Search results for: corpus based approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36015

Search results for: corpus based approach

35775 Classifying Facial Expressions Based on a Motion Local Appearance Approach

Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez

Abstract:

This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.

Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach

Procedia PDF Downloads 413
35774 Participatory Monitoring Strategy to Address Stakeholder Engagement Impact in Co-creation of NBS Related Project: The OPERANDUM Case

Authors: Teresa Carlone, Matteo Mannocchi

Abstract:

In the last decade, a growing number of International Organizations are pushing toward green solutions for adaptation to climate change. This is particularly true in the field of Disaster Risk Reduction (DRR) and land planning, where Nature-Based Solutions (NBS) had been sponsored through funding programs and planning tools. Stakeholder engagement and co-creation of NBS is growing as a practice and research field in environmental projects, fostering the consolidation of a multidisciplinary socio-ecological approach in addressing hydro-meteorological risk. Even thou research and financial interests are constantly spread, the NBS mainstreaming process is still at an early stage as innovative concepts and practices make it difficult to be fully accepted and adopted by a multitude of different actors to produce wide scale societal change. The monitoring and impact evaluation of stakeholders’ participation in these processes represent a crucial aspect and should be seen as a continuous and integral element of the co-creation approach. However, setting up a fit for purpose-monitoring strategy for different contexts is not an easy task, and multiple challenges emerge. In this scenario, the Horizon 2020 OPERANDUM project, designed to address the major hydro-meteorological risks that negatively affect European rural and natural territories through the co-design, co-deployment, and assessment of Nature-based Solution, represents a valid case study to test a monitoring strategy from which set a broader, general and scalable monitoring framework. Applying a participative monitoring methodology, based on selected indicators list that combines quantitative and qualitative data developed within the activity of the project, the paper proposes an experimental in-depth analysis of the stakeholder engagement impact in the co-creation process of NBS. The main focus will be to spot and analyze which factors increase knowledge, social acceptance, and mainstreaming of NBS, promoting also a base-experience guideline to could be integrated with the stakeholder engagement strategy in current and future similar strongly collaborative approach-based environmental projects, such as OPERANDUM. Measurement will be carried out through survey submitted at a different timescale to the same sample (stakeholder: policy makers, business, researchers, interest groups). Changes will be recorded and analyzed through focus groups in order to highlight causal explanation and to assess the proposed list of indicators to steer the conduction of similar activities in other projects and/or contexts. The idea of the paper is to contribute to the construction of a more structured and shared corpus of indicators that can support the evaluation of the activities of involvement and participation of various levels of stakeholders in the co-production, planning, and implementation of NBS to address climate change challenges.

Keywords: co-creation and collaborative planning, monitoring, nature-based solution, participation & inclusion, stakeholder engagement

Procedia PDF Downloads 113
35773 Integrating Practice-Based Learning in Accounting Education: Bolstering Students Engagement and Learning

Authors: Humayun Murshed, Shibly Abdullah

Abstract:

This paper focuses on sharing experience gained through a pilot project undertaken to teach an introductory accounting subject linking real-life ground realities with the fundamental concepts of accounting. In view of the practical dimensions of Accounting it has been observed that adopting a teaching approach based on practical illustrations help students to motivate and generate interests to take accounting profession as their career. The paper reports that students’ perception about accounting as ‘dreary’ has been changed to ‘interesting’ due to adoption of practice based approach in teaching. The authors argue that ‘concept mapping’ can play a vital role in facilitating practice based education in accounting which promotes a rewarding learning experience among the students. The paper considers taking into account generic skills development, student centric learning, development of innovative assessment tasks, making students aware of the potential benefits of practice based education primarily through concept mapping, and engaging them both inside and outside of the class rooms are critical for ensuring success of this approach.

Keywords: accounting education, pedagogy, practice-based education, concept mapping

Procedia PDF Downloads 344
35772 Entrepreneurial Creativity in Socio-Economic Context

Authors: Anna Czarczynska

Abstract:

Creativity is taken as a requirement for a personal anti-fragile career path in the context of regional competitive advantage in the terms of socio-economics creative environment. At the personal level, the competence and value-based approach to creativity are proposed, is an elaboration of the resource-based view of the group of individuals selected from given country. Entrepreneurial creativity competence (measured by the Schein anchor questionnaire) is based on an independent way of thinking and empowerment presents one aspect of creative capability, however quickly verified by the market, that’s why we treat this as a basic exemplification of average creative attitude combine with the entrepreneurial attitude. This introductory instrument enables further scientific research based on the same group in the context of multi-cultural external creative or the non-creative environment.

