Search results for: uncertainty and error visualisation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2853

Search results for: uncertainty and error visualisation

2613 Unit Root Tests Based On the Robust Estimator

Authors: Wararit Panichkitkosolkul

Abstract:

The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.

Keywords: autoregressive, ordinary least squares, type i error, power of the test, Monte Carlo simulation

Procedia PDF Downloads 289
2612 Supply Chain Fit and Firm Performance: The Role of the Environment

Authors: David Gligor

Abstract:

The purpose of this study was to build on Fisher's (1997) seminal article. First, it sought to determine how companies can achieve supply chain fit (i.e., match between the products' characteristics and the underlying supply chain design). Second, it attempted to develop a better understanding of how environmental conditions impact the relationship between supply chain fit and performance. The findings indicate that firm supply chain agility allows organizations to quickly adjust the structure of their supply chains and therefore, achieve supply chain fit. In addition, archival and survey data were used to explore the moderating effects of six environmental uncertainty dimensions: munificence, market dynamism, technological dynamism, technical complexity, product diversity, and geographic dispersion. All environmental variables, except technological dynamism, were found to impact the relationship between supply chain fit and firm performance.

Keywords: supply chain fit, environmental uncertainty, supply chain agility, management engineering

Procedia PDF Downloads 599
2611 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI

Authors: Rutej R. Mehta, Michael A. Chappell

Abstract:

Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.

Keywords: arterial spin labelling, dispersion, MRI, perfusion

Procedia PDF Downloads 371
2610 Exploring the Entrepreneur-Function in Uncertainty: Towards a Revised Definition

Authors: Johan Esbach

Abstract:

The entrepreneur has traditionally been defined through various historical lenses, emphasising individual traits, risk-taking, speculation, innovation and firm creation. However, these definitions often fail to address the dynamic nature of the modern entrepreneurial functions, which respond to unpredictable uncertainties and transition to routine management as certainty is achieved. This paper proposes a revised definition, positioning the entrepreneur as a dynamic function rather than a human construct, that emerges to address specific uncertainties in economic systems, but fades once uncertainty is resolved. By examining historical definitions and its limitations, including the works of Cantillon, Say, Schumpeter, and Knight, this paper identifies a gap in literature and develops a generalised definition for the entrepreneur. The revised definition challenges conventional thought by shifting focus from static attributes such as alertness, traits, firm creation, etc., to a dynamic role that includes reliability, adaptation, scalability, and adaptability. The methodology of this paper employs a mixed approach, combining theoretical analysis and case study examination to explore the dynamic nature of the entrepreneurial function in relation to uncertainty. The selection of case studies includes companies like Airbnb, Uber, Netflix, and Tesla, as these firms demonstrate a clear transition from entrepreneurial uncertainty to routine certainty. The data from the case studies is then analysed qualitatively, focusing on the patterns of entrepreneurial function across the selected companies. These results are then validated using quantitative analysis, derived from an independent survey. The primary finding of the paper will validate the entrepreneur as a dynamic function rather than a static, human-centric role. In considering the transition from uncertainty to certainty in companies like Airbnb, Uber, Netflix, and Tesla, the study shows that the entrepreneurial function emerges explicitly to address market, technological, or social uncertainties. Once these uncertainties are resolved and a certainty in the operating environment is established, the need for the entrepreneurial function ceases, giving way to routine management and business operations. The paper emphasises the need for a definitive model that responds to the temporal and contextualised nature of the entrepreneur. In adopting the revised definition, the entrepreneur is positioned to play a crucial role in the reduction of uncertainties within economic systems. Once the uncertainties are addressed, certainty is manifested in new combinations or new firms. Finally, the paper outlines policy implications for fostering environments that enables the entrepreneurial function and transition theory.

Keywords: dynamic function, uncertainty, revised definition, transition

Procedia PDF Downloads 20
2609 Probabilistic Analysis of Fiber-Reinforced Infinite Slopes

Authors: Assile Abou Diab, Shadi Najjar

Abstract:

Fiber-reinforcement is an effective soil improvement technique for applications involving the prevention of shallow failures on the slope face and the repair of existing slope failures. A typical application is the stabilization of cohesionless infinite slopes. The objective of this paper is to present a probabilistic, reliability-based methodology (based on Monte Carlo simulations) for the design of a practical fiber-reinforced cohesionless infinite slope, taking into consideration the impact of various sources of uncertainty. Recommendations are made regarding the required factors of safety that need to be used to achieve a given target reliability level. These factors of safety could differ from the traditional deterministic factor of safety.

