.75 and 3.79 MJ/kg DM; and antioxidant activity values were 94.60, 94.54 and 94.52 IC 50 mg/mL respectively. The fruit internal skin of different varieties of hazelnuts may be considered as an alternative roughage for ruminant nutrition regarding to their crude and digestible nutritive values. Moreover, hazelnut fruit skin has a rich antioxidant content so it may be used as a feed additive for both ruminant and non-ruminant animals.Keywords: antioxidant activity, hazelnut fruit skin, metabolizable energy, organic matter digestibility
Procedia PDF Downloads 3091522 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder
Procedia PDF Downloads 2641521 The Influence of Positive and Negative Affect on Perception and Judgement
Authors: Annamarija Paula
Abstract:
Modern psychology is divided into three distinct domains: cognition, affect, and conation. Historically, psychology devalued the importance of studying the effect in order to explain human behavior as it supposedly lacked both rational thought and a scientific foundation. As a result, affect remained the least studied domain for years to come. However, the last 30 years have marked a significant change in perspective, claiming that not only is affect highly adaptive, but it also plays a crucial role in cognitive processes. Affective states have a crucial impact on human behavior, which led to fundamental advances in the study of affective states on perception and judgment. Positive affect and negative affect are distinct entities and have different effects on social information processing. In addition, emotions of the same valence are manifested in distinct and unique physiological reactions indicating that not all forms of positive or negative affect are the same or serve the same purpose. The effect plays a vital role in perception and judgments, which impacts the validity and reliability of memory retrieval. The research paper analyzes key findings from the past three decades of observational and empirical research on affective states and cognition. The paper also addresses the limitations connected to the findings and proposes suggestions for possible future research.Keywords: memory, affect, perception, judgement, mood congruency effect
Procedia PDF Downloads 1341520 The Mathematics of Fractal Art: Using a Derived Cubic Method and the Julia Programming Language to Make Fractal Zoom Videos
Authors: Darsh N. Patel, Eric Olson
Abstract:
Fractals can be found everywhere, whether it be the shape of a leaf or a system of blood vessels. Fractals are used to help study and understand different physical and mathematical processes; however, their artistic nature is also beautiful to simply explore. This project explores fractals generated by a cubically convergent extension to Newton's method. With this iteration as a starting point, a complex plane spanning from -2 to 2 is created with a color wheel mapped onto it. Next, the polynomial whose roots the fractal will generate from is established. From the Fundamental Theorem of Algebra, it is known that any polynomial has as many roots (counted by multiplicity) as its degree. When generating the fractals, each root will receive its own color. The complex plane can then be colored to indicate the basins of attraction that converge to each root. From a computational point of view, this project’s code identifies which points converge to which roots and then obtains fractal images. A zoom path into the fractal was implemented to easily visualize the self-similar structure. This path was obtained by selecting keyframes at different magnifications through which a path is then interpolated. Using parallel processing, many images were generated and condensed into a video. This project illustrates how practical techniques used for scientific visualization can also have an artistic side.Keywords: fractals, cubic method, Julia programming language, basin of attraction
Procedia PDF Downloads 2561519 Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner
Authors: G. Kermarrec, J. Hartmann
Abstract:
Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis.Keywords: deformation analysis, surface modelling, terrestrial laser scanner, T-splines
Procedia PDF Downloads 1451518 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR
Authors: Ergun Sakalar, Kubra Bilgic
Abstract:
Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr
Procedia PDF Downloads 2451517 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources
Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha
Abstract:
Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models
Procedia PDF Downloads 2161516 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP
Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis
Abstract:
The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.Keywords: chatbot, depression diagnosis, LSTM model, natural language process
Procedia PDF Downloads 751515 Proposal of Commutation Protocol in Hybrid Sensors and Vehicular Networks for Intelligent Transport Systems
Authors: Taha Bensiradj, Samira Moussaoui
Abstract:
Hybrid Sensors and Vehicular Networks (HSVN), represent a hybrid network, which uses several generations of Ad-Hoc networks. It is used especially in Intelligent Transport Systems (ITS). The HSVN allows making collaboration between the Wireless Sensors Network (WSN) deployed on the border of the road and the Vehicular Network (VANET). This collaboration is defined by messages exchanged between the two networks for the purpose to inform the drivers about the state of the road, provide road safety information and more information about traffic on the road. Moreover, this collaboration created by HSVN, also allows the use of a network and the advantage of improving another network. For example, the dissemination of information between the sensors quickly decreases its energy, and therefore, we can use vehicles that do not have energy constraint to disseminate the information between sensors. On the other hand, to solve the disconnection problem in VANET, the sensors can be used as gateways that allow sending the messages received by one vehicle to another. However, because of the short communication range of the sensor and its low capacity of storage and processing of data, it is difficult to ensure the exchange of road messages between it and the vehicle, which can be moving at high speed at the time of exchange. This represents the time where the vehicle is in communication range with the sensor. This work is the proposition of a communication protocol between the sensors and the vehicle used in HSVN. The latter has as the purpose to ensure the exchange of road messages in the available time of exchange.Keywords: HSVN, ITS, VANET, WSN
