Search results for: temporal modalities
1144 Effects of Spectrotemporal Modulation of Music Profiles on Coherence of Cardiovascular Rhythms
Authors: I-Hui Hsieh, Yu-Hsuan Hu
Abstract:
The powerful effect of music is often associated with changes in physiological responses such as heart rate and respiration. Previous studies demonstrate that Mayer waves of blood pressure, the spontaneous rhythm occurring at 0.1 Hz, corresponds to a progressive crescendo of the musical phrase. However, music contain dynamic changes in temporal and spectral features. As such, it remains unclear which aspects of musical structures optimally affect synchronization of cardiovascular rhythms. This study investigates the independent contribution of spectral pattern, temporal pattern, and dissonance level on synchronization of cardiovascular rhythms. The regularity of acoustical patterns occurring at a periodic rhythm of 0.1 Hz is hypothesized to elicit the strongest coherence of cardiovascular rhythms. Music excerpts taken from twelve pieces of Western classical repertoire were modulated to contain varying degrees of pattern regularity of the acoustic envelope structure. Three levels of dissonance were manipulated by varying the harmonic structure of the accompanying chords. Electrocardiogram and photoplethysmography signals were recorded for 5 minutes of baseline and simultaneously while participants listen to music excerpts randomly presented over headphones in a sitting position. Participants were asked to indicate the pleasantness of each music excerpt by adjusting via a slider presented on screen. Analysis of the Fourier spectral power of blood pressure around 0.1 Hz showed a significant difference between music excerpts characterized by spectral and temporal pattern regularity compared to the same content in random pattern. Phase coherence between heart rate and blood pressure increased significantly during listening to spectrally-regular phrases compared to its matched control phrases. The degree of dissonance of the accompanying chord sequence correlated with level of coherence between heart rate and blood pressure. Results suggest that low-level auditory features of music can entrain coherence of autonomic physiological variables. These findings have potential implications for using music as a clinical and therapeutic intervention for regulating cardiovascular functions.Keywords: cardiovascular rhythms, coherence, dissonance, pattern regularity
Procedia PDF Downloads 1491143 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction
Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach
Abstract:
X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast
Procedia PDF Downloads 2601142 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 441141 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir
Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder
Abstract:
22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.Keywords: drinking water reservoir, multivariate analysis, physico-chemical parameters, water quality
Procedia PDF Downloads 2911140 Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria
Authors: Abegunde Linda, Adedeji Oluwatola
Abstract:
It has become increasingly evident that large developments influence the climate within the immediate region and there are concerns that rising temperatures over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received minor attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on temperature knowing that the built environment absorbs and stores solar energy, the temperature in cities can be several degrees higher than in adjacent rural areas. This is known as the urban heat island (UHI) effect. The Landsat imagery were used to examine the landuse change for a time period of 42years (1972-2014) and Land surface temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was further used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased by 200km2 while the area covered by vegetation also reduced to about 42.6% during the study period. The spatial and temporal trends of temperature are related to the gradual change in urban landcover and the settlement area has the highest emission of land surface temperature. This research provides useful insight into the temporal behavior of the Ibadan city.Keywords: landuse, LST, remote sensing, UHI
Procedia PDF Downloads 2751139 Variations in Water Supply and Quality in Selected Groundwater Sources in a Part of Southwest Nigeria
Authors: Samuel Olajide Babawale, O. O. Ogunkoya
Abstract:
The study mapped selected wells in Inisa town, Osun state, in the guinea savanna region of southwest Nigeria, and determined the water quality considering certain elements. It also assessed the variation in the elevation of the water table surface to depth of the wells in the months of August and November. This is with a view to determine the level of contamination of the water with respect to land use and anthropogenic activities, and also to determine the variation that occurs in the quantity of well water in the rainy season and the start of the dry season. Results show a random pattern of the distribution of the mapped wells and shows that there is a shallow water table in the study area. The temporal changes in the elevation show that there are no significant variations in the depth of the water table surface over the period of study implying that there is a sufficient amount of water available to the town all year round. It also shows a high concentration of sodium in the water sample analyzed compared to other elements that were considered, which include iron, copper, calcium, and lead. This is attributed majorly to anthropogenic activities through the disposal of waste in landfill sites. There is a low concentration of lead which is a good indication of a reduced level of pollution.Keywords: anthropogenic activities, land use, temporal changes, water quality
Procedia PDF Downloads 1341138 Urban Landscape Composition and Configuration Dynamics and Expansion of Hawassa City Analysis, Ethiopia Using Satellite Images and Spatial Metrics Approach
Authors: Berhanu Keno Terfa
Abstract:
To understand the consequences of urbanization, accurate, and long-term representation of urban dynamics is essential. Remote sensing data from various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used. An integrated method, landscape metrics, built-up density, and urban growth type analysis were employed to analyze the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 541.3% between 1987 and 2017, at an average annual increment of 8.9%. The area of urban expansion in a city has tripled during the 2005-2017 period as compared to 187- 1995. The major growth took place in the east and southeast directions during 1987–1995 period, whereas predominant built-up development was observed in south and southeast direction during 1995–2017 period. The analysis using landscape metrics and urban typologies showed that Hawassa experienced a fragmented and irregular spatiotemporal urban growth patterns, mostly by extension, suggesting a strong tendency towards sprawl in the past three decades.Keywords: Hawassa, spatial patterns, remote sensing, multi-temporal, urban sprawl
Procedia PDF Downloads 1501137 Variation of Phytoplankton Biomass in the East China Sea Based on MODIS Data
Authors: Yumei Wu, Xiaoyan Dang, Shenglong Yang, Shengmao Zhang
Abstract:
The East China Sea is one of four main seas in China, where there are many fishery resources. Some important fishing grounds, such as Zhousan fishing ground important to society. But the eco-environment is destroyed seriously due to the rapid developing of industry and economy these years. In this paper, about twenty-year satellite data from MODIS and the statistical information of marine environment from the China marine environmental quality bulletin were applied to do the research. The chlorophyll-a concentration data from MODIS were dealt with in the East China Sea and then used to analyze the features and variations of plankton biomass in recent years. The statistics method was used to obtain their spatial and temporal features. The plankton biomass in the Yangtze River estuary and the Taizhou region were highest. The high phytoplankton biomass usually appeared between the 88th day to the 240th day (end-March - August). In the peak time of phytoplankton blooms, the Taizhou islands was the earliest, and the South China Sea was the latest. The intensity and period of phytoplankton blooms were connected with the global climate change. This work give us confidence to use satellite data to do more researches about the China Sea, and it also provides some help for us to know about the eco-environmental variation of the East China Sea and regional effect from global climate change.Keywords: the East China Sea, phytoplankton biomass, temporal and spatial variation, phytoplankton bloom
Procedia PDF Downloads 3301136 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data
Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi
Abstract:
The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.Keywords: charcoal, classification, data, images, land use, natural vegetation
Procedia PDF Downloads 3651135 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 1251134 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories
Authors: Umesh Kumar Singh, Chanchala Joshi
Abstract:
With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.Keywords: CVSS score, risk level, security measurement, vulnerability category
Procedia PDF Downloads 3221133 The Meaning in Life and the Content of Mental Images of Temporal Mental Simulations in Poles and Americans
Authors: Katarzyna Pasternak
Abstract:
Experiencing the meaning of life is widely recognised as a vital element of well-being and central human motivation. Studies have shown that a higher meaning of life is associated, among other things, with a higher quality of life, higher levels of happiness and better declared health. The subject of the study is the meaning in life measured with The Meaning in Life Questionnaire and the presence of such emotions as nostalgia, awe and hope, and the content of imaginations measured after temporal mental simulations in Americans and Poles. The respondents had to imagine themselves in future, in 40 years and describe two events that would take place at that time. Next, participants assessed the importance of the events described by them, recognised whether during their journey through time they felt awe, hope and nostalgia, and answered the questionnaire examining the meaning in life. 204 (102 from Poland 102 from the USA ) people aged 21 to 60 participated in the study. The study checked whether there were differences in the content of the imaginations of the respondents from Poland and USA, and whether there were statistically significant difference between the declared sense of meaning in life among participants from both countries. The result of the study hane shown that there were no differences in the overall result obtained by the participants in The Meaning in Life Questionnaire , while there were statistically significant differences among the subscales of the questionnaire. It turned out that Americans have a higher presence of meaning in life than Poles, but they obtained lower results in searching of meaning in life. Studies have also shown that there was a statistically significant difference between Poles and Americans in feeling awe after a mental simulation. Poles felt higher level of awe. Images about the future differed between Poles and Americans. Poles judged that the events they described were very important to them. Interestingly, the content of American participants’ imaginations was dominated by topics related to the future of the world, ecology and world peace. There were also ideas about nice moments spent with friends and family. Among Poles, ideas related to professional career and development as well as family events dominated. Research shows that despite the lack of differences in the general meaning in life, Poles are more focused on searching for meaning in life than Americans. The study shows interesting differences between the two cultures.Keywords: meaning in life, mental simulations, imaginations, temporal mental simulations, future, cultural differences
Procedia PDF Downloads 1071132 Characterization of Fateh Sagar Wetland and Its Catchment Area at Udaipur City, (Raj.) India, Using High Resolution Data
Authors: Parul Bhalla, Sarvesh Palria
Abstract:
Wetlands are areas of land that are either temporarily or permanently covered by water. Wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. The spatial and temporal characteristics of wetland in terms of turbidity and aquatic vegetation could serve as guiding tool, in conservation prioritization of wetlands. The aquatic vegetation in the wetland is an indicator of the trophic status of the wetland which has a bearing on the water quality, the turbidity level in any wetland is indicative of the quality of the water in it. To conserve and manage wetland resources, it is important to have inventory of wetland and its catchment. Fateh Sagar wetland in Udaipur city is the one of the important wetland for tourism industry and other economic activities in the region. Realizing the importance of the wetland, the present study has been taken up with the specific objective of delineation and characterization of Fateh Sagar wetland in terms of turbidity and aquatic vegetation, using high resolution satellite data such as Cartosat and LISS IV multi-temporal data, which will efficiently bring out the changes in water spread and quality parameters. The catchment of wetland has been also characterized for various features. The study leads in to takes necessary steps to conserve the wetland and its resources.Keywords: aquatic vegetation, catchment, turbidity status, wetland
Procedia PDF Downloads 4031131 Application of GIS Techniques for Analysing Urban Built-Up Growth of Class-I Indian Cities: A Case Study of Surat
Authors: Purba Biswas, Priyanka Dey
Abstract:
Worldwide rapid urbanisation has accelerated city expansion in both developed and developing nations. This unprecedented urbanisation trend due to the increasing population and economic growth has caused challenges for the decision-makers in city planning and urban management. Metropolitan cities, class-I towns, and major urban centres undergo a continuous process of evolution due to interaction between socio-cultural and economic attributes. This constant evolution leads to urban expansion in all directions. Understanding the patterns and dynamics of urban built-up growth is crucial for policymakers, urban planners, and researchers, as it aids in resource management, decision-making, and the development of sustainable strategies to address the complexities associated with rapid urbanisation. Identifying spatio-temporal patterns of urban growth has emerged as a crucial challenge in monitoring and assessing present and future trends in urban development. Analysing urban growth patterns and tracking changes in land use is an important aspect of urban studies. This study analyses spatio-temporal urban transformations and land-use and land cover changes using remote sensing and GIS techniques. Built-up growth analysis has been done for the city of Surat as a case example, using the GIS tools of NDBI and GIS models of the Built-up Urban Density Index and Shannon Entropy Index to identify trends and the geographical direction of transformation from 2005 to 2020. Surat is one of the fastest-growing urban centres in both the state and the nation, ranking as the 4th fastest-growing city globally. This study analyses the dynamics of urban built-up area transformations both zone-wise and geographical direction-wise, in which their trend, rate, and magnitude were calculated for the period of 15 years. This study also highlights the need for analysing and monitoring the urban growth pattern of class-I cities in India using spatio-temporal and quantitative techniques like GIS for improved urban management.Keywords: urban expansion, built-up, geographic information system, remote sensing, Shannon’s entropy
