Search results for: style transfer
3406 Learning Preference in Nursing Students at Boromarajonani College of Nursing Chon Buri
Authors: B. Wattanakul, G. Ngamwongwan, S. Ngamkham
Abstract:
Exposure to different learning experiences contributes to changing in learning style. Addressing students’ learning preference could help teachers provide different learning activities that encourage the student to learn effectively. Purpose: The purpose of this descriptive study was to describe learning styles of nursing students at Boromarajonani College of Nursing Chon Buri. Sample: The purposive sample was 463 nursing students who were enrolled in a nursing program at different academic levels. The 16-item VARK questionnaire with 4 multiple choices was administered at one time data collection. Choices have consisted with modalities of Visual, Aural, Read/write, and Kinesthetic measured by VARK. Results: Majority of learning preference of students at different levels was visual and read/write learning preference. Almost 67% of students have a multimodal preference, which is visual learning preference associated with read/write or kinesthetic preference. At different academic levels, multimodalities are greater than single preference. Over 30% of students have one dominant learning preference, including visual preference, read/write preference and kinesthetic preference. Analysis of Variance (ANOVA) with Bonferroni adjustment revealed a significant difference between students based on their academic level (p < 0.001). Learning style of the first-grade nursing students differed from the second-grade nursing students (p < 0.001). While learning style of nursing students in the second-grade has significantly varied from the 1st, 3rd, and 4th grade (p < 0.001), learning preference of the 3rd grade has significantly differed from the 4th grade of nursing students (p > 0.05). Conclusions: Nursing students have varied learning styles based on their different academic levels. Learning preference is not fixed attributes. This should help nursing teachers assess the types of changes in students’ learning preferences while developing teaching plans to optimize students’ learning environment and achieve the needs of the courses and help students develop learning preference to meet the need of the course.Keywords: learning preference, VARK, learning style, nursing
Procedia PDF Downloads 3593405 Parallel Version of Reinhard’s Color Transfer Algorithm
Authors: Abhishek Bhardwaj, Manish Kumar Bajpai
Abstract:
An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm.Keywords: Reinhard et al’s algorithm, color transferring, parallelism, speedup
Procedia PDF Downloads 6143404 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 903403 The Impact of System Cascading Collapse and Transmission Line Outages to the Transfer Capability Assessment
Authors: Nur Ashida Salim, Muhammad Murtadha Othman, Ismail Musirin, Mohd Salleh Serwan
Abstract:
Uncertainty of system operating conditions is one of the causative reasons which may render to the instability of a transmission system. This will encumber the performance of transmission system to efficiently transmit the electrical power between areas. For that reason, accurate assessment of Transmission Reliability Margin (TRM) is essential in order to ensure effective power transfer between areas during the occurrence of system uncertainties. The power transfer is also called as the Available Transfer Capability (ATC) in which it is the information required by the utilities and marketers to instigate selling and buying the electric energy. This paper proposes a computationally effective approach to estimate TRM and ATC by considering the uncertainties of system cascading collapse and transmission line outages which is identified as the main reasons in power system instability. In accordance to the results that have been obtained, the proposed method is essential for the transmission providers which could help the power marketers and planning sectors in the operation and reserving transmission services based on the ATC calculated.Keywords: system cascading collapse, transmission line outages, transmission reliability margin, available transfer capability
Procedia PDF Downloads 4263402 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture
Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho
Abstract:
Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.Keywords: bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer
Procedia PDF Downloads 2603401 Knowledge Transfer from Experts to Novice: An Empirical Study on Online Communities
Authors: Firmansyah David
Abstract:
This paper aims to investigate factors that drive individuals to transfer their knowledge in the context of online communities. By revisiting tacit-to-explicit knowledge creation, this research attempts to contribute empirically using three online forums (1) Software Engineering; (2) Aerospace Simulator; (3) Health Insurance System. A qualitative approach was deployed to map and recognize the pattern of users ‘Knowledge Transfer (KT), particularly from expert to novice. The findings suggest a common form on how experts give their effort to formulate ‘explicit’ knowledge and how novices ‘understand’ such knowledge. This research underlines that skill; intuition, judgment; value and belief are the prominent factors, both for experts and novice. Further, this research has recognized the groups of expert and novice by their ability to transfer and to ‘adopt’ new knowledge. Future research infers to triangulate the method in which the quantitative study is needed to measure the level of adoption of (new) knowledge by individuals.Keywords: explicit, expert, knowledge, online community