Procedia PDF Downloads 3661514 Application of GPR for Prospection in Two Archaeological Sites at Aswan Area, Egypt
Authors: Abbas Mohamed Abbas, Raafat El-Shafie Fat-Helbary, Karrar Omar El Fergawy, Ahmed Hamed Sayed
Abstract:
The exploration in archaeological area requires non-invasive methods, and hence the Ground Penetrating Radar (GPR) technique is a proper candidate for this task. GPR investigation is widely applied for searching for hidden ancient targets. So, in this paper GPR technique has been used in archaeological investigation. The aim of this study was to obtain information about the subsurface and associated structures beneath two selected sites at the western bank of the River Nile at Aswan city. These sites have archaeological structures of different ages starting from 6thand 12th Dynasties to the Greco-Roman period. The first site is called Nag’ El Gulab, the study area was 30 x 16 m with separating distance 2m between each profile, while the second site is Nag’ El Qoba, the survey method was not in grid but in lines pattern with different lengths. All of these sites were surveyed by GPR model SIR-3000 with antenna 200 MHz. Beside the processing of each profile individually, the time-slice maps have been conducted Nag’ El Gulab site, to view the amplitude changes in a series of horizontal time slices within the ground. The obtained results show anomalies may interpret as presence of associated tombs structures. The probable tombs structures similar in their depth level to the opened tombs in the studied areas.Keywords: ground penetrating radar, archeology, Nag’ El Gulab, Nag’ El Qoba
Procedia PDF Downloads 3971513 Analyzing Sociocultural Factors Shaping Architects’ Construction Material Choices: The Case of Jordan
Authors: Maiss Razem
Abstract:
The construction sector is considered a major consumer of materials that undergoes processes of extraction, processing, transportation, and maintaining when used in buildings. Several metrics have been devised to capture the environmental impact of the materials consumed during construction using lifecycle thinking. Rarely has the materiality of this sector been explored qualitatively and systemically. This paper aims to explore socio-cultural forces that drive the use of certain materials in the Jordanian construction industry, using practice theory as a heuristic method of analysis, more specifically Shove et al. three-element model. By conducting semi-structured interviews with architects, the results unravel contextually embedded routines when determining qualities of three materialities highlighted herein; stone, glass and spatial openness. The study highlights the inadequacy of only using efficiency as a quantitative metric of sustainable materials and argues for the need to link material consumption with socio-economic, cultural, and aesthetic driving forces. The operationalization of practice theory by tracing materials’ lifetimes as they integrate with competencies and meanings captures dynamic engagements through the analyzed routines of actors in the construction practice. This study can offer policymakers better-nuanced representation to green this sector beyond efficiency rhetoric and quantitative metrics.Keywords: architects' practices, construction materials, Jordan, practice theory
Procedia PDF Downloads 1751512 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics
Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier
Abstract:
Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)
Procedia PDF Downloads 4871511 Effect of Environmental Conditions on E. Coli o157:h7 Atcc 43888 and L. Monocytogenes Atcc 7644 Cell Surface Hydrophobicity, Motility and Cell Attachment on Food-Contact Surfaces
Authors: Stanley Dula, Oluwatosini A. Ijabadeniyi
Abstract:
Biofilm formation is a major source of materials and foodstuffs contamination, contributing to occurrence of pathogenic and spoilage microbes in food processing resulting in food spoilage, transmission of diseases and significant food hygiene and safety issues. This study elucidates biofilm formation of E. coli O157:H7 and L. monocytogenes ATCC 7644 grown under food related environmental stress conditions of varying pH (5.0;7.0; and 8.5) and temperature (15, 25 and 37 ℃). Both strains showed confluent biofilm formation at 25 ℃ and 37 ℃, at pH 8.5 after 5 days. E. coli showed curli fimbriae production at various temperatures, while L. monocytogenes did not show pronounced expression. Swarm, swimming and twitching plate assays were used to determine strain motilities. Characterization of cell hydrophobicity was done using the microbial adhesion to hydrocarbons (MATH) assay using n-hexadecane. Both strains showed hydrophilic characteristics as they fell within a < 20 % interval. FT-IR revealed COOH at 1622 cm-1, and a strong absorption band at 3650 cm-1 – 3200 cm-1 indicating the presence of both -OH and -NH groups. Both strains were hydrophilic and could form biofilm at different combinations of temperature and pH. EPS produced in both species proved to be an acidic hetero-polysaccharide.Keywords: biofilm, pathogens, hydrophobicity, motility
Procedia PDF Downloads 2391510 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field
Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar
Abstract:
A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain
Procedia PDF Downloads 399