Search results for: vision computing
1813 Efficient Heuristic Algorithm to Speed Up Graphcut in Gpu for Image Stitching
Authors: Tai Nguyen, Minh Bui, Huong Ninh, Tu Nguyen, Hai Tran
Abstract:
GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the conver-gence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80 × 480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.Keywords: CUDA, graph cut, image stitching, texture synthesis, maxflow/mincut algorithm
Procedia PDF Downloads 1321812 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1041811 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants
Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka
Abstract:
The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset
Procedia PDF Downloads 1031810 Mathematics Vision of the Companies' Growth with Educational Technologies
Authors: Valencia P. L. Rodrigo, Morita A. Adelina, Vargas V. Martin
Abstract:
This proposal consists of an analysis of macro concepts involved within an organization growth using educational technologies, which will relate each concept, in a mathematical way with a vision of harmonic work. Working collaboratively, competitively and cooperatively so that this growth is harmonious and homogenous, coining a new term, Harmonic Work. The Harmonic Work ensures that the organization grows in all business directions, allowing managers to project a much more accurate growth, making clear the contribution of each department, resulting in an algorithm that analyzes each of the variables both endogenous and exogenous, establishing different performance indicators in its process of growth.Keywords: business projection, collaboration, competitiveness, educational technology, harmonious growth
Procedia PDF Downloads 3211809 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing
Authors: Seyong Oh, Jin-Hong Park
Abstract:
Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing
Procedia PDF Downloads 1731808 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2191807 Selecting Skyline Mash-Ups under Uncertainty
Authors: Aymen Gammoudi, Hamza Labbaci, Nizar Messai, Yacine Sam
Abstract:
Web Service Composition (Mash-up) has been considered as a new approach used to offer the user a set of Web Services responding to his request. These approaches can return a set of similar Mash-ups in a given context that makes users unable to select the perfect one. Recent approaches focus on computing the skyline over a set of Quality of Service (QoS) attributes. However, these approaches are not sufficient in a dynamic web service environment where the delivered QoS by a Web service is inherently uncertain. In this paper, we treat the problem of computing the skyline over a set of similar Mash-ups under certain dimension values. We generate dimensions for each Mash-up using aggregation operations applied to the QoS attributes. We then tackle the problem of computing the skyline under uncertain dimensions. We present each dimension value of mash-up using a frame of discernment and introduce the d-dominance using the Evidence Theory. Finally, we propose our experimental results that show both the effectiveness of the introduced skyline extensions and the efficiency of the proposed approaches.Keywords: web services, uncertain QoS, mash-ups, uncertain dimensions, skyline, evidence theory, d-dominance
Procedia PDF Downloads 2341806 Comparison of Visio-spatial Intelligence Between Amateur Rugby and Netball Players Using a Hand-Eye Coordination Specific Visual Test Battery
Authors: Lourens Millard, Gerrit Jan Breukelman, Nonkululeko Mathe
Abstract:
Aim: The research aims to investigate the differences in visio-spatial skills (VSS) between athletes and non-athletes, as well as variations across sports, presenting conflicting findings. Therefore, the objective of this study was to determine if there exist significant differences in visio-spatial intelligence skills between rugby players and netball players, and whether such disparities are present when comparing both groups to non-athletes. Methods: Participants underwent an optometric assessment, followed by an evaluation of VSS using six established tests: the Hart Near Far Rock, saccadic eye movement, evasion, accumulator, flash memory, and ball wall toss tests. Results: The results revealed that rugby players significantly outperformed netball players in speed of recognition, peripheral awareness, and hand-eye coordination (p=.000). Moreover, both rugby players and netball players performed significantly better than non-athletes in five of the six tests (p=.000), with the exception being the visual memory test (p=.809). Conclusion: This discrepancy in performance suggests that certain VSS are superior in athletes compared to non-athletes, highlighting potential implications for theories of vision, test selection, and the development of sport-specific VSS testing batteries. Furthermore, the use of a hand-eye coordination-specific VSS test battery effectively differentiated between different sports. However, this pattern was not consistent across all VSS tests, indicating that further research should explore the training methods employed by both sports, as these factors may contribute to the observed differences.Keywords: visio-spatial intelligence (VSI), rugby vision, netball vision, visual skills, sport vision.