Procedia PDF Downloads 2683400 Discussion of Leadership Styles and Performance Management in MNEs
Authors: Yin-Tsuo Huang
Abstract:
Most leadership theories focus on leader's development. However, in reality, the led is also very important in the leadership process. Development relates to ensure the individual to grow in the skills, knowledge, and abilities to perform at leaders’ highest possible level now and for the future. The topic area of the relationships among leadership styles, subordinate maturity, and information distinction was identified because it is a practical problem and personal experiences occurring in multinational enterprises. Some questions to be answered through this critical analysis of the literature are: (1) What are the effective leadership styles in the leader-member and member-member relationships? (2) How do the subordinates react to leaders’ managerial style? (3) What are the relationships among leadership styles, subordinate maturity, and resulting information distinction? (4) What kinds of information distinction effects the relationships between leadership styles and subordinate maturity? (5) Where do leaders and subordinates can get information, and how? (6) In what areas are leaders’ or subordinates’ knowledge weakest, and how can they get others to prove the information they need? (7) How important is that information to the subordinates? (8) Do the leaders keep too much information for their subordinates because it is inconvenient? The main purpose of this review is to explore the theoretical and empirical literature about the relationships among leadership style, subordinates maturity, and information distinction implications in multinational Taiwanese organizations to identify areas of future scholarly inquiry.Keywords: leadership style, subordinate maturity, information distinction, multinational organization
Procedia PDF Downloads 5133399 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition
Authors: H. Niranjan, S. Sivasankaran, Zailan Siri
Abstract:
This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, soret/dufour, stagnation-point
Procedia PDF Downloads 3753398 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection
Procedia PDF Downloads 3373397 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics
Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki
Abstract:
A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.Keywords: cooling, cold plate, uni-porous media, heat transfer
Procedia PDF Downloads 2953396 Technical and Vocational Education and Technology Transfer: Departments of Electrical Engineering at the Public Authority for Applied Education and Training, PAAE&T, Kuwait, a case Study
Authors: Salah Al-Ali
Abstract:
The role of technology transfer in technical and vocational education is significant since lecturers, trainers, and students can obtain the updated knowledge, skills, and attitudes that are currently being practiced by local and international businesses and industries. Technology transfer can indeed close the gap between what is being learned and practiced in technical and vocational institutions and the world of work. However, the success of technology transfer in technical and vocational education perspectives would depend entirely on the quality of management. It is their responsibility when signing an agreement with internal or external providers of technology, to include calluses that enable academic staff in related specialty to interact positively and freely with the supplier of technology. In other terms, ensuring no clear or hidden restriction is imposed by the supplier of technology to acquire the know-how and know-why that are embedded in the agreement. In this paper, I present some of the empirical results and observations which describe the interactions between the supplier of technology (Electrical Engineering System) and the recipient of the technology (PAAE&T) in the field of technology transfer. In another word, whether the PAAE&T have taken the opportunity while building its new headquarter, the transfer of technology from the supplier of an electrical engineering system to its academic staff in its various Electrical Engineering Academic Departments at the PAAE&T colleges and institutions. The paper argues that, for effective and efficient transfer of technology, the recipient (PAAE&T) must ensure that the agreement with the supplier of the Electrical Engineering System must include calluses that would allow the PAAE&T academic staff in its various Electrical Engineering Academic Departments in its various colleges and institutions to acquire the technology embedded in the agreement. The paper concludes that the transfer of technology and the building of a local scientific and technical infrastructure must be viewed by Kuwaiti decision-makers as complementary to one another. Thus, reducing, to great extent, the level of dependence on expatriates, particularly in the essential sectors of the economy.Keywords: vocational and technical education, technology transfer, enhancing indigenous capabilities, Kuwait
Procedia PDF Downloads 1373395 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids
Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci
Abstract:
The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD
Procedia PDF Downloads 4883394 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction
Authors: Zahra Neffah, Henda Kahalerras
Abstract:
A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel
Procedia PDF Downloads 4133393 Investigation of the Influence of Student’s Characteristics on Mathematics Achievement in Junior Secondary School in Ibadan, Nigeria