Keywords: creativity, value-based approach, entrepreneurship, regional culture

Procedia PDF Downloads 201
35771 Systems Versioning: A Features-Based Meta-Modeling Approach

Authors: Ola A. Younis, Said Ghoul

Abstract:

Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.

Keywords: features, meta-modeling, semantic modeling, SPL, VCS, versioning

Procedia PDF Downloads 446
35770 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes

Procedia PDF Downloads 416
35769 Modeling False Statements in Texts

Authors: Francielle A. Vargas, Thiago A. S. Pardo

Abstract:

According to the standard philosophical definition, lying is saying something that you believe to be false with the intent to deceive. For deception detection, the FBI trains its agents in a technique named statement analysis, which attempts to detect deception based on parts of speech (i.e., linguistics style). This method is employed in interrogations, where the suspects are first asked to make a written statement. In this poster, we model false statements using linguistics style. In order to achieve this, we methodically analyze linguistic features in a corpus of fake news in the Portuguese language. The results show that they present substantial lexical, syntactic and semantic variations, as well as punctuation and emotion distinctions.

Keywords: deception detection, linguistics style, computational linguistics, natural language processing

Procedia PDF Downloads 218
35768 Metaphor Scenarios of Translation: An Applied Linguistic Approach to Discourse Analysis

Authors: Elizabeta Eduard Baltadzhyan

Abstract:

This work presents a stage of an investigation about the metaphorical conceptualization of translation in Bulgarian language. The material is a linguistic corpus consisting of 38 interviews with several generations Bulgarian translators and interpreters. The aim of this presentation is to inform about the results of the organization of the source concepts in scenarios that dominate the discursive manifestations of the source domains. The data show that, on the one hand, translators from different generations share some basic assignments of source and target domains, e. g. translation is a journey or translation is an artistic presentation. On the other hand, there are some specific scenarios motivated by significant changes in the socio-economic structure of the country and the valuation of the translator´s mission and work, e. g., the scenario of pleasure and addictive activity marks the generation that enjoy great support and stimulation from the socialist government, whereas the war scenario marks the generation during the Perestroika time.

Keywords: Bulgarian language, metaphor, scenario, translation

Procedia PDF Downloads 297
35767 The Women-In-Mining Discourse: A Study Combining Corpus Linguistics and Discourse Analysis

Authors: Ylva Fältholm, Cathrine Norberg

Abstract:

One of the major threats identified to successful future mining is that women do not find the industry attractive. Many attempts have been made, for example in Sweden and Australia, to create organizational structures and mining communities attractive to both genders. Despite such initiatives, many mining areas are developing into gender-segregated fly-in/fly out communities dominated by men with both social and economic consequences. One of the challenges facing many mining companies is thus to break traditional gender patterns and structures. To do this increased knowledge about gender in the context of mining is needed. Since language both constitutes and reproduces knowledge, increased knowledge can be gained through an exploration and description of the mining discourse from a gender perspective. The aim of this study is to explore what conceptual ideas are activated in connection to the physical/geographical mining area and to work within the mining industry. We use a combination of critical discourse analysis implying close reading of selected texts, such as policy documents, interview materials, applications and research and innovation agendas, and analyses of linguistic patterns found in large language corpora covering millions of words of contemporary language production. The quantitative corpus data serves as a point of departure for the qualitative analysis of the texts, that is, suggests what patterns to explore further. The study shows that despite technological and organizational development, one of the most persistent discourses about mining is the conception of dangerous and unfriendly areas infused with traditional notions of masculinity ideals and manual hard work. Although some of the texts analyzed highlight gender issues, and describe gender-equalizing initiatives, such as wage-mapping systems, female networks and recruitment efforts for women executives, and thereby render the discourse less straightforward, it is shown that these texts are not unambiguous examples of a counter-discourse. They rather illustrate that discourses are not stable but include opposing discourses, in dialogue with each other. For example, many texts highlight why and how women are important to mining, at the same time as they suggest that gender and diversity are all about women: why mining is a problem for them, how they should be, and what they should do to fit in. Drawing on a constitutive view of discourse, knowledge about such conflicting perceptions of women is a prerequisite for succeeding in attracting women to the mining industry and thereby contributing to the development of future mining.

Keywords: discourse, corpus linguistics, gender, mining

Procedia PDF Downloads 264
35766 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement

Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu

Abstract:

The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.

Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain

Procedia PDF Downloads 122
35765 Algorithm for Information Retrieval Optimization

Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran

Abstract:

When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (

Keywords: information retrieval, document relevance, performance measures, personalization

Procedia PDF Downloads 241
35764 Variation in Complement Order in English: Implications for Interlanguage Syntax

Authors: Juliet Udoudom

Abstract:

Complement ordering principles of natural language phrases (XPs) stipulate that Head terms be consistently placed phrase initially or phrase-finally, yielding two basic theoretical orders – Head – Complement order or Complement – Head order. This paper examines the principles which determine complement ordering in English V- and N-bar structures. The aim is to determine the extent to which complement linearisations in the two phrase types are consistent with the two theoretical orders outlined above given the flexible and varied nature of natural language structures. The objective is to see whether there are variation(s) in the complement linearisations of the XPs studied and the implications which such variations hold for the inter-language syntax of English and Ibibio. A corpus-based approach was employed in obtaining the English data. V- and -N – bar structures containing complement structures were isolated for analysis. Data were examined from the perspective of the X-bar and Government – theories of Chomsky’s (1981) Government-Binding format. Findings from the analysis show that in V – bar structures in English, heads are consistently placed phrase – initially yielding a Head – Complement order; however, complement linearisation in the N – bar structures studied exhibited parametric variations. Thus, in some N – bar structures in English the nominal head is ordered to the left whereas in others, the head term occurs to the right. It may therefore be concluded that the principles which determine complement ordering are both Language – Particular and Phrase – specific following insights provided within Phrasal Syntax.

Keywords: complement order, complement–head order, head–complement order, language–particular principles

Procedia PDF Downloads 348
35763 Design of Bayesian MDS Sampling Plan Based on the Process Capability Index

Authors: Davood Shishebori, Mohammad Saber Fallah Nezhad, Sina Seifi

Abstract:

In this paper, a variable multiple dependent state (MDS) sampling plan is developed based on the process capability index using Bayesian approach. The optimal parameters of the developed sampling plan with respect to constraints related to the risk of consumer and producer are presented. Two comparison studies have been done. First, the methods of double sampling model, sampling plan for resubmitted lots and repetitive group sampling (RGS) plan are elaborated and average sample numbers of the developed MDS plan and other classical methods are compared. A comparison study between the developed MDS plan based on Bayesian approach and the exact probability distribution is carried out.

Keywords: MDS sampling plan, RGS plan, sampling plan for resubmitted lots, process capability index (PCI), average sample number (ASN), Bayesian approach

Procedia PDF Downloads 301
35762 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 229
35761 Seismic Design Approach for Areas with Low Seismicity

Authors: Mogens Saberi

Abstract:

The following article focuses on a new seismic design approach for Denmark. Denmark is located in a low seismic zone and up till now a general and very simplified approach has been used to accommodate the effect of seismic loading. The current used method is presented and it is found that the approach is on the unsafe side for many building types in Denmark. The damages during time due to earth quake is presented and a seismic map for Denmark is developed and presented. Furthermore, a new design approach is suggested and compared to the existing one. The new approach is relatively simple but captures the effect of seismic loading more realistic than the existing one. The new approach is believed to the incorporated in the Danish Deign Code for building structures.

Keywords: low seismicity, new design approach, earthquakes, Denmark

Procedia PDF Downloads 365
35760 Measuring the Economic Impact of Cultural Heritage: Comparative Analysis of the Multiplier Approach and the Value Chain Approach

Authors: Nina Ponikvar, Katja Zajc Kejžar

Abstract:

While the positive impacts of heritage on a broad societal spectrum have long been recognized and measured, the economic effects of the heritage sector are often less visible and frequently underestimated. At macro level, economic effects are usually studied based on one of the two mainstream approach, i.e. either the multiplier approach or the value chain approach. Consequently, there is limited comparability of the empirical results due to the use of different methodological approach in the literature. Furthermore, it is also not clear on which criteria the used approach was selected. Our aim is to bring the attention to the difference in the scope of effects that are encompassed by the two most frequent methodological approaches to valuation of economic effects of cultural heritage on macroeconomic level, i.e. the multiplier approach and the value chain approach. We show that while the multiplier approach provides a systematic, theory-based view of economic impacts but requires more data and analysis, the value chain approach has less solid theoretical foundations and depends on the availability of appropriate data to identify the contribution of cultural heritage to other sectors. We conclude that the multiplier approach underestimates the economic impact of cultural heritage