Search results for: general linear regression model
23987 Blood Glucose Measurement and Analysis: Methodology
Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali
Abstract:
There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system
Procedia PDF Downloads 45923986 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives
Authors: M. Ouassaf, S. Belaidi
Abstract:
Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole
Procedia PDF Downloads 11523985 Count Regression Modelling on Number of Migrants in Households
Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu
Abstract:
The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones
Procedia PDF Downloads 28323984 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 49823983 A Filtering Algorithm for a Nonlinear State-Space Model
Authors: Abdullah Eqal Al Mazrooei
Abstract:
Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model
Procedia PDF Downloads 37523982 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model
Procedia PDF Downloads 4023981 The Examination of Organizational DNA of General Directorate of Youth and Sport Organization of Fars Province Based on Hnald Model
Authors: Mehdi Rastegari Ghiri, Mohammad Reza Baradaran, Zahra Mirsanjari
Abstract:
The aim of the present study was the investigation of DNA Corporate General Administration of Sports and Youth in Fars province. The descriptive research method is a survey that was conducted by field survey. For data collection, questionnaires were used that designed based on Hnald and Silverman model. In this model the organizational DNA model is stated in four types: objective, individualistic, field-oriented and Spiritual. The reliability of the questionnaire by the researcher obtained by using Cronbach's alpha equal to 89/0 respectively. The statistical population includes all managers and specialists of Fars Province Directorate of Youth and Sport that 48 of them were selected as the samples of the research. The results showed the organizational DNA Directorate General for Youth and Sports Organization of Fars province has a field –oriented and nearly field-oriented DNA.Keywords: organizational, DNA, Hnald, Silverman model
Procedia PDF Downloads 44923980 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint
Authors: M. Najafi, F. Rahimi Dehgolan
Abstract:
In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.Keywords: non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method
Procedia PDF Downloads 37023979 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.Keywords: logistic regression, decisions tree, random forest, VAR model
Procedia PDF Downloads 44623978 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: optimal control, stochastic systems, random dither, quantization
Procedia PDF Downloads 44423977 Evaluation of a Piecewise Linear Mixed-Effects Model in the Analysis of Randomized Cross-over Trial
Authors: Moses Mwangi, Geert Verbeke, Geert Molenberghs
Abstract:
Cross-over designs are commonly used in randomized clinical trials to estimate efficacy of a new treatment with respect to a reference treatment (placebo or standard). The main advantage of using cross-over design over conventional parallel design is its flexibility, where every subject become its own control, thereby reducing confounding effect. Jones & Kenward, discuss in detail more recent developments in the analysis of cross-over trials. We revisit the simple piecewise linear mixed-effects model, proposed by Mwangi et. al, (in press) for its first application in the analysis of cross-over trials. We compared performance of the proposed piecewise linear mixed-effects model with two commonly cited statistical models namely, (1) Grizzle model; and (2) Jones & Kenward model, used in estimation of the treatment effect, in the analysis of randomized cross-over trial. We estimate two performance measurements (mean square error (MSE) and coverage probability) for the three methods, using data simulated from the proposed piecewise linear mixed-effects model. Piecewise linear mixed-effects model yielded lowest MSE estimates compared to Grizzle and Jones & Kenward models for both small (Nobs=20) and large (Nobs=600) sample sizes. It’s coverage probability were highest compared to Grizzle and Jones & Kenward models for both small and large sample sizes. A piecewise linear mixed-effects model is a better estimator of treatment effect than its two competing estimators (Grizzle and Jones & Kenward models) in the analysis of cross-over trials. The data generating mechanism used in this paper captures two time periods for a simple 2-Treatments x 2-Periods cross-over design. Its application is extendible to more complex cross-over designs with multiple treatments and periods. In addition, it is important to note that, even for single response models, adding more random effects increases the complexity of the model and thus may be difficult or impossible to fit in some cases.Keywords: Evaluation, Grizzle model, Jones & Kenward model, Performance measures, Simulation
Procedia PDF Downloads 12223976 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 8623975 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 15523974 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study
Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen
Abstract:
Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.Keywords: anesthesia nurses, burnout, job, turnover intention
Procedia PDF Downloads 29623973 The Effect of Second Victim-Related Distress on Work-Related Outcomes in Tertiary Care, Kelantan, Malaysia
Authors: Ahmad Zulfahmi Mohd Kamaruzaman, Mohd Ismail Ibrahim, Ariffin Marzuki Mokhtar, Maizun Mohd Zain, Saiful Nazri Satiman, Mohd Najib Majdi Yaacob
Abstract:
Background: Aftermath any patient safety incidents, the involved healthcare providers possibly sustained second victim-related distress (second victim distress and reduced their professional efficacy), with subsequent negative work-related outcomes or vice versa cultivating resilience. This study aimed to investigate the factors affecting negative work-related outcomes and resilience, with the triad of support; colleague, supervisor, and institutional support as the hypothetical mediators. Methods: This was a cross sectional study recruiting a total of 733 healthcare providers from three tertiary care in Kelantan, Malaysia. Three steps of hierarchical linear regression were developed for each outcome; negative work-related outcomes and resilience. Then, four multiple mediator models of support triad were analyzed. Results: Second victim distress, professional efficacy, and the support triad contributed significantly for each regression model. In the pathway of professional efficacy on each negative work-related outcomes and resilience, colleague support partially mediated the relationship. As for second victim distress on negative work related outcomes, colleague and supervisor support were the partial mediator, and on resilience; all support triad also produced a similar effect. Conclusion: Second victim distress, professional efficacy, and the support triad influenced the relationship with the negative work-related outcomes and resilience. Support triad as the mediators ameliorated the effect in between and explained the urgency of having good support for recovery post encountering patient safety incidents.Keywords: second victims, patient safety incidents, hierarchical linear regression, mediation, support