Procedia PDF Downloads 511805 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 2091804 A Review Paper on Data Security in Precision Agriculture Using Internet of Things
Authors: Tonderai Muchenje, Xolani Mkhwanazi
Abstract:
Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.Keywords: precision agriculture, security, IoT, EIDE
Procedia PDF Downloads 901803 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.Keywords: cloud computing, cloud monitoring, performance optimization, high availability
Procedia PDF Downloads 651802 Development of Web-Based Remote Desktop to Provide Adaptive User Interfaces in Cloud Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud virtualization technologies are becoming more and more prevalent, cloud users usually encounter the problem of how to access to the virtualized remote desktops easily over the web without requiring the installation of special clients. To resolve this issue, we took advantage of the HTML5 technology and developed web-based remote desktop. It permits users to access the terminal which running in our cloud platform from anywhere. We implemented a sketch of web interface following the cloud computing concept that seeks to enable collaboration and communication among users for high performance computing. Given the development of remote desktop virtualization, it allows to shift the user’s desktop from the traditional PC environment to the cloud platform, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.Keywords: virtualization, remote desktop, HTML5, cloud computing
Procedia PDF Downloads 3391801 The Effect of Postural Sway and Technical Parameters of 8 Weeks Technical Training Performed with Restrict of Visual Input on the 10-12 Ages Soccer Players
Authors: Nurtekin Erkmen, Turgut Kaplan, Halil Taskin, Ahmet Sanioglu, Gokhan Ipekoglu
Abstract:
The aim of this study was to determine the effects of an 8 week soccerspecific technical training with limited vision perception on postural control and technical parameters in 10-12 aged soccer players. Subjects in this study were 24 male young soccer players (age: 11.00 ± 0.56 years, height: 150.5 ± 4.23 cm, body weight: 41.49 ± 7.56 kg). Subjects were randomly divided as two groups: Training and control. Balance performance was measured by Biodex Balance System (BBS). Short pass, speed dribbling, 20 m speed with ball, ball control, juggling tests were used to measure soccer players’ technical performances with a ball. Subjects performed soccer training 3 times per week for 8 weeks. In each session, training group with limited vision perception and control group with normal vision perception committed soccer-specific technical drills for 20 min. Data analyzed with t-test for independent samples and Mann-Whitney U between groups and paired t-test and Wilcoxon test between pre-posttests. No significant difference was found balance scores and with eyes open and eyes closed and LOS test between training and control groups after training (p>0.05). After eight week of training there are no significant difference in balance score with eyes open for both training and control groups (p>0.05). Balance scores decreased in training and control groups after the training (p<0.05). The completion time of LOS test shortened in both training and control groups after training (p<0.05). The training developed speed dribbling performance of training group (p<0.05). On the other hand, soccer players’ performance in training and control groups increased in 20 m speed with a ball after eight week training (p<0.05). In conclusion; the results of this study indicate that soccer-specific training with limited vision perception may not improves balance performance in 10-12 aged soccer players, but it develops speed dribbling performance.Keywords: Young soccer players, vision perception, postural control, technical
Procedia PDF Downloads 4691800 Cloud-Based Dynamic Routing with Feedback in Formal Methods
Authors: Jawid Ahmad Baktash, Mursal Dawodi, Tomokazu Nagata
Abstract:
With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.Keywords: cloud, dynamic routing, formal method, Pro-B, event-B
Procedia PDF Downloads 4231799 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong
Abstract:
This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2391798 Performance Evaluation of Fingerprint, Auto-Pin and Password-Based Security Systems in Cloud Computing Environment
Authors: Emmanuel Ogala
Abstract:
Cloud computing has been envisioned as the next-generation architecture of Information Technology (IT) enterprise. In contrast to traditional solutions where IT services are under physical, logical and personnel controls, cloud computing moves the application software and databases to the large data centres, where the management of the data and services may not be fully trustworthy. This is due to the fact that the systems are opened to the whole world and as people tries to have access into the system, many people also are there trying day-in day-out on having unauthorized access into the system. This research contributes to the improvement of cloud computing security for better operation. The work is motivated by two problems: first, the observed easy access to cloud computing resources and complexity of attacks to vital cloud computing data system NIC requires that dynamic security mechanism evolves to stay capable of preventing illegitimate access. Second; lack of good methodology for performance test and evaluation of biometric security algorithms for securing records in cloud computing environment. The aim of this research was to evaluate the performance of an integrated security system (ISS) for securing exams records in cloud computing environment. In this research, we designed and implemented an ISS consisting of three security mechanisms of biometric (fingerprint), auto-PIN and password into one stream of access control and used for securing examination records in Kogi State University, Anyigba. Conclusively, the system we built has been able to overcome guessing abilities of hackers who guesses people password or pin. We are certain about this because the added security system (fingerprint) needs the presence of the user of the software before a login access can be granted. This is based on the placement of his finger on the fingerprint biometrics scanner for capturing and verification purpose for user’s authenticity confirmation. The study adopted the conceptual of quantitative design. Object oriented and design methodology was adopted. In the analysis and design, PHP, HTML5, CSS, Visual Studio Java Script, and web 2.0 technologies were used to implement the model of ISS for cloud computing environment. Note; PHP, HTML5, CSS were used in conjunction with visual Studio front end engine design tools and MySQL + Access 7.0 were used for the backend engine and Java Script was used for object arrangement and also validation of user input for security check. Finally, the performance of the developed framework was evaluated by comparing with two other existing security systems (Auto-PIN and password) within the school and the results showed that the developed approach (fingerprint) allows overcoming the two main weaknesses of the existing systems and will work perfectly well if fully implemented.Keywords: performance evaluation, fingerprint, auto-pin, password-based, security systems, cloud computing environment
Procedia PDF Downloads 1401797 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. They are collecting, managing, and retaining large amounts of data in cloud environments makes information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.Keywords: cloud compliance, cloud security, data governance, privacy protection
Procedia PDF Downloads 1161796 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3201795 An Effective Change in the Strategic Structure of Quality Management Systems: The Organization’s Needs Management
Authors: Joel Carlos Vieira Reinhardt, Mariana de Freitas Dewes, Odair Lelis Gonçalez
Abstract:
This paper proposes a method to implement a strategic framework for the quality management system that considers the analysis of prospective scenarios in the determination of policy, mission, vision, objectives, processes, monitoring, and goals. Semantic categorization of qualitative testimonial research on employee perception shows it was possible to implement an effective change in the organizations at the Department of Aerospace Science and Technology through the focus on the organization's needs management, producing a rupture with the historical managerial practice.Keywords: management of company needs, mission, prospective scenarios, quality management, quality policy, vision
Procedia PDF Downloads 1171794 Development a Battery of Measurements to Assess Giftedness Initiatives in Light of the Objectives of Saudi Arabia's Future Vision of Gifted Education
Authors: Saeed M. Al Qahtani, Alaa Eldin A. Ayoub
Abstract:
The study aimed to develop a battery of measures to assessment gifted initiatives in Saudi Arabia. The battery consisted of 17 measures developed in light of Saudi Arabia's future vision objectives for gifted education. A battery was applied to 193 gifted students who benefit from gifted initiatives and programs, 42 teachers of gifted as well as, 40 experts of gifted. Samples were taken from three main regions: Riyadh, Sharqia, Gharbia in Saudi Arabia. The results indicated that battery measures have a reliability and stability index ranging from 0.6 to 0.87. Besides that, results showed that the educational environment lacks many basic components such as facilities, laboratories, and activities that may stimulate creativity and innovation. Furthermore, results showed that there is a weakness in private sector involvement in the construction of educational buildings, special centers for gifted people and the provision of certain facilities that support talented programs. The recommendations of the study indicate the need for the private sector participation in the provision of services and projects for the care of gifted students in Saudi Arabia.Keywords: battery of measures, gifted care initiatives, Saudi future vision, gifted student