Keywords: factor of safety, fiber reinforcement, infinite slope, reliability-based design, uncertainty

Procedia PDF Downloads 365
2608 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution

Authors: Ulrike Dowie, Ralph Grothmann

Abstract:

Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.

Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management

Procedia PDF Downloads 189
2607 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 215
2606 Application of IF Rough Data on Knowledge Towards Malaria of Rural Tribal Communities in Tripura

Authors: Chhaya Gangwal, R. N. Bhaumik, Shishir Kumar

Abstract:

Handling uncertainty and impreciseness of knowledge appears to be a challenging task in Information Systems. Intuitionistic fuzzy (IF) and rough set theory enhances databases by allowing it for the management of uncertainty and impreciseness. This paper presents a new efficient query optimization technique for the multi-valued or imprecise IF rough database. The usefulness of this technique was illustrated on malaria knowledge from the rural tribal communities of Tripura where most of the information is multi-valued and imprecise. Then, the querying about knowledge on malaria is executed into SQL server to make the implementation of IF rough data querying simpler.

Keywords: intuitionistic fuzzy set, rough set, relational database, IF rough relational database

Procedia PDF Downloads 445
2605 A Probability Analysis of Construction Project Schedule Using Risk Management Tool

Authors: A. L. Agarwal, D. A. Mahajan

Abstract:

Construction industry tumbled along with other industry/sectors during recent economic crash. Construction business could not regain thereafter and still pass through slowdown phase, resulted many real estate as well as infrastructure projects not completed on schedule and within budget. There are many theories, tools, techniques with software packages available in the market to analyze construction schedule. This study focuses on the construction project schedule and uncertainties associated with construction activities. The infrastructure construction project has been considered for the analysis of uncertainty on project activities affecting project duration and analysis is done using @RISK software. Different simulation results arising from three probability distribution functions are compiled to benefit construction project managers to plan more realistic schedule of various construction activities as well as project completion to document in the contract and avoid compensations or claims arising out of missing the planned schedule.

Keywords: construction project, distributions, project schedule, uncertainty

Procedia PDF Downloads 350
2604 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset

Procedia PDF Downloads 130
2603 The Linear Combination of Kernels in the Estimation of the Cumulative Distribution Functions

Authors: Abdel-Razzaq Mugdadi, Ruqayyah Sani

Abstract:

The Kernel Distribution Function Estimator (KDFE) method is the most popular method for nonparametric estimation of the cumulative distribution function. The kernel and the bandwidth are the most important components of this estimator. In this investigation, we replace the kernel in the KDFE with a linear combination of kernels to obtain a new estimator based on the linear combination of kernels, the mean integrated squared error (MISE), asymptotic mean integrated squared error (AMISE) and the asymptotically optimal bandwidth for the new estimator are derived. We propose a new data-based method to select the bandwidth for the new estimator. The new technique is based on the Plug-in technique in density estimation. We evaluate the new estimator and the new technique using simulations and real-life data.

Keywords: estimation, bandwidth, mean square error, cumulative distribution function

Procedia PDF Downloads 581
2602 Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method

Authors: Y. T. Lee, J. H. Na, S. H. Kim, S. U. Hong

Abstract:

In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy.

Keywords: impact echo method, estimation, slab depth, column size, rebar location, concrete

Procedia PDF Downloads 351
2601 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties

Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson

Abstract:

In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.

Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control

Procedia PDF Downloads 138
2600 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 383
2599 Uncertainty in Near-Term Global Surface Warming Linked to Pacific Trade Wind Variability

Authors: M. Hadi Bordbar, Matthew England, Alex Sen Gupta, Agus Santoso, Andrea Taschetto, Thomas Martin, Wonsun Park, Mojib Latif

Abstract:

Climate models generally simulate long-term reductions in the Pacific Walker Circulation with increasing atmospheric greenhouse gases. However, over two recent decades (1992-2011) there was a strong intensification of the Pacific Trade Winds that is linked with a slowdown in global surface warming. Using large ensembles of multiple climate models forced by increasing atmospheric greenhouse gas concentrations and starting from different ocean and/or atmospheric initial conditions, we reveal very diverse 20-year trends in the tropical Pacific climate associated with a considerable uncertainty in the globally averaged surface air temperature (SAT) in each model ensemble. This result suggests low confidence in our ability to accurately predict SAT trends over 20-year timescale only from external forcing. We show, however, that the uncertainty can be reduced when the initial oceanic state is adequately known and well represented in the model. Our analyses suggest that internal variability in the Pacific trade winds can mask the anthropogenic signal over a 20-year time frame, and drive transitions between periods of accelerated global warming and temporary slowdown periods.

Keywords: trade winds, walker circulation, hiatus in the global surface warming, internal climate variability

Procedia PDF Downloads 268
2598 Stating Best Commercialization Method: An Unanswered Question from Scholars and Practitioners

Authors: Saheed A. Gbadegeshin

Abstract:

Commercialization method is a means to make inventions available at the market for final consumption. It is described as an important tool for keeping business enterprises sustainable and improving national economic growth. Thus, there are several scholarly publications on it, either presenting or testing different methods for commercialization. However, young entrepreneurs, technologists and scientists would like to know the best method to commercialize their innovations. Then, this question arises: What is the best commercialization method? To answer the question, a systematic literature review was conducted, and practitioners were interviewed. The literary results revealed that there are many methods but new methods are needed to improve commercialization especially during these times of economic crisis and political uncertainty. Similarly, the empirical results showed there are several methods, but the best method is the one that reduces costs, reduces the risks associated with uncertainty, and improves customer participation and acceptability. Therefore, it was concluded that new commercialization method is essential for today's high technologies and a method was presented.

Keywords: commercialization method, technology, knowledge, intellectual property, innovation, invention

Procedia PDF Downloads 342
2597 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 442
2596 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation

Procedia PDF Downloads 325
2595 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?

Authors: Gu Pang, Bartosz Gebka

Abstract:

We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.

Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput

Procedia PDF Downloads 504
2594 Modeling of Diurnal Pattern of Air Temperature in a Tropical Environment: Ile-Ife and Ibadan, Nigeria

Authors: Rufus Temidayo Akinnubi, M. O. Adeniyi

Abstract:

Existing diurnal air temperature models simulate night time air temperature over Nigeria with high biases. An improved parameterization is presented for modeling the diurnal pattern of air temperature (Ta) which is applicable in the calculation of turbulent heat fluxes in Global climate models, based on Nigeria Micrometeorological Experimental site (NIMEX) surface layer observations. Five diurnal Ta models for estimating hourly Ta from daily maximum, daily minimum, and daily mean air temperature were validated using root-mean-square error (RMSE), Mean Error Bias (MBE) and scatter graphs. The original Fourier series model showed better performance for unstable air temperature parameterizations while the stable Ta was strongly overestimated with a large error. The model was improved with the inclusion of the atmospheric cooling rate that accounts for the temperature inversion that occurs during the nocturnal boundary layer condition. The MBE and RMSE estimated by the modified Fourier series model reduced by 4.45 oC and 3.12 oC during the transitional period from dry to wet stable atmospheric conditions. The modified Fourier series model gave good estimation of the diurnal weather patterns of Ta when compared with other existing models for a tropical environment.

Keywords: air temperature, mean bias error, Fourier series analysis, surface energy balance,

Procedia PDF Downloads 230
2593 Is the Okun's Law Valid in Tunisia?

