Search results for: releasing device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2090

Search results for: releasing device

1850 Tensile Strength of Asphalt Concrete Due to Moisture Conditioning

Authors: R. Islam, Rafiqul A. Tarefder

Abstract:

This study investigates the effect of moisture conditioning on the Indirect Tensile Strength (ITS) of asphalt concrete. As a first step, cylindrical samples of 100 mm diameter and 50 mm thick were prepared using a Superpave gyratory compactor. Next, the samples were conditioned using Moisture Induced Susceptibility Test (MIST) device at different numbers of moisture conditioning cycles. In the MIST device, samples are subjected water pressure through the sample pores cyclically. The MIST conditioned samples were tested for ITS. Results show that the ITS does not change significantly with MIST conditioning at the specific pressure and cycles adopted in this study.

Keywords: asphalt concrete, tensile strength, moisture, laboratory test

Procedia PDF Downloads 377
1849 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 359
1848 The Suitability of Agile Practices in Healthcare Industry with Regard to Healthcare Regulations

Authors: Mahmood Alsaadi, Alexei Lisitsa

Abstract:

Nowadays, medical devices rely completely on software whether as whole software or as embedded software, therefore, the organization that develops medical device software can benefit from adopting agile practices. Using agile practices in healthcare software development industries would bring benefits such as producing a product of a high-quality with low cost and in short period. However, medical device software development companies faced challenges in adopting agile practices. These due to the gaps that exist between agile practices and the requirements of healthcare regulations such as documentation, traceability, and formality. This research paper will conduct a study to investigate the adoption rate of agile practice in medical device software development, and they will extract and outline the requirements of healthcare regulations such as Food and Drug Administration (FDA), Health Insurance Portability and Accountability Act (HIPAA), and Medical Device Directive (MDD) that affect directly or indirectly on software development life cycle. Moreover, this research paper will evaluate the suitability of using agile practices in healthcare industries by analyzing the most popular agile practices such as eXtream Programming (XP), Scrum, and Feature-Driven Development (FDD) from healthcare industry point of view and in comparison with the requirements of healthcare regulations. Finally, the authors propose an agile mixture model that consists of different practices from different agile methods. As result, the adoption rate of agile practices in healthcare industries still low and agile practices should enhance with regard to requirements of the healthcare regulations in order to be used in healthcare software development organizations. Therefore, the proposed agile mixture model may assist in minimizing the gaps existing between healthcare regulations and agile practices and increase the adoption rate in the healthcare industry. As this research paper part of the ongoing project, an evaluation of agile mixture model will be conducted in the near future.

Keywords: adoption of agile, agile gaps, agile mixture model, agile practices, healthcare regulations

Procedia PDF Downloads 235
1847 Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material

Authors: Sindhu S Nair, Atul Thakur, Preeti Thakur, Trukhanov Alex

Abstract:

Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure.

Keywords: perovskite materials, solar cell, inverted solar cell, inorganic perovskite solar cell materials, cell efficiency

Procedia PDF Downloads 80
1846 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices

Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner

Abstract:

Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.

Keywords: biometrics, electrocardiographic, machine learning, signals processing

Procedia PDF Downloads 140
1845 Low Voltage and High Field-Effect Mobility Thin Film Transistor Using Crystalline Polymer Nanocomposite as Gate Dielectric

Authors: Debabrata Bhadra, B. K. Chaudhuri

Abstract:

The operation of organic thin film transistors (OFETs) with low voltage is currently a prevailing issue. We have fabricated anthracene thin-film transistor (TFT) with an ultrathin layer (~450nm) of Poly-vinylidene fluoride (PVDF)/CuO nanocomposites as a gate insulator. We obtained a device with excellent electrical characteristics at low operating voltages (<1V). Different layers of the film were also prepared to achieve the best optimization of ideal gate insulator with various static dielectric constant (εr ). Capacitance density, leakage current at 1V gate voltage and electrical characteristics of OFETs with a single and multi layer films were investigated. This device was found to have highest field effect mobility of 2.27 cm2/Vs, a threshold voltage of 0.34V, an exceptionally low sub threshold slope of 380 mV/decade and an on/off ratio of 106. Such favorable combination of properties means that these OFETs can be utilized successfully as voltages below 1V. A very simple fabrication process has been used along with step wise poling process for enhancing the pyroelectric effects on the device performance. The output characteristic of OFET after poling were changed and exhibited linear current-voltage relationship showing the evidence of large polarization. The temperature dependent response of the device was also investigated. The stable performance of the OFET after poling operation makes it reliable in temperature sensor applications. Such High-ε CuO/PVDF gate dielectric appears to be highly promising candidates for organic non-volatile memory and sensor field-effect transistors (FETs).

