Search results for: time domain reflectometry (TDR)
19125 Health Satisfaction and Family Impact of Parents of Children with Cancer
Authors: Ekhlas Al Gamal, Tony Long
Abstract:
The impact on the parents of caring for a child with cancer was intense and wide-ranging. A high level of distress and low level or resilience remains during treatment. Even completion of treatment can be a time of increased anxiety and stress for parents particularly with worries about recurrence or relapse. The purpose of this study to examine the associations between parental satisfactions with healthcare provided for their child and the impact of being a caregiver for a child with cancer. Methodology: A descriptive, correlational and cross-sectional design was employed using data from Arabic versions of self-report questionnaires which were administered to 113 parents with children with cancer in Jordan during 2015. Findings: the result indicated that Family relationship functioning was ranked as the highest (better functioning) domain while daily activities were ranked as the lowest (poorer functioning) domain. Parents were generally satisfied with the health care provided, but their emotional needs were not met adequately. Parents with better social functioning were more satisfied in all areas of healthcare satisfaction other than emotional needs and communication. Parents who had a child with more emotional and behavioural problems were more likely to experience a negative impact on the family and a poor level of family functioning. Conclusion and Significance: Nurses and other health care providers should emphasis on family centred approach rather than child centred approach.Keywords: parents, children, cancer, Jordan
Procedia PDF Downloads 34019124 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 7319123 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 7619122 Assessment of Five Photoplethysmographic Methods for Estimating Heart Rate Variability
Authors: Akshay B. Pawar, Rohit Y. Parasnis
Abstract:
Heart Rate Variability (HRV) is a widely used indicator of the regulation between the autonomic nervous system (ANS) and the cardiovascular system. Besides being non-invasive, it also has the potential to predict mortality in cases involving critical injuries. The gold standard method for determining HRV is based on the analysis of RR interval time series extracted from ECG signals. However, because it is much more convenient to obtain photoplethysmogramic (PPG) signals as compared to ECG signals (which require the attachment of several electrodes to the body), many researchers have used pulse cycle intervals instead of RR intervals to estimate HRV. They have also compared this method with the gold standard technique. Though most of their observations indicate a strong correlation between the two methods, recent studies show that in healthy subjects, except for a few parameters, the pulse-based method cannot be a surrogate for the standard RR interval- based method. Moreover, the former tends to overestimate short-term variability in heart rate. This calls for improvements in or alternatives to the pulse-cycle interval method. In this study, besides the systolic peak-peak interval method (PP method) that has been studied several times, four recent PPG-based techniques, namely the first derivative peak-peak interval method (P1D method), the second derivative peak-peak interval method (P2D method), the valley-valley interval method (VV method) and the tangent-intersection interval method (TI method) were compared with the gold standard technique. ECG and PPG signals were obtained from 10 young and healthy adults (consisting of both males and females) seated in the armchair position. In order to de-noise these signals and eliminate baseline drift, they were passed through certain digital filters. After filtering, the following HRV parameters were computed from PPG using each of the five methods and also from ECG using the gold standard method: time domain parameters (SDNN, pNN50 and RMSSD), frequency domain parameters (Very low-frequency power (VLF), Low-frequency power (LF), High-frequency power (HF) and Total power or “TP”). Besides, Poincaré plots were also plotted and their SD1/SD2 ratios determined. The resulting sets of parameters were compared with those yielded by the standard method using measures of statistical correlation (correlation coefficient) as well as statistical agreement (Bland-Altman plots). From the viewpoint of correlation, our results show that the best PPG-based methods for the determination of most parameters and Poincaré plots are the P2D method (shows more than 93% correlation with the standard method) and the PP method (mean correlation: 88%) whereas the TI, VV and P1D methods perform poorly (<70% correlation in most cases). However, our evaluation of statistical agreement using Bland-Altman plots shows that none of the five techniques agrees satisfactorily well with the gold standard method as far as time-domain parameters are concerned. In conclusion, excellent statistical correlation implies that certain PPG-based methods provide a good amount of information on the pattern of heart rate variation, whereas poor statistical agreement implies that PPG cannot completely replace ECG in the determination of HRV.Keywords: photoplethysmography, heart rate variability, correlation coefficient, Bland-Altman plot