Authors: El Andari Chifaa, Bouaziz Rached

Abstract:

The central focus of this paper was to check whether the Okun’s law in Tunisia is valid or not. For this purpose, we have used quarterly time series data during the period 1990Q1-2014Q1. Firstly, we applied the error correction model instead of the difference version of Okun's Law, the Engle-Granger and Johansen test are employed to find out long run association between unemployment, production, and how error correction mechanism (ECM) is used for short run dynamic. Secondly, we used the gap version of Okun’s law where the estimation is done from three band pass filters which are mathematical tools used in macro-economic and especially in business cycles theory. The finding of the study indicates that the inverse relationship between unemployment and output is verified in the short and long term, and the Okun's law holds for the Tunisian economy, but with an Okun’s coefficient lower than required. Therefore, our empirical results have important implications for structural and cyclical policymakers in Tunisia to promote economic growth in a context of lower unemployment growth.

Keywords: Okun’s law, validity, unit root, cointegration, error correction model, bandpass filters

Procedia PDF Downloads 317
2592 IPO Valuation and Profitability Expectations: Evidence from the Italian Exchange

Authors: Matteo Bonaventura, Giancarlo Giudici

Abstract:

This paper analyses the valuation process of companies listed on the Italian Exchange in the period 2000-2009 at their Initial Public Offering (IPO). One the most common valuation techniques declared in the IPO prospectus to determine the offer price is the Discounted Cash Flow (DCF) method. We develop a ‘reverse engineering’ model to discover the short term profitability implied in the offer prices. We show that there is a significant optimistic bias in the estimation of future profitability compared to ex-post actual realization and the mean forecast error is substantially large. Yet we show that such error characterizes also the estimations carried out by analysts evaluating non-IPO companies. The forecast error is larger the faster has been the recent growth of the company, the higher is the leverage of the IPO firm, the more companies issued equity on the market. IPO companies generally exhibit better operating performance before the listing, with respect to comparable listed companies, while after the flotation they do not perform significantly different in term of return on invested capital. Pre-IPO book building activity plays a significant role in partially reducing the forecast error and revising expectations, while the market price of the first day of trading does not contain information for further reducing forecast errors.

Keywords: initial public offerings, DCF, book building, post-IPO profitability drop

Procedia PDF Downloads 352
2591 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 119
2590 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery

Procedia PDF Downloads 586
2589 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability

Authors: Mojtaba Valinataj

Abstract:

Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 228
2588 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield

Authors: Raed H. Allawi

Abstract:

Formation pressure is the most critical parameter in hydrocarbon exploration and exploitation. Specifically, predicting abnormal pressures (high formation pressures) and subnormal pressure zones can provide valuable information to minimize uncertainty for anticipated drilling challenges and risks. This study aims to interpret and delineate the pore and fracture pressure of the Mishrif reservoir in the southern Iraq Oilfield. The data required to implement this study included acoustic compression wave, gamma-ray, bulk density, and drilling events. Furthermore, supporting these models needs the pore pressure measurement from the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.

Keywords: pore pressure, fracture pressure, overburden pressure, effective stress, drilling events

Procedia PDF Downloads 83
2587 Error Analysis in Academic Writing of EFL Learners: A Case Study for Undergraduate Students at Pathein University

Authors: Aye Pa Pa Myo

Abstract:

Writing in English is accounted as a complex process for English as a foreign language learners. Besides, committing errors in writing can be found as an inevitable part of language learners’ writing. Generally, academic writing is quite difficult for most of the students to manage for getting better scores. Students can commit common errors in their writings when they try to write academic writing. Error analysis deals with identifying and detecting the errors and also explains the reason for the occurrence of these errors. In this paper, the researcher has an attempt to examine the common errors of undergraduate students in their academic writings at Pathein University. The purpose of doing this research is to investigate the errors which students usually commit in academic writing and to find out the better ways for correcting these errors in EFL classrooms. In this research, fifty-third-year non-English specialization students attending Pathein University were selected as participants. This research took one month. It was conducted with a mixed methodology method. Two mini-tests were used as research tools. Data were collected with a quantitative research method. Findings from this research pointed that most of the students noticed their common errors after getting the necessary input, and they became more decreased committing these errors after taking mini-test; hence, all findings will be supportive for further researches related to error analysis in academic writing.

Keywords: academic writing, error analysis, EFL learners, mini-tests, mixed methodology

Procedia PDF Downloads 132
2586 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area

Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma

Abstract:

The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.

Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty

Procedia PDF Downloads 89
2585 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 380
2584 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 410