Procedia PDF Downloads 741130 Impact of Primary Care Telemedicine Consultations On Health Care Resource Utilisation: A Systematic Review
Authors: Anastasia Constantinou, Stephen Morris
Abstract:
Background: The adoption of synchronous and asynchronous telemedicine modalities for primary care consultations has exponentially increased since the COVID-19 pandemic. However, there is limited understanding of how virtual consultations influence healthcare resource utilization and other quality measures including safety, timeliness, efficiency, patient and provider satisfaction, cost-effectiveness and environmental impact. Aim: Quantify the rate of follow-up visits, emergency department visits, hospitalizations, request for investigations and prescriptions and comment on the effect on different quality measures associated with different telemedicine modalities used for primary care services and primary care referrals to secondary care Design and setting: Systematic review in primary care Methods: A systematic search was carried out across three databases (Medline, PubMed and Scopus) between August and November 2023, using terms related to telemedicine, general practice, electronic referrals, follow-up, use and efficiency and supported by citation searching. This was followed by screening according to pre-defined criteria, data extraction and critical appraisal. Narrative synthesis and metanalysis of quantitative data was used to summarize findings. Results: The search identified 2230 studies; 50 studies are included in this review. There was a prevalence of asynchronous modalities in both primary care services (68%) and referrals from primary care to secondary care (83%), and most of the study participants were females (63.3%), with mean age of 48.2. The average follow-up for virtual consultations in primary care was 28.4% (eVisits: 36.8%, secure messages 18.7%, videoconference 23.5%) with no significant difference between them or F2F consultations. There was an average annual reduction of primary care visits by 0.09/patient, an increase in telephone visits by 0.20/patient, an increase in ED encounters by 0.011/patient, an increase in hospitalizations by 0.02/patient and an increase in out of hours visits by 0.019/patient. Laboratory testing was requested on average for 10.9% of telemedicine patients, imaging or procedures for 5.6% and prescriptions for 58.7% of patients. When looking at referrals to secondary care, on average 36.7% of virtual referrals required follow-up visit, with the average rate of follow-up for electronic referrals being higher than for videoconferencing (39.2% vs 23%, p=0.167). Technical failures were reported on average for 1.4% of virtual consultations to primary care. When using carbon footprint estimates, we calculate that the use of telemedicine in primary care services can potentially provide a net decrease in carbon footprint by 0.592kgCO2/patient/year. When follow-up rates are taken into account, we estimate that virtual consultations reduce carbon footprint for primary care services by 2.3 times, and for secondary care referrals by 2.2 times. No major concerns regarding quality of care, or patient satisfaction were identified. 5/7 studies that addressed cost-effectiveness, reported increased savings. Conclusions: Telemedicine provides quality, cost-effective, and environmentally sustainable care for patients in primary care with inconclusive evidence regarding the rates of subsequent healthcare utilization. The evidence is limited by heterogeneous, small-scale studies and lack of prospective comparative studies. Further research to identify the most appropriate telemedicine modality for different patient populations, clinical presentations, service provision (e.g. used to follow-up patients instead of initial diagnosis) as well as further education for patients and providers alike on how to make best use of this service is expected to improve outcomes and influence practice.Keywords: telemedicine, healthcare utilisation, digital interventions, environmental impact, sustainable healthcare
Procedia PDF Downloads 581129 Dynamics Pattern of Land Use and Land Cover Change and Its Driving Factors Based on a Cellular Automata Markov Model: A Case Study at Ibb Governorate, Yemen
Authors: Abdulkarem Qasem Dammag, Basema Qasim Dammag, Jian Dai
Abstract:
Change in Land use and Land cover (LU/LC) has a profound impact on the area's natural, economic, and ecological development, and the search for drivers of land cover change is one of the fundamental issues of LU/LC change. The study aimed to assess the temporal and Spatio-temporal dynamics of LU/LC in the past and to predict the future using Landsat images by exploring the characteristics of different LU/LC types. Spatio-temporal patterns of LU/LC change in Ibb Governorate, Yemen, were analyzed based on RS and GIS from 1990, 2005, and 2020. A socioeconomic survey and key informant interviews were used to assess potential drivers of LU/LC. The results showed that from 1990 to 2020, the total area of vegetation land decreased by 5.3%, while the area of barren land, grassland, built-up area, and waterbody increased by 2.7%, 1.6%, 1.04%, and 0.06%, respectively. Based on socio-economic surveys and key informant interviews, natural factors had a significant and long-term impact on land change. In contrast, site construction and socio-economic factors were the main driving forces affecting land change in a short time scale. The analysis results have been linked to the CA-Markov Land Use simulation and forecasting model for the years 2035 and 2050. The simulation results revealed from the period 2020 to 2050, the trend of dynamic changes in land use, where the total area of barren land decreased by 7.0% and grassland by 0.2%, while the vegetation land, built-up area, and waterbody increased by 4.6%, 2.6%, and 0.1 %, respectively. Overall, these findings provide LULC's past and future trends and identify drivers, which can play an important role in sustainable land use planning and management by balancing and coordinating urban growth and land use and can also be used at the regional level in different levels to provide as a reference. In addition, the results provide scientific guidance to government departments and local decision-makers in future land-use planning through dynamic monitoring of LU/LC change.Keywords: LU/LC change, CA-Markov model, driving forces, change detection, LU/LC change simulation
Procedia PDF Downloads 641128 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor
Authors: Pranav Gulati, Isha Sharma
Abstract:
Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring
Procedia PDF Downloads 2791127 Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)
Authors: Gannouni Sonia, Hammami Asma, Saidi Salwa, Rebai Noamen
Abstract:
Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha.Keywords: spatio-temporal monitoring, salinity, satellite images, NDVI, sebkha
Procedia PDF Downloads 1331126 A Ground Observation Based Climatology of Winter Fog: Study over the Indo-Gangetic Plains, India
Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva
Abstract:
Every year, fog formation over the Indo-Gangetic Plains (IGPs) of Indian region during the winter months of December and January is believed to create numerous hazards, inconvenience, and economic loss to the inhabitants of this densely populated region of Indian subcontinent. The aim of the paper is to analyze the spatial and temporal variability of winter fog over IGPs. Long term ground observations of visibility and other meteorological parameters (1971-2010) have been analyzed to understand the formation of fog phenomena and its relevance during the peak winter months of January and December over IGP of India. In order to examine the temporal variability, time series and trend analysis were carried out by using the Mann-Kendall Statistical test. Trend analysis performed by using the Mann-Kendall test, accepts the alternate hypothesis with 95% confidence level indicating that there exists a trend. Kendall tau’s statistics showed that there exists a positive correlation between time series and fog frequency. Further, the Theil and Sen’s median slope estimate showed that the magnitude of trend is positive. Magnitude is higher during January compared to December for the entire IGP except in December when it is high over the western IGP. Decade wise time series analysis revealed that there has been continuous increase in fog days. The net overall increase of 99 % was observed over IGP in last four decades. Diurnal variability and average daily persistence were computed by using descriptive statistical techniques. Geo-statistical analysis of fog was carried out to understand the spatial variability of fog. Geo-statistical analysis of fog revealed that IGP is a high fog prone zone with fog occurrence frequency of more than 66% days during the study period. Diurnal variability indicates the peak occurrence of fog is between 06:00 and 10:00 local time and average daily fog persistence extends to 5 to 7 hours during the peak winter season. The results would offer a new perspective to take proactive measures in reducing the irreparable damage that could be caused due to changing trends of fog.Keywords: fog, climatology, Mann-Kendall test, trend analysis, spatial variability, temporal variability, visibility
Procedia PDF Downloads 2421125 Gender Differences in Attitudes to Technology in Primary Education
Authors: Radek Novotný, Martina Maněnová
Abstract:
This article presents a summary of reviews on gender differences in perception of information and communication technology (ICT) by pupils in primary education. The article outlines the meaning of ICT in primary education then summarizes different studies of the use of ICT in primary education from the point of view of gender. The article also presents the specific differences of gender in the knowledge of modalities of use of specialized digital tools and the perception and value assigned to ICT, accordingly the article provides insight into the background of gender differences in performance in relation to ICT to determinate the complex meaning of pupils attitudes to the ICT.Keywords: ICT in primary education, attitudes to ICT, gender differences, gender and ICT
Procedia PDF Downloads 4851124 Evaluation of Mito-Uncoupler Induced Hyper Metabolic and Aggressive Phenotype in Glioma Cells
Authors: Yogesh Rai, Saurabh Singh, Sanjay Pandey, Dhananjay K. Sah, B. G. Roy, B. S. Dwarakanath, Anant N. Bhatt
Abstract:
One of the most common signatures of highly malignant gliomas is their capacity to metabolize more glucose to lactic acid than normal brain tissues, even under normoxic conditions (Warburg effect), indicating that aerobic glycolysis is constitutively upregulated through stable genetic or epigenetic changes. However, oxidative phosphorylation (OxPhos) is also required to maintain the mitochondrial membrane potential for tumor cell survival. In the process of tumorigenesis, tumor cells during fastest growth rate exhibit both high glycolytic and high OxPhos. Therefore, metabolically reprogrammed cancer cells with combination of both aerobic glycolysis and altered OxPhos develop a robust metabolic phenotype, which confers a selective growth advantage. In our study, we grew the high glycolytic BMG-1 (glioma) cells with continuous exposure of mitochondrial uncoupler 2, 4, dinitro phenol (DNP) for 10 passages to obtain a phenotype of high glycolysis with enhanced altered OxPhos. We found that OxPhos modified BMG (OPMBMG) cells has similar growth rate and cell cycle distribution but high mitochondrial mass and functional enzymatic activity than parental cells. In in-vitro studies, OPMBMG cells showed enhanced invasion, proliferation and migration properties. Moreover, it also showed enhanced angiogenesis in matrigel plug assay. Xenografted tumors from OPMBMG cells showed reduced latent period, faster growth rate and nearly five folds reduction in the tumor take in nude mice compared to BMG-1 cells, suggesting that robust metabolic phenotype facilitates tumor formation and growth. OPMBMG cells which were found radio-resistant, showed enhanced radio-sensitization by 2-DG as compared to the parental BMG-1 cells. This study suggests that metabolic reprogramming in cancer cells enhances the potential of migration, invasion and proliferation. It also strengthens the cancer cells to escape the death processes, conferring resistance to therapeutic modalities. Our data also suggest that combining metabolic inhibitors like 2-DG with conventional therapeutic modalities can sensitize such metabolically aggressive cancer cells more than the therapies alone.Keywords: 2-DG, BMG, DNP, OPM-BMG
Procedia PDF Downloads 2261123 Imaging of Peritoneal Malignancies - A Pictorial Essay and Proposed Imaging Framework
Authors: T. Hennedige
Abstract:
Imaging plays a crucial role in the evaluation of the extent of peritoneal disease, which in turn determines prognosis and treatment choice. Despite advances in imaging technology, assessment of the peritoneum remains relatively challenging secondary to its large surface area, complex anatomy, and variety of imaging modalities available. This poster will review the mechanisms of spread, namely intraperitoneal dissemination, directly along peritoneal pathways, haematogeneous dissemination, and lymphatic spread. This will be followed by a side-by-side pictorial comparison of the detection of peritoneal deposits using CT, MRI, and PET/CT, depicting the advantages and shortcomings of each modality. An imaging selection framework will then be presented, which may aid the clinician in selecting the appropriate imaging modality for the malignancy in question.Keywords: imaging, CT, malignancy, MRI, peritoneum, PET
Procedia PDF Downloads 1481122 Spatio-Temporal Pest Risk Analysis with ‘BioClass’
Authors: Vladimir A. Todiras
Abstract:
Spatio-temporal models provide new possibilities for real-time action in pest risk analysis. It should be noted that estimation of the possibility and probability of introduction of a pest and of its economic consequences involves many uncertainties. We present a new mapping technique that assesses pest invasion risk using online BioClass software. BioClass is a GIS tool designed to solve multiple-criteria classification and optimization problems based on fuzzy logic and level set methods. This research describes a method for predicting the potential establishment and spread of a plant pest into new areas using a case study: corn rootworm (Diabrotica spp.), tomato leaf miner (Tuta absoluta) and plum fruit moth (Grapholita funebrana). Our study demonstrated that in BioClass we can combine fuzzy logic and geographic information systems with knowledge of pest biology and environmental data to derive new information for decision making. Pests are sensitive to a warming climate, as temperature greatly affects their survival and reproductive rate and capacity. Changes have been observed in the distribution, frequency and severity of outbreaks of Helicoverpa armigera on tomato. BioClass has demonstrated to be a powerful tool for applying dynamic models and map the potential future distribution of a species, enable resource to make decisions about dangerous and invasive species management and control.Keywords: classification, model, pest, risk