Procedia PDF Downloads 1711793 Problem of Services Selection in Ubiquitous Systems
Authors: Malika Yaici, Assia Arab, Betitra Yakouben, Samia Zermani
Abstract:
Ubiquitous computing is nowadays a reality through the networking of a growing number of computing devices. It allows providing users with context aware information and services in a heterogeneous environment, anywhere and anytime. Selection of the best context-aware service, between many available services and providers, is a tedious problem. In this paper, a service selection method based on Constraint Satisfaction Problem (CSP) formalism is proposed. The services are considered as variables and domains; and the user context, preferences and providers characteristics are considered as constraints. The Backtrack algorithm is used to solve the problem to find the best service and provider which matches the user requirements. Even though this algorithm has an exponential complexity, but its use guarantees that the service, that best matches the user requirements, will be found. A comparison of the proposed method with the existing solutions finishes the paper.Keywords: ubiquitous computing, services selection, constraint satisfaction problem, backtrack algorithm
Procedia PDF Downloads 2451792 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models
Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi
Abstract:
This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control
Procedia PDF Downloads 541791 Cost-Based Analysis of Cloud and Traditional ERP Systems in Small and Medium Enterprises
Authors: Indu Saini, Ashu Khanna, S. K. Peddoju
Abstract:
Cloud computing is the new buzz word today attracting high interest among various domains like business enterprises, Particularly in Small and Medium Enterprises. As it is a pay-per-use model, SMEs have high expectations that adapting this model will not only make them flexible, hassle-free but also economic. In view of such expectations, this paper analyses the possibility of adapting cloud computing technologies in SMEs in light of economic concerns. In this paper, two hypotheses are developed to compare the average annual per-user costs of using Enterprise Resource Planning systems in two ways, The traditional approach and the cloud approach. A web based survey is conducted apart from the Interviews with the peers to collect the data across the selected SMEs and t-test is performed to compare both the technologies on the proposed hypothesis. Results achieved are produced and discussed.Keywords: cloud computing, small and medium enterprises, enterprise resource solutions, interviews
Procedia PDF Downloads 3361790 The Yield of Neuroimaging in Patients Presenting to the Emergency Department with Isolated Neuro-Ophthalmological Conditions
Authors: Dalia El Hadi, Alaa Bou Ghannam, Hala Mostafa, Hana Mansour, Ibrahim Hashim, Soubhi Tahhan, Tharwat El Zahran
Abstract:
Introduction: Neuro-ophthalmological emergencies require prompt assessment and management to avoid vision or life-threatening sequelae. Some would require neuroimaging. Most commonly used are the CT and MRI of the Brain. They can be over-used when not indicated. Their yield remains dependent on multiple factors relating to the clinical scenario. Methods: A retrospective cross-sectional study was conducted by reviewing the electronic medical records of patients presenting to the Emergency Department (ED) with isolated neuro-ophthalmologic complaints. For each patient, data were collected on the clinical presentation, whether neuroimaging was performed (and which type), and the result of neuroimaging. Analysis of the performed neuroimaging was made, and its yield was determined. Results: A total of 211 patients were reviewed. The complaints or symptoms at presentation were: blurry vision, change in the visual field, transient vision loss, floaters, double vision, eye pain, eyelid droop, headache, dizziness and others such as nausea or vomiting. In the ED, a total of 126 neuroimaging procedures were performed. Ninety-four imagings (74.6%) were normal, while 32 (25.4%) had relevant abnormal findings. Only 2 symptoms were significant for abnormal imaging: blurry vision (p-value= 0.038) and visual field change (p-value= 0.014). While 4 physical exam findings had significant abnormal imaging: visual field defect (p-value= 0.016), abnormal pupil reactivity (p-value= 0.028), afferent pupillary defect (p-value= 0.018), and abnormal optic disc exam (p-value= 0.009). Conclusion: Risk indicators for abnormal neuroimaging in the setting of neuro-ophthalmological emergencies are blurred vision or changes in the visual field on history taking. While visual field irregularities, abnormal pupil reactivity with or without afferent pupillary defect, or abnormal optic discs, are risk factors related to physical testing. These findings, when present, should sway the ED physician towards neuroimaging but still individualizing each case is of utmost importance to prevent time-consuming, resource-draining, and sometimes unnecessary workup. In the end, it suggests a well-structured patient-centered algorithm to be followed by ED physicians.Keywords: emergency department, neuro-ophthalmology, neuroimaging, risk indicators