Procedia PDF Downloads 10923972 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia PDF Downloads 49923971 Automating and Optimization Monitoring Prognostics for Rolling Bearing
Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe
Abstract:
This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.Keywords: bearings, automatization, optimization, prognosis, classification, defect detection
Procedia PDF Downloads 12023970 Modeling the Impacts of Road Construction on Lands Values
Authors: Maha Almumaiz, Harry Evdorides
Abstract:
Change in land value typically occurs when a new interurban road construction causes an increase in accessibility; this change in the adjacent lands values differs according to land characteristics such as geographic location, land use type, land area and sale time (appraisal time). A multiple regression model is obtained to predict the percent change in land value (CLV) based on four independent variables namely land distance from the constructed road, area of land, nature of land use and time from the works completion of the road. The random values of percent change in land value were generated using Microsoft Excel with a range of up to 35%. The trend of change in land value with the four independent variables was determined from the literature references. The statistical analysis and model building process has been made by using the IBM SPSS V23 software. The Regression model suggests, for lands that are located within 3 miles as the straight distance from the road, the percent CLV is between (0-35%) which is depending on many factors including distance from the constructed road, land use, land area and time from works completion of the new road.Keywords: interurban road, land use types, new road construction, percent CLV, regression model
Procedia PDF Downloads 26623969 Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications
Authors: Sung-Won Seo, Jang-Young Choi
Abstract:
The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system.Keywords: wave energy converter, permanent magnet linear synchronous generator, finite element method, analytical method
Procedia PDF Downloads 30023968 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning
Authors: S. A. N. Danushka, T. A. Weerasinghe
Abstract:
The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model
Procedia PDF Downloads 19723967 Extension of Positive Linear Operator
Authors: Manal Azzidani
Abstract:
This research consideres the extension of special functions called Positive Linear Operators. the bounded linear operator which defined from normed space to Banach space will extend to the closure of the its domain, And extend identified linear functional on a vector subspace by Hana-Banach theorem which could be generalized to the positive linear operators.Keywords: extension, positive operator, Riesz space, sublinear function
Procedia PDF Downloads 51723966 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements
Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva
Abstract:
The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN
Procedia PDF Downloads 44423965 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit
Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey
Abstract:
Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D
Procedia PDF Downloads 18323964 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover
Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein
Abstract:
A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory
Procedia PDF Downloads 56623963 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 31023962 Choice of Sleeper and Rail Fastening Using Linear Programming Technique
Authors: Luciano Oliveira, Elsa Vásquez-Alvarez
Abstract:
The increase in rail freight transport in Brazil in recent years requires new railway lines and the maintenance of existing ones, which generates high costs for concessionaires. It is in this context that this work is inserted, whose objective is to propose a method that uses Binary Linear Programming for the choice of sleeper and rail fastening, from various options, including the way to apply these materials, with focus to minimize costs. Unit value information, the life cycle each of material type, and service expenses are considered. The model was implemented in commercial software using real data for its validation. The formulated model can be replicated to support decision-making for other railway projects in the choice of sleepers and rail fastening with lowest cost.Keywords: linear programming, rail fastening, rail sleeper, railway
Procedia PDF Downloads 19923961 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 39523960 Deriving an Index of Adoption Rate and Assessing Factors Affecting Adoption of an Agroforestry-Based Farming System in Dhanusha District, Nepal
Authors: Arun Dhakal, Geoff Cockfield, Tek Narayan Maraseni
Abstract:
This paper attempts to fulfil the gap in measuring adoption in agroforestry studies. It explains the derivation of an index of adoption rate in a Nepalese context and examines the factors affecting adoption of agroforestry-based land management practice (AFLMP) in the Dhanusha District of Nepal. Data about the different farm practices and the factors (bio-physical, socio-economic) influencing adoption were collected during focus group discussion and from the randomly selected households using a household survey questionnaire, respectively. A multivariate regression model was used to determine the factors. The factors (variables) found to significantly affect adoption of AFLMP were: farm size, availability of irrigation water, education of household heads, agricultural labour force, frequency of visits by extension workers, expenditure on farm inputs purchase, household’s experience in agroforestry, and distance from home to government forest. The regression model explained about 75% of variation in adoption decision. The model rejected ‘erosion hazard’, ‘flood hazard’ and ‘gender’ as determinants of adoption, which in case of single agroforestry practice were major variables and played positive role. Out of eight variables, farm size played the most powerful role in explaining the variation in adoption, followed by availability of irrigation water and education of household heads. The results of this study suggest that policies to promote the provision of irrigation water, extension services and motivation to obtaining higher education would probably provide the incentive to adopt agroforestry elsewhere in the terai of Nepal.Keywords: agroforestry, adoption index, determinants of adoption, step-wise linear regression, Nepal
Procedia PDF Downloads 50323959 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 13023958 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland
Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli
Abstract:
This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.Keywords: analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges
Procedia PDF Downloads 162