Procedia PDF Downloads 2821121 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations
Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey
Abstract:
Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES
Procedia PDF Downloads 541120 Traffic Prediction with Raw Data Utilization and Context Building
Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.Keywords: traffic prediction, raw data utilization, context building, data reduction
Procedia PDF Downloads 1291119 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1911118 Clinicopathological Characteristics in Male Breast Cancer: A Case Series and Literature Review
Authors: Mohamed Shafi Mahboob Ali
Abstract:
Male breast cancer (MBC) is a rare entity with overall cases reported less than 1%. However, the incidence of MBC is regularly rising every year. Due to the lack of data on MBC, diagnosis and treatment are tailored to female breast cancer. MBC risk increases with age and is usually diagnosed ten years late as the disease progression is slow compared to female breast cancer (FBC). The most common feature of MBC is an intra-ductal variant, and often, upon diagnosis, the stage of the disease is already advanced. The Prognosis of MBC is often flawed, but new treatment modalities are emerging with the current knowledge and advancement. We presented a series of male breast cancer in our center, highlighting the clinicopathological, radiological and treatment options.Keywords: male, breast, cancer, clinicopathology, ultrasound, CT scan
Procedia PDF Downloads 991117 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns
Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim
Abstract:
In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition
Procedia PDF Downloads 2301116 Radio Frequency Heating of Iron-Filled Carbon Nanotubes for Cancer Treatment
Authors: L. Szymanski, S. Wiak, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska
Abstract:
There exist more than one hundred different types of cancer, and therefore no particular treatment is offered to people struggling with this disease. The character of treatment proposed to a patient will depend on a variety of factors such as type of the cancer diagnosed, advancement of the disease, its location in the body, as well as personal preferences of a patient. None of the commonly known methods of cancer-fighting is recognised as a perfect cure, however great advances in this field have been made over last few decades. Once a patient is diagnosed with cancer, he is in need of medical care and professional treatment for upcoming months, and in most cases even for years. Among the principal modes of treatment offered by medical centres, one can find radiotherapy, chemotherapy, and surgery. All of them can be applied separately or in combination, and the relative contribution of each is usually determined by medical specialist in agreement with a patient. In addition to the conventional treatment option, every day more complementary and alternative therapies are integrated into mainstream care. There is one promising cancer modality - hyperthermia therapy which is based on exposing body tissues to high temperatures. This treatment is still being investigated and is not widely available in hospitals and oncological centres. There are two kinds of hyperthermia therapies with direct and indirect heating. The first is not commonly used due to low efficiency and invasiveness, while the second is deeply investigated and a variety of methods have been developed, including ultrasounds, infrared sauna, induction heating and magnetic hyperthermia. The aim of this work was to examine possibilities of heating magnetic nanoparticles under the influence of electromagnetic field for cancer treatment. For this purpose, multiwalled carbon nanotubes used as nanocarriers for iron particles were investigated for its heating properties. The samples were subjected to an alternating electromagnetic field with frequency range between 110-619 kHz. Moreover, samples with various concentrations of carbon nanotubes were examined. The lowest frequency of 110 kHz and sample containing 10 wt% of carbon nanotubes occurred to influence the most effective heating process. Description of hyperthermia therapy aiming at enhancing currently available cancer treatment was also presented in this paper. Most widely applied conventional cancer modalities such as radiation or chemotherapy were also described. Methods for overcoming the most common obstacles in conventional cancer modalities, such as invasiveness and lack of selectivity, has been presented in magnetic hyperthermia characteristics, which explained the increasing interest of the treatment.Keywords: hyperthermia, carbon nanotubes, cancer colon cells, ligands
Procedia PDF Downloads 2661115 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 165