Procedia PDF Downloads 32419121 Fuzzy Semantic Annotation of Web Resources
Authors: Sahar Maâlej Dammak, Anis Jedidi, Rafik Bouaziz
Abstract:
With the great mass of pages managed through the world, and especially with the advent of the Web, their manual annotation is impossible. We focus, in this paper, on the semiautomatic annotation of the web pages. We propose an approach and a framework for semantic annotation of web pages entitled “Querying Web”. Our solution is an enhancement of the first result of annotation done by the “Semantic Radar” Plug-in on the web resources, by annotations using an enriched domain ontology. The concepts of the result of Semantic Radar may be connected to several terms of the ontology, but connections may be uncertain. We represent annotations as possibility distributions. We use the hierarchy defined in the ontology to compute degrees of possibilities. We want to achieve an automation of the fuzzy semantic annotation of web resources.Keywords: fuzzy semantic annotation, semantic web, domain ontologies, querying web
Procedia PDF Downloads 37419120 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 28519119 Finite Time Blow-Up and Global Solutions for a Semilinear Parabolic Equation with Linear Dynamical Boundary Conditions
Authors: Xu Runzhang, Yang Yanbing, Niu Yi, Zhang Mingyou, Liu Yu
Abstract:
For a class of semilinear parabolic equations with linear dynamical boundary conditions in a bounded domain, we obtain both global solutions and finite time blow-up solutions when the initial data varies in the phase space H1(Ω). Our main tools are the comparison principle, the potential well method and the concavity method. In particular, we discuss the behavior of the solutions with the initial data at critical and high energy level.Keywords: high energy level, critical energy level, linear dynamical boundary condition, semilinear parabolic equation
Procedia PDF Downloads 43619118 Performance Analysis of BLDC Motors for Flywheel Energy Storage Applications with Nonmagnetic vs. Magnetic Core Stator using Finite Element Time Stepping Method
Authors: Alok Kumar Pasa, Krs Raghavan
Abstract:
This paper presents a comparative analysis of Brushless DC (BLDC) motors for flywheel applications with a focus on the choice of stator core materials. The study employs a Finite Element Method (FEM) in time domain to investigate the performance characteristics of BLDC motors equipped with nonmagnetic and magnetic type stator core materials. Preliminary results reveal significant differences in motor efficiency, torque production, and electromagnetic properties between the two configurations. This research sheds light on the advantages of utilizing nonmagnetic materials in BLDC motors for flywheel applications, offering potential advantages in terms of efficiency, weight reduction and cost-effectiveness.Keywords: finite element time stepping method, high-speed BLDC motor, flywheel energy storage system, coreless BLDC motors
Procedia PDF Downloads 419117 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave
Authors: Swati Sharma, R. P. Sharma
Abstract:
We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.Keywords: solar wind, turbulence, dispersive alfven wave
Procedia PDF Downloads 60019116 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 4219115 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines
Authors: K. Shaji Mon, P. R. John Sreenidhi
Abstract:
In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer
Procedia PDF Downloads 24519114 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey
Authors: Owolabi Kolade Matthew
Abstract:
In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system
Procedia PDF Downloads 41219113 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain
Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende
Abstract:
There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems
Procedia PDF Downloads 13119112 Dynamic Analysis of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Loadings
Authors: Naik Muhammad, Zahid Ullah, Dong-Ho Choi
Abstract:
Submerged floating tunnel (SFT) is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters, and can be a good alternative to long span suspension bridges. SFT is a massive cylindrical structure that floats at a certain depth below the water surface and subjected to extreme environmental conditions. The identification of dominant structural response of SFT becomes more important due to intended environmental conditions for the design of SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic time history analysis of SFT subjected to hydrodynamic and seismic excitations is performed. The SFT is modeled by finite element 3D beam, and the mooring cables are modeled by truss elements. Based on the dynamic time history analysis the displacements and internal forces of SFT were calculated. The response of SFT is presented for hydrodynamic and seismic excitations. The transverse internal forces of SFT were the maximum compared to vertical direction, for both hydrodynamic and seismic cases; this indicates that the cable system provides very small stiffness in transverse direction as compared to vertical direction of SFT.Keywords: submerged floating tunnel, hydrodynamic analysis, time history analysis, seismic response