Authors: Babatunde Kasim Oladele
Abstract:
This current study investigated students’ characteristics as factors that influence Mathematics Achievement of junior secondary school students. The study adopted a descriptive survey design. The population of the study was one hundred and twenty-three (123) JSS students of secondary schools in Ibadan North Local Government in Oyo State. A Mathematics achievement test and three questionnaires on student’s self-efficacy belief, attitude, and learning style were the instruments used. Prior to the administration of the constructed mathematics achievement test, 100-item mathematics was subjected to the expert review, and items analysis was carried out. Fifty items were retained. The Cronbach Alpha reliability coefficients of the instruments were 0.71, 0.76, and 0.83, respectively. Collected data were analysed using the frequency count, percentages, mean, standard deviation, and Path Analysis in Amos SPSS Version 20. Students characteristics: gender, age, self-efficacy, attitude and learning style had positive direct effects on students’ achievement in Mathematics as indicated by their respective beta weights (β = 0.36, 0.203, 0.92, 0.079, 0.69 p < 0.05). Consequently, the study concluded that student’s characteristics (Age, gender, and learning style) explained a significant part of the variability in students’ achievement in Mathematics.Keywords: mathematics achievement, students’ characteristics, junior secondary school, Ibadan
Procedia PDF Downloads 3323392 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer
Authors: Bhavesh N. Bhatt, Zozimus D. Labana
Abstract:
This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel
Procedia PDF Downloads 3353391 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes
Authors: Kanit Aroonrat, Somchai Wongwises
Abstract:
A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.Keywords: condensation, dimpled tube, heat transfer, pressure drop
Procedia PDF Downloads 2153390 Reducing Pressure Drop in Microscale Channel Using Constructal Theory
Authors: K. X. Cheng, A. L. Goh, K. T. Ooi
Abstract:
The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.Keywords: constructal theory, enhanced heat transfer, microchannel, pressure drop
Procedia PDF Downloads 3373389 Heat Transfer Enhancement through Hybrid Metallic Nanofluids Flow with Viscous Dissipation and Joule Heating Effect
Authors: Khawar Ali
Abstract:
We present the numerical study of unsteady hydromagnetic (MHD) flow and heat transfer characteristics of a viscous incompressible electrically conducting water-based hybrid metallic nanofluid (containing Cu-Au/ H₂O nanoparticles) between two orthogonally moving porous coaxial disks with suction. Different from the classical shooting methodology, we employ a combination of a direct and an iterative method (SOR with optimal relaxation parameter) for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar nonlinear ODEs. Effects of the governing parameters on the flow and heat transfer are discussed and presented through tables and graphs. The findings of the present investigation may be beneficial for the electronic industry in maintaining the electronic components under effectiveand safe operational conditions.Keywords: heat transfer enhancement, hybrid metallic nanofluid, viscous dissipation and joule heating effect , Two dimensional flow
Procedia PDF Downloads 2293388 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet
Procedia PDF Downloads 4313387 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications
Authors: Sam Rasoulzadeh, Atefeh Mousavi
Abstract:
Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.Keywords: heat transfer, solar reactor, fluidized bed reactor, CFD, computational fluid dynamics
Procedia PDF Downloads 1803386 Student-Created Videos to Foster Active Learning in Heat Transfer Course
Authors: W.Appamana, S. Jantasee, P. Siwarasak, T. Mueansichai, C. Kaewbuddee
Abstract:
Heat transfer is important in chemical engineering field. We have to know how to predict rates of heat transfer in a variety of process situations. Therefore, heat transfer learning is one of the greatest challenges for undergraduate students in chemical engineering. To enhance student learning in classroom, active-learning method was proposed in a single classroom, using problems based on videos and creating video, think-pair-share and jigsaw technique. The result shows that active learning method can prevent copying of the solutions manual for students and improve average examination scores about 5% when comparing with students in traditional section. Overall, this project represents an effective type of class that motivates student-centric learning while enhancing self-motivation, creative thinking and critical analysis among students.Keywords: active learning, student-created video, self-motivation, creative thinking
Procedia PDF Downloads 2353385 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium
Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh
Abstract:
The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow
Procedia PDF Downloads 4943384 Attachment and Memories: Activating Attachment in College Students through Narrative-Based Methods
Authors: Catherine Wright, Kate Luedke
Abstract:
This paper questions whether or not individuals who had been exposed to narratives describing secure and insecure-avoidant attachment styles experienced temporary changes in their attachment style when compared to individuals who had been exposed to neutral narratives. The Attachment Style Questionnaire (or ASQ) developed by Feeney, Noller, and Hanrahan in 1994 was utilized to assess attachment style. Participants filled out a truncated version of the ASQ prior to reading the respective narratives assigned to their groups, and filled out the entirety of the ASQ after reading the narratives. Utilizing a one-way independent groups ANOVA, researchers found that the group which read the insecure-avoidant narrative experienced a statistically significant decrease in secure attachment, as did the group which read the secure narrative. The control group, however, experienced a statistically significant increase in secure attachment. Based on these findings, researchers concluded that narratives may have the ability to call attention to parental shortcomings that individuals have experienced in the forms of reminding individuals of positive experiences that they were not able to experience while spending time with their parental figures and calling attention to the shortcomings of said parental figures by reminding them of the negative experiences which they did have with them.Keywords: attachment, insecure-avoidant, memory, secure
Procedia PDF Downloads 4023383 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients
Authors: Enes Yasa, Guven Fidan
Abstract:
Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling
Procedia PDF Downloads 4213382 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine
Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels
Abstract:
This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.Keywords: AFPM, CFD, magnet parameters, stator heat transfer
Procedia PDF Downloads 2503381 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications
Authors: R. M. Kalayappan, N. Kathiravan
Abstract:
In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry
Procedia PDF Downloads 3983380 The Effect of Wellness Program on Organizations Productivity: The Case of Pakistani Corporation’s
Authors: Saad Bin Nasir
Abstract:
This study imperially evaluated of five human resource (HR) practices (Wellness program extents are Employee’s assistance program, Health care screenings, and Recreation trips, Seminars for life style, Indoor and Outdoor activities) and there likely impact on the organization productivity in Pakistani organizations. The data were gathering by administrating questionnaires. The result indicated that all five variables are positively and significantly correlated with organization productivity. Results of regressing the all variables on organization productivity show that seminars for life style and employee’s assistance program strong predictors of organization productivity.Keywords: wellness program, organization’s productivity, employee’s assistance program, health care screening
Procedia PDF Downloads 3523379 The Influence of Work Experience on Conflict Management Styles of Organizational Members
Authors: Faris Alghamdi
Abstract:
Identifying which conflict management styles organizational members prefer, and what variables influence these selections, is an essential component of organizational conflict management as well as human resource management, particularly in training and development strategies. This study aims to examine the relationship between work experience and preferred conflict management styles. Utilizing the Rahim Organizational Conflict Inventory- II Form C, data were collected from 109 full-time employees of various organizations in the Eastern province of Saudi Arabia. The Pearson’s correlation coefficient analysis showed a statistically significant relationship between the integrating conflict management style and the length of work experience. Nevertheless, this relationship was negative, not positive as hypothesized.Keywords: conflict management style, organizational members, work experience
Procedia PDF Downloads 4093378 Transfer of Electrical Energy by Magnetic Induction
Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa
Abstract:
Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor
Procedia PDF Downloads 5183377 Study on Ratio of Binder Compounds in Thai Northern Style Sausages
Authors: Wipharat Saimo, Benjawan Thumthanaruk, Panida Banjongsinsiri, Nowwapan Noojuy
Abstract:
Thai northern style sausage (sai-ou) is originally cuisine made of chili paste, pork, and lard. It always serves with curry paste, vegetable, and rice. The meat and lard ingredients used can be substituted by Shiitake mushroom (Lentinus edodes) and King oyster (Pleurotus eryngii) mushroom (50:50 w/w) which is suitable for all people, especially vegetarians. However, the texture of mushroom type sai-ou had no homogenous texture due to no adhesiveness property of mushroom. Therefore, this research aimed to study the ratio of hydrocolloids (konjac flour (0-100%), konjac gel (0-100%) and Citri-fi®100 FG (0-2%)) on the physicochemical properties mushroom type sai-ou. The mixture design was applied by using Minitab 16 software. Nine formula were designed for the test. The values of moisture content and water activity of nine formula were ranged from 66.25-72.17% and 0.96-0.97. The pH values were 5.44-5.89. The optimal ratio of konjac flour, konjac gel and Citri-fi®100 FG (74.75:24.75:0.5 (w/w)) yielded the highest texture profiles (hardness, springiness, cohesiveness, gumminess and chewiness) as well as color parameters (L*, a* and b*). Sensory results showed had higher acceptability scores in term of overall liking with the level of ‘like moderately’ (5.9 on 7 pointed scale). The mushroom type sai-ou sausage could be an alternative food for health-conscious consumers.Keywords: Citri-fi® 100 FG, konjac flour, konjac gel, Thai northern style sausages
Procedia PDF Downloads 228