Keywords: organic field effect transistors, thin film transistor, gate dielectric, organic semiconductor

Procedia PDF Downloads 240
1844 Flip-Chip Bonding for Monolithic of Matrix-Addressable GaN-Based Micro-Light-Emitting Diodes Array

Authors: Chien-Ju Chen, Chia-Jui Yu, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

A 64 × 64 GaN-based micro-light-emitting diode array (μLEDA) with 20 μm in pixel size and 40 μm in pitch by flip-chip bonding (FCB) is demonstrated in this study. Besides, an underfilling (UF) technology is applied to the process for improving the uniformity of device. With those configurations, good characteristics are presented, operation voltage and series resistance of a pixel in the 450 nm flip chip μLEDA are 2.89 V and 1077Ω (4.3 mΩ-cm²) at 25 A/cm², respectively. The μLEDA can sustain higher current density compared to conventional LED, and the power of the device is 9.5 μW at 100 μA and 0.42 mW at 20 mA.

Keywords: GaN, micro-light-emitting diode array(μLEDA), flip-chip bonding, underfilling

Procedia PDF Downloads 421
1843 A Wearable Fluorescence Imaging Device for Intraoperative Identification of Human Brain Tumors

Authors: Guoqiang Yu, Mehrana Mohtasebi, Jinghong Sun, Thomas Pittman

Abstract:

Malignant glioma (MG) is the most common type of primary malignant brain tumor. Surgical resection of MG remains the cornerstone of therapy, and the extent of resection correlates with patient survival. A limiting factor for resection, however, is the difficulty in differentiating the tumor from normal tissue during surgery. Fluorescence imaging is an emerging technique for real-time intraoperative visualization of MGs and their boundaries. However, most clinical-grade neurosurgical operative microscopes with fluorescence imaging ability are hampered by low adoption rates due to high cost, limited portability, limited operation flexibility, and lack of skilled professionals with technical knowledge. To overcome the limitations, we innovatively integrated miniaturized light sources, flippable filters, and a recording camera to the surgical eye loupes to generate a wearable fluorescence eye loupe (FLoupe) device for intraoperative imaging of fluorescent MGs. Two FLoupe prototypes were constructed for imaging of Fluorescein and 5-aminolevulinic acid (5-ALA), respectively. The wearable FLoupe devices were tested on tumor-simulating phantoms and patients with MGs. Comparable results were observed against the standard neurosurgical operative microscope (PENTERO® 900) with fluorescence kits. The affordable and wearable FLoupe devices enable visualization of both color and fluorescence images with the same quality as the large and expensive stationary operative microscopes. The wearable FLoupe device allows for a greater range of movement, less obstruction, and faster/easier operation. Thus, it reduces surgery time and is more easily adapted to the surgical environment than unwieldy neurosurgical operative microscopes.

Keywords: fluorescence guided surgery, malignant glioma, neurosurgical operative microscope, wearable fluorescence imaging device

Procedia PDF Downloads 64
1842 Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation

Authors: M. H. Mehrabi, S. S. Ghodsi, Zainah Ibrahim, Meldi Suhatril

Abstract:

Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.