Procedia PDF Downloads 32919111 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer
Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam
Abstract:
Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations
Procedia PDF Downloads 13119110 Integral Domains and Their Algebras: Topological Aspects
Authors: Shai Sarussi
Abstract:
Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. Thus, the algebraic structure of W can be viewed from the point of view of topology. It is shown that every nonempty open subset of W has a maximal element in it, which is also a maximal element of W. Moreover, a supremum of an irreducible subset of W always exists. As a notable connection with valuation theory, one considers the case in which S is a valuation domain and A is an algebraic field extension of F; if S is indecomposed in A, then W is an irreducible topological space, and W contains a greatest element.Keywords: integral domains, Alexandroff topology, prime spectrum of a ring, valuation domains
Procedia PDF Downloads 13019109 Execution Time Optimization of Workflow Network with Activity Lead-Time
Authors: Xiaoping Qiu, Binci You, Yue Hu
Abstract:
The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network
Procedia PDF Downloads 17619108 An Informetrics Analysis of Research on Phishing in Scopus and Web of Science Databases from 2012 to 2021
Authors: Nkosingiphile Mbusozayo Zungu
Abstract:
The purpose of the current study is to adopt informetrics methods to analyse the research on phishing from 2012 to 2021 in three selected databases in order to contribute to global cybersecurity through impactful research. The study follows a quantitative research methodology. We opted for the positivist epistemology and objectivist ontology. The analysis focuses on: (i) the productivity of individual authors, institutions, and countries; (ii) the research contributions, using co-authorship as a measure of collaboration; (iii) the altmetrics of selected research contributions; (iv) the citation patterns and research impact of research on phishing; and (v) research contributions by keywords, to discover the concepts that are related to phishing. The preliminary findings favour developed countries in terms of quantity and quality of research in the domain. There are unique research trends and patterns in the developing countries, including those in Africa, that provide opportunities for research development in the domain in the region. This study explores an important research domain by using unexplored method in the region. The study supports the SDG Agenda 2030, such as ending abuse, exploitation, trafficking, and all other forms of violence and torture of children through the use of cyberspace (SDG 16). Further, the results from this study can inform research, teaching, and learning largely in Africa. Invariably, the study contributes to cybersecurity awareness that will mitigate cybersecurity threats against vulnerable communities.Keywords: phishing, cybersecurity, informetrics, information security
Procedia PDF Downloads 11319107 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface
Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves
Abstract:
In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment
Procedia PDF Downloads 13419106 Genetically Encoded Tool with Time-Resolved Fluorescence Readout for the Calcium Concentration Measurement
Authors: Tatiana R. Simonyan, Elena A. Protasova, Anastasia V. Mamontova, Eugene G. Maksimov, Konstantin A. Lukyanov, Alexey M. Bogdanov
Abstract:
Here, we describe two variants of the calcium indicators based on the GCaMP sensitive core and BrUSLEE fluorescent protein (GCaMP-BrUSLEE and GCaMP-BrUSLEE-145). In contrast to the conventional GCaMP6-family indicators, these fluorophores are characterized by the well-marked responsiveness of their fluorescence decay kinetics to external calcium concentration both in vitro and in cellulo. Specifically, we show that the purified GCaMP-BrUSLEE and GCaMP-BrUSLEE-145 exhibit three-component fluorescence decay kinetics, with the amplitude-normalized lifetime component (t3*A3) of GCaMP-BrUSLEE-145 changing four-fold (500-2000 a.u.) in response to a Ca²⁺ concentration shift in the range of 0—350 nM. Time-resolved fluorescence microscopy of live cells displays the two-fold change of the GCaMP-BrUSLEE-145 mean lifetime upon histamine-stimulated calcium release. The aforementioned Ca²⁺-dependence calls considering the GCaMP-BrUSLEE-145 as a prospective Ca²⁺-indicator with the signal read-out in the time domain.Keywords: calcium imaging, fluorescence lifetime imaging microscopy, fluorescent proteins, genetically encoded indicators
Procedia PDF Downloads 15819105 An Assessment of the Risk and Protective Factors Impacting Criminal Gang Involvement among At-Risk Boys Resident at a Juvenile Home in Trinidad and Tobago: The Peer/Individual Domain of the Risk Factor Prevention ParadIGM
Authors: Dianne Williams
Abstract:
This study examined the peer/individual domain of the Risk Factor Prevention Paradigm (RFPP) to assess the risk and protective factors that impact criminal gang involvement among at-risk males residing in a juvenile home in Trinidad and Tobago. The RFPP allows for the identification of both risk and protective factors in a single, holistic framework to identify the relationship between risk factors, protective factors, and criminal gang involvement among at-risk male adolescents. Findings showed that having anti-social peers was the most significant risk factor associated with criminal gang involvement, while the most significant protective factor was having a positive social attitude. Moreover, while 65% of the boys reported never having been in a gang, 70% reported having hit, struck or used a weapon against someone, while 52% reported being involved in other violent incidents on more than two occasions. This suggests that while involvement with criminal gangs may not be common among this population, predisposing behavioral patterns are present. Results are expected to assist in the development of targeted strategies to reduce the attractiveness of gang membership.Keywords: risk factor prevention paradigm, risk factors, protective factors, peer/individual domain, gang involvement, at-risk youth, trinidad and tobago, juvenile home
Procedia PDF Downloads 60719104 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation
Procedia PDF Downloads 14519103 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 1619102 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 12319101 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 16919100 Rings Characterized by Classes of Rad-plus-Supplemented Modules
Authors: Manoj Kumar Patel
Abstract:
In this paper, we introduce and give various properties of weak* Rad-plus-supplemented and cofinitely weak* Rad-plus-supplemented modules over some special kinds of rings, in particular, artinian serial ring and semiperfect ring. Also prove that ring R is artinian serial if and only if every right and left R-module is weak* Rad-plus-supplemented. We provide the counter example which proves that weak* Rad-plus-supplemented module is the generalization of plus-supplemented and Rad-plus-supplemented modules. Furthermore, as an application of above finding results of this research article, our main focus is to characterized the semisimple ring, artinian principal ideal ring, semilocal ring, semiperfect ring, perfect ring, commutative noetherian ring and Dedekind domain in terms of weak* Rad-plus-supplemented module.Keywords: cofinitely weak* Rad-plus-supplemented module , Dedekind domain, Rad-plus-supplemented module, semiperfect ring
Procedia PDF Downloads 26119099 Polar Bergman Polynomials on Domain with Corners
Authors: Laskri Yamina, Rehouma Abdel Hamid
Abstract:
In this paper we present a new class named polar of monic orthogonal polynomials with respect to the area measure supported on G, where G is a bounded simply-connected domain in the complex planeℂ. We analyze some open questions and discuss some ideas properties related to solving asymptotic behavior of polar Bergman polynomials over domains with corners and asymptotic behavior of modified Bergman polynomials by affine transforms in variable and polar modified Bergman polynomials by affine transforms in variable. We show that uniform asymptotic of Bergman polynomials over domains with corners and by Pritsker's theorem imply uniform asymptotic for all their derivatives.Keywords: Bergman orthogonal polynomials, polar rthogonal polynomials, asymptotic behavior, Faber polynomials
Procedia PDF Downloads 44519098 A Kunitz-Type Serine Protease Inhibitor from Rock Bream, Oplegnathus fasciatus Involved in Immune Responses
Authors: S. D. N. K. Bathige, G. I. Godahewa, Navaneethaiyer Umasuthan, Jehee Lee
Abstract:
Kunitz-type serine protease inhibitors (KTIs) are identified in various organisms including animals, plants and microbes. These proteins shared single or multiple Kunitz inhibitory domains link together or associated with other types of domains. Characteristic Kunitz type domain composed of around 60 amino acid residues with six conserved cysteine residues to stabilize by three disulfide bridges. KTIs are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis and inflammation. In this study, two Kunitz-type domain containing protein was identified from rock bream database and designated as RbKunitz. The coding sequence of RbKunitz encoded for 507 amino acids with 56.2 kDa theoretical molecular mass and 5.7 isoelectric point (pI). There are several functional domains including MANEC superfamily domain, PKD superfamily domain, and LDLa domain were predicted in addition to the two characteristic Kunitz domain. Moreover, trypsin interaction sites were also identified in Kunitz domain. Homology analysis revealed that RbKunitz shared highest identity (77.6%) with Takifugu rubripes. Completely conserved 28 cysteine residues were recognized, when comparison of RbKunitz with other orthologs from different taxonomical groups. These structural evidences indicate the rigidity of RbKunitz folding structure to achieve the proper function. The phylogenetic tree was constructed using neighbor-joining method and exhibited that the KTIs from fish and non-fish has been evolved in separately. Rock bream was clustered with Takifugu rubripes. The SYBR Green qPCR was performed to quantify the RbKunitz transcripts in different tissues and challenged tissues. The mRNA transcripts of RbKunitz were detected in all tissues (muscle, spleen, head kidney, blood, heart, skin, liver, intestine, kidney and gills) analyzed and highest transcripts level was detected in gill tissues. Temporal transcription profile of RbKunitz in rock bream blood tissues was analyzed upon LPS (lipopolysaccharide), Poly I:C (Polyinosinic:polycytidylic acid) and Edwardsiella tarda challenge to understand the immune responses of this gene. Compare to the unchallenged control RbKunitz exhibited strong up-regulation at 24 h post injection (p.i.) after LPS and E. tarda injection. Comparatively robust expression of RbKunits was observed at 3 h p.i. upon Poly I:C challenge. Taken together all these data indicate that RbKunitz may involve into to immune responses upon pathogenic stress, in order to protect the rock bream.Keywords: Kunitz-type, rock bream, immune response, serine protease inhibitor
Procedia PDF Downloads 37919097 The Association between Health-Related Quality of Life and Physical Activity in Different Domains with Other Factors in Croatian Male Police Officers
Authors: Goran Sporiš, Dinko Vuleta, Stefan Lovro
Abstract:
The purpose of the present study was to determine the associations between health-related quality of life (HRQOL) and physical activity (PA) in different domains. In this cross-sectional study, participants were 169 Croatian police officers (mean age 35.14±8.95 yrs, mean height 180.93±7.53 cm, mean weight 88.39±14.05 kg, mean body-mass index 26.90±3.39 kg/m2). The dependent variables were two general domains extracted from the HRQOL questionnaire: (1) physical component scale (PCS) and (2) mental component scale (MCS). The independent variables were job-related, transport, domestic and leisure-time PA, along with other factors: age, body-mass index, smoking status, psychological distress, socioeconomic status and time spent in sedentary behaviour. The associations between dependent and independent variables were analyzed by using multiple regression analysis. Significance was set up at p < 0.05. PCS was positively associated with leisure-time PA (β 0.28, p < 0.001) and socioeconomic status (SES) (β 0.16, p=0.005), but inversely associated with job-related PA (β -0.15, p=0.012), domestic-time PA (β -0.14, p=0.014), age (β -0.12, p=0.050), psychological distress (β -0.43, p<0.001) and sedentary behaviour (β -0.15, p=0.009). MCS was positively associated with leisure-time PA (β 0.19, p=0.013) and SES (β 0.20, p=0.002), while inversely associated with age (β -0.23, p=0.001), psychological distress (β -0.27, p<0.001) and sedentary behaviour (β -0.22, p=0.001). Our results added new information about the associations between domain-specific PA and both physical and mental component scale in police officers. Future studies should deal with the same associations in other stressful occupations.Keywords: health, fitness, police force, relations
Procedia PDF Downloads 29919096 Teacher-Child Interactions within Learning Contexts in Prekindergarten
Authors: Angélique Laurent, Marie-Josée Letarte, Jean-Pascal Lemelin, Marie-France Morin
Abstract:
This study aims at exploring teacher-child interactions within learning contexts in public prekindergartens of the province of Québec (Canada). It is based on previous research showing that teacher-child interactions in preschools have direct and determining effects on the quality of early childhood education and could directly or indirectly influence child development. However, throughout a typical preschool day, children experience different learning contexts to promote their learning opportunities. Depending on these specific contexts, teacher-child interactions could vary, for example, between free play and shared book reading. Indeed, some studies have found that teacher-directed or child-directed contexts might lead to significant variations in teacher-child interactions. This study drew upon both the bioecological and the Teaching Through Interactions frameworks. It was conducted through a descriptive and correlational design. Fifteen teachers were recruited to participate in the study. At Time 1 in October, they completed a diary to report the learning contexts they proposed in their classroom during a typical week. At Time 2, seven months later (May), they were videotaped three times in the morning (two weeks’ time between each recording) during a typical morning class. The quality of teacher-child interactions was then coded with the Classroom Assessment Scoring System (CLASS) through the contexts identified. This tool measures three main domains of interactions: emotional support, classroom organization, and instruction support, and10 dimensions scored on a scale from 1 (low quality) to 7 (high quality). Based on the teachers’ reports, five learning contexts were identified: 1) shared book reading, 2) free play, 3) morning meeting, 4) teacher-directed activity (such as craft), and 5) snack. Based on preliminary statistical analyses, little variation was observed within the learning contexts for each domain of the CLASS. However, the instructional support domain showed lower scores during specific learning contexts, specifically free play and teacher-directed activity. Practical implications for how preschool teachers could foster specific domains of interactions depending on learning contexts to enhance children’s social and academic development will be discussed.Keywords: teacher practices, teacher-child interactions, preschool education, learning contexts, child development
Procedia PDF Downloads 108