Procedia PDF Downloads 1791789 Public-Private Partnership in Tourism Development: Kuwait Experience within 2035 Vision
Authors: Obaid Alotaibi
Abstract:
Tourism and recreation have become one of the important and influential sectors in most of the modern economies. This sector has been accepted as one of the alternative sources of national income, employment, and foreign exchange. Kuwait has many potentialities in tourism and recreation, and exploitation of this leads to more diversification of the economy besides augmenting its contribution to the GDP. It is an import-oriented economy; it requires hard currencies (foreign exchange) to meet the import costs as well as to maintain stability in the international market. To compensate for the revenue fall stemmed from fluctuations in oil prices -where the agriculture, fisheries, and industrial sectors are too immune and inelastic- the only alternative solution is the regeneration of the tourism and recreation to surface. This study envisages the characteristics of tourism and recreation, the economic and social importance for the society, the physical and human endowments, as well as the tourist pattern and plans for promoting and sustaining tourism in the country. The study summarizes many recommendations, including the necessity of establishing authority or a council for tourism, linking the planning of tourism development with the comprehensive planning for economic and social development in Kuwait in the shadow of 2035 vision, and to encourage the investors to develop new tourist and recreation projects.Keywords: Kuwait, public-private, partnership, tourism, 2035 vision
Procedia PDF Downloads 1281788 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 121787 Exploring Cybersecurity and Phishing Attacks within Healthcare Institutions in Saudi Arabia: A Narrative Review
Authors: Ebtesam Shadadi, Rasha Ibrahim, Essam Ghadafi
Abstract:
Phishing poses a significant threat as a cybercrime by tricking end users into revealing their confidential and sensitive information. Attackers often manipulate victims to achieve their malicious goals. The increasing prevalence of Phishing has led to extensive research on this issue, including studies focusing on phishing attempts in healthcare institutions in the Kingdom of Saudi Arabia. This paper explores the importance of analyzing phishing attacks, specifically focusing on those targeting the healthcare industry. The study delves into the tactics, obstacles, and remedies associated with these attacks, all while considering the implications for Saudi Vision 2030.Keywords: phishing, cybersecurity, cyber threat, social engineering, vision 2030
Procedia PDF Downloads 611786 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 1661785 Industrial Engineering Higher Education in Saudi Arabia: Assessing the Current Status
Authors: Mohammed Alkahtani, Ahmed El-Sherbeeny
Abstract:
Industrial engineering is among engineering disciplines that have been introduced relatively recently to higher education in Saudi Arabian engineering colleges. The objective of this paper is to shed light on the history and status of IE higher education in different Saudi universities, including statistics comparing student enrollment and graduation in different Saudi public and private universities. This paper then proposes how industrial engineering programs could participate successfully in the Saudi Vision 2030. Finally, the authors show the results of a survey conducted on a number of IE students evaluating various academic and administrative aspects of the IE program at King Saud University.Keywords: higher education, history, industrial engineering, Vision 2030
Procedia PDF Downloads 3201784 UAV Based Visual Object Tracking
Authors: Vaibhav Dalmia, Manoj Phirke, Renith G
Abstract:
With the wide adoption of UAVs (unmanned aerial vehicles) in various industries by the government as well as private corporations for solving computer vision tasks it’s necessary that their potential is analyzed completely. Recent advances in Deep Learning have also left us with a plethora of algorithms to solve different computer vision tasks. This study provides a comprehensive survey on solving the Visual Object Tracking problem and explains the tradeoffs involved in building a real-time yet reasonably accurate object tracking system for UAVs by looking at existing methods and evaluating them on the aerial datasets. Finally, the best trackers suitable for UAV-based applications are provided.Keywords: deep learning, drones, single object tracking, visual object tracking, UAVs
Procedia PDF Downloads 159