Keywords: dynamic response, passive control, performance test, seismic protection

Procedia PDF Downloads 169
1841 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 61
1840 Intensifier as Changed from the Impolite Word in Thai

Authors: Methawee Yuttapongtada

Abstract:

Intensifier is the linguistic term and device that is generally found in different languages in order to enhance and give additional quantity, quality or emotion to the words of each language. In fact, each language in the world has both of the similar and dissimilar intensifying device. More specially, the wide variety of intensifying device is used for Thai language and one of those is usage of the impolite word or the word that used to mean something negative as intensifier. The data collection in this study was done throughout the spoken language style by collecting from intensifiers regarded as impolite words because these words as employed in the other contexts will be held as the rude, swear words or the words with negative meaning. Then, backward study to the past was done in order to consider the historical change. Explanation of the original meaning and the contexts of words use from the past till the present time were done by use of both textual documents and dictionaries available in different periods. It was found that regarding the semantics and pragmatic aspects, subjectification also is the significant motivation that changed the impolite words to intensifiers. At last, it can explain pathway of the semantic change of these very words undoubtedly. Moreover, it is found that use tendency in the impolite word or the word that used to mean something negative will more be increased and this phenomenon is commonly found in many languages in the world and results of this research may support to the belief that human language in the world is universal and the same still reflected that human has the fundamental thought as the same to each other basically.

Keywords: impolite word, intensifier, Thai, semantic change

Procedia PDF Downloads 178
1839 Ignition Interlock Device for Motorcycles

Authors: Luisito L. Lacatan, Zacha Valerie G. Ancheta, Michelangelo A. Dorado, Lester Joseph M. Ochoa, Anthony Mark G. Tayabas

Abstract:

Ignition Interlock Device or IID is a mechanism installed inside a vehicle which requires the driver to breathe into the device before starting the vehicle. If the IID detects that the alcohol level or blood alcohol content (BAC) is higher than the accepted value, the engine will not start. If the driver is not able to provide a clean breath sample, the IID will log the event, warn the driver, and then start up an alarm. The purpose of the IID is to prevent accidents due to driving under the influence (DUI). With the rise of the two-wheeled vehicle in the Philippines due to its mobility and purchasing power, IIDs are still mainly installed on four-wheeled vehicles. Even though riding the motorcycle when drunk is more dangerous, there are only a small number of installed devices on motorcycles and scooters. The general objective of this study was to develop a system with hardware and software components that would implement IID on motorcycles. The study employed a descriptive method of research. The study also concluded the following: the infrared must have a point-to-point communication, the breathalyzer on the helmet should react to ethanol, the microcontroller on the motorcycle should accept all IR signals from the helmet and interpret it and the GPS shield should have an unobstructed line-of-sight communication with the GPS satellites.

Keywords: blood alcohol content, breathalyser, driving under the influence, global positioning system, global system for mobile communication

Procedia PDF Downloads 325
1838 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures

Authors: Murast Dicleli, Ali SalemMilani

Abstract:

In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.

Keywords: seismic, isolation, damper, adaptive stiffness

Procedia PDF Downloads 455
1837 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 66
1836 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler

Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury

Abstract:

An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.

Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler

Procedia PDF Downloads 147
1835 Fabrication of Periodic Graphene-Like Structure of Zinc Oxide Piezoelectric Device

Authors: Zi-Gui Huang, Shen-Hsien Hu

Abstract:

This study proposes a fabrication of phononic-crystal acoustic wave device. A graphene-like atomic structure was adopted as the main research subject, and a graphene-like structure was designed using piezoelectric material zinc oxide and its periodic boundary conditions were defined using the finite element method. The effects of a hexagonal honeycomb structure were investigated regarding the band gap phenomenon. The use of micro-electromechanical systems process technology to make the film etched micron graphics, designed to produce four kinds of different piezoelectric structure (plat, periodic, single defect and double defects). Frequency response signals and phase change were also measured in this paper.

Keywords: MEMS, phononic crystal, piezoelectric material, Zinc oxide

Procedia PDF Downloads 536
1834 Lightweight and Seamless Distributed Scheme for the Smart Home

Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro

Abstract:

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Keywords: authentication, key-session, security, wireless sensors

Procedia PDF Downloads 317
1833 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration

Authors: Long Kim Vu, Ban Dang Nguyen

Abstract:

In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.

Keywords: bolt self-loosening, contact state, finite element method, FEM, helical thread modeling

Procedia PDF Downloads 201
1832 Proposed Terminal Device for End-to-End Secure SMS in Cellular Networks

Authors: Neetesh Saxena, Narendra S. Chaudhari

Abstract:

Nowadays, SMS is a very popular mobile service and even the poor, illiterate people and those living in rural areas use SMS service very efficiently. Although many mobile operators have already started 3G and 4G services, 2G services are still being used by the people in many countries. In 2G (GSM), only encryption provided is between the MS and the BTS, there is no end-to-end encryption available. Sometimes we all need to send some confidential message to other person containing bank account number, some password, financial details, etc. Normally, a message is sent in plain text only to the recipient and it is not an acceptable standard for transmitting such important and confidential information. Authors propose an end-to-end encryption approach by proposing a terminal for sending/receiving a secure message. An asymmetric key exchange algorithm is used in order to transmit secret shared key securely to the recipient. The proposed approach with terminal device provides authentication, confidentiality, integrity and non-repudiation.

Keywords: AES, DES, Diffie-Hellman, ECDH, A5, SMS

Procedia PDF Downloads 414
1831 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D

Authors: Nima E. Gorji

Abstract:

The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.

Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling

Procedia PDF Downloads 328
1830 Designing Nanowire Based Honeycomb Photonic Crystal Surface Emitting Lasers

Authors: Balthazar Temu*, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li

Abstract:

Photonic Crystal Surface Emitting Lasers (PCSELs) are structures which are made up of a periodically repeating patterns with a unit cell consisting of changes in refractive index. The variation in refractive index can be achieved by etching air holes in a semiconductor material to get hole based PCSELs or by growing nanowires to get nanowire based PCSELs. As opposed to hole based PCSELs, nanowire based PCSELs can be integrated on silicon platform without threading dislocations, thanks to the small area of the nanowire that is in contact with silicon substrate that relaxes the strain. Nanowire based PCSELs reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) and/or variable wavelength devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we study how the resonance wavelength and the Q-factor of three different resonance modes of the device vary when their design parameters are tuned. Through this study we establish the design and simulation of devices operating in 970nm wavelength band, O band and in the C band with quality factors up to 7X〖10〗^7 . We also investigate the quality factors of undeformed device and establish that the band edge close to 970nm can attain high quality factor when the device is undeformed and the quality factor degrades as the device is deformed.

Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, simulation of photonic crystal surface emitting laser

Procedia PDF Downloads 9
1829 Meniscus Guided Film Coating for Large-Area Perovskite Solar Cells

Authors: Gizachew Belay Adugna, Yu-Tai Tao

Abstract:

Perovskite solar cells (PSCs) have been gaining impressive progress with excellent power conversion efficiency (PCE) of 25.5% in small-area devices. However, the conventional film coating approach is not applicable to large-area module fabrication. Meniscus-guided coating, including blade coating, slot-die coating, and bar coating, is solution processing and promising for large-area and cost-effective film coating to industrial-scale PSCs. Here, we develop simple and scalable solution shearing (SS) and bar coating (BC) methods to coat all layers on large-area (10x10 cm²) substrate in FTO/c-TiO₂/mp-TiO₂/ CH₃NH₃PbI₃/Spiro-OMeTAD/Ag device structure, except the Ag electrode. All solution-sheared PSC exhibited a champion power conversion efficiency of 15.89% in the conational DMF/DMSO solvent. Whereas a very high PCE of 20.30% compared to the controlled spin-coated device (SC, 17.60%) was achieved from the large area sheared perovskite film in a green ACN/MA solvent. Similarly, a remarkable PCE of 18.50% was achieved for a device fabricated from a large-area perovskite film in a simpler and more compatible Bar-coating system. This strategy demonstrates the huge potential for module fabrication and future PSC commercialization.

Keywords: Perovskite solar cells, larger area film coating, meniscus-guided film coating, solution-shearing, bar-coating, power conversion efficiency

Procedia PDF Downloads 72
1828 128-Multidetector CT for Assessment of Optimal Depth of Electrode Array Insertion in Cochlear Implant Operations

Authors: Amina Sultan, Mohamed Ghonim, Eman Oweida, Aya Abdelaziz

Abstract:

Objective: To assess the diagnostic reliability of multi-detector CT in pre and post-operative evaluation of cochlear implant candidates. Material and Methods: The study includes 40 patients (18 males and 22 females); mean age 5.6 years. They were classified into two groups: Group A (20 patients): cochlear implant device was Nucleus-22 and Group B (20 patients): the device was MED-EL. Cochlear length (CL) and cochlear height (CH) were measured pre-operatively by 128-multidetector CT. Electrode length (EL) and insertion depth angle (α) were measured post-operatively by MDCT. Results: For Group A mean CL was 9.1 mm ± 0.4 SD; mean CH was 4.1 ± 0.3 SD; mean EL was 18 ± 2.7 SD; mean α angle was 299.05 ± 37 SD. Significant statistical correlation (P < 0.05) was found between preoperative CL and post-operative EL (r²=0.6); as well as EL and α angle (r²=0.7). Group B's mean CL was 9.1 mm ± 0.3 SD; mean CH was 4.1 ± 0.4 SD; mean EL was 27 ± 2.1 SD; mean α angle was 287.6 ± 41.7 SD. Significant statistical correlation was found between CL and EL (r²= 0.6) and α angle (r²=0.5). Also, a strong correlation was found between EL and α angle (r²=0.8). Significant statistical difference was detected between the two devices as regards to the electrode length. Conclusion: Multidetector CT is a reliable tool for preoperative planning and post-operative evaluation of the outcomes of cochlear implant operations. Cochlear length is a valuable prognostic parameter for prediction of the depth of electrode array insertion which can influence criteria of device selection.

Keywords: angle of insertion (α angle), cochlear implant (CI), cochlear length (CL), Multidetector Computed Tomography (MDCT)

Procedia PDF Downloads 191
1827 Investigation of the Role of Friction in Reducing Pedestrian Injuries in Accidents at Intersections

Authors: Seyed Abbas Tabatabaei, Afshin Ghanbarzadeh, Mehdi Abidizadeh

Abstract:

Nowadays the subject of road traffic accidents and the high social and economic costs due to them is the most fundamental problem that experts and providers of transport and traffic brought to a challenge. One of the most effective measures is to enhance the skid resistance of road surface. This research aims to study the intersection of one case in Ahwaz and the effect of increasing the skid resistance in reducing pedestrian injuries in accidents at intersections. In this research the device was developed to measure the coefficient of friction and tried the rules and practices of it have a high similarity with the Locked Wheel Trailer. This device includes a steel frame, wheels, hydration systems, and force gauge. The output of the device is that the force gauge registers. By investigate this data and applying the relationships relative surface coefficient of friction is obtained. Friction coefficient data for the current state and the state of the new pavement are obtained and plotted on the graphs based on the graphs we can compare the two situations and speed at the moment of collision between the two modes are compared. The results show that increasing the coefficient of friction to what extent can be effective on the severity and number of accidents.

Keywords: intersection, coefficient of friction, skid resistance, locked wheels, accident, pedestrian

Procedia PDF Downloads 326
1826 The Design of PFM Mode DC-DC Converter with DT-CMOS Switch

Authors: Jae-Chang Kwak, Yong-Seo Koo

Abstract:

The high efficiency power management IC (PMIC) with switching device is presented in this paper. PMIC is controlled with PFM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS (DT-CMOS) with low on-resistance is designed to decrease conduction loss. The threshold voltage of DT-CMOS drops as the gate voltage increase, resulting in a much higher current handling capability than standard MOSFET. PFM control circuits consist of a generator, AND gate and comparator. The generator is made to have 1.2MHz oscillation voltage. The DC-DC converter based on PFM control circuit and low on-resistance switching device is presented in this paper.

Keywords: DT-CMOS, PMIC, PFM, DC-DC converter

Procedia PDF Downloads 448
1825 Modeling and Design of E-mode GaN High Electron Mobility Transistors

Authors: Samson Mil'shtein, Dhawal Asthana, Benjamin Sullivan

Abstract:

The wide energy gap of GaN is the major parameter justifying the design and fabrication of high-power electronic components made of this material. However, the existence of a piezo-electrics in nature sheet charge at the AlGaN/GaN interface complicates the control of carrier injection into the intrinsic channel of GaN HEMTs (High Electron Mobility Transistors). As a result, most of the transistors created as R&D prototypes and all of the designs used for mass production are D-mode devices which introduce challenges in the design of integrated circuits. This research presents the design and modeling of an E-mode GaN HEMT with a very low turn-on voltage. The proposed device includes two critical elements allowing the transistor to achieve zero conductance across the channel when Vg = 0V. This is accomplished through the inclusion of an extremely thin, 2.5nm intrinsic Ga₀.₇₄Al₀.₂₆N spacer layer. The added spacer layer does not create piezoelectric strain but rather elastically follows the variations of the crystal structure of the adjacent GaN channel. The second important factor is the design of a gate metal with a high work function. The use of a metal gate with a work function (Ni in this research) greater than 5.3eV positioned on top of n-type doped (Nd=10¹⁷cm⁻³) Ga₀.₇₄Al₀.₂₆N creates the necessary built-in potential, which controls the injection of electrons into the intrinsic channel as the gate voltage is increased. The 5µm long transistor with a 0.18µm long gate and a channel width of 30µm operate at Vd=10V. At Vg =1V, the device reaches the maximum drain current of 0.6mA, which indicates a high current density. The presented device is operational at frequencies greater than 10GHz and exhibits a stable transconductance over the full range of operational gate voltages.

Keywords: compound semiconductors, device modeling, enhancement mode HEMT, gallium nitride

Procedia PDF Downloads 259
1824 Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study

Authors: P. Gil, F. Charrua-Santos, A. A. Baptista, S. Azevedo, A. Espirito-Santo, J. Páscoa

Abstract:

Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements.

Keywords: lean manufacturing, augmented reality, case studies, value

Procedia PDF Downloads 622
1823 Cortex-M3 Based Virtual Platform Implementation for Software Development

Authors: Jun Young Moon, Hyeonggeon Lee, Jong Tae Kim

Abstract:

In this paper, we present Cortex-M3 based virtual platform which can virtualize wearable hardware platform and evaluate hardware performance. Cortex-M3 is very popular microcontroller in wearable devices, hardware sensors and display devices. This platform can be used to implement software layer for specific hardware architecture. By using the proposed platform the software development process can be parallelized with hardware development process. We present internal mechanism to implement the proposed virtual platform and describe how to use the proposed platform to develop software by using case study which is low cost wearable device that uses Cortex-M3.

Keywords: electronic system level design, software development, virtual platform, wearable device

Procedia PDF Downloads 373
1822 Design and Application of NFC-Based Identity and Access Management in Cloud Services

Authors: Shin-Jer Yang, Kai-Tai Yang

Abstract:

In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.

Keywords: cloud service, multi-tenancy, NFC, IAM, mobile device

Procedia PDF Downloads 433
1821 Study on Angle Measurement Interferometer around Any Axis Direction Selected by Transmissive Liquid Crystal Device

Authors: R. Furutani, G. Kikuchi

Abstract:

Generally, the optical interferometer system is too complicated and difficult to change the measurement items, pitch, yaw, and row, etc. In this article, the optical interferometer system using the transmissive Liquid Crystal Device (LCD) as the switch of the optical path was proposed. At first, the normal optical interferometer, Michelson interferometer, was constructed to measure the pitch angle and the yaw angle. In this optical interferometer, the ball lenses with the refractive indices of 2.0 were used as the retroreflectors. After that, the transmissive LCD was introduced as the switch to select the adequate optical path. In this article, these optical systems were constructed. Pitch measurement interferometer and yaw measurement interferometer were switched by the transmissive LCD. When the LCD was open for the yaw measurement, the yaw was sufficiently measured and optical path for the pitch measurement was blocked. On the other hand, when the LCD was open for the pitch measurement, the pitch was measured and the optical path for the yaw measurement was also blocked. In this article, the results of both of pitch measurement and yaw measurement were shown, and the result of blocked yaw measurement and pitch measurement were shown. As this measurement system was based on Michelson interferometer, the other measuring items, the deviation along the optical axis, the vertical deviation to the optical axis and row angle, could be measured by the additional ball lenses and the additional switching in future work.

Keywords: any direction angle, ball lens, laser interferometer, transmissive liquid crystal device

Procedia PDF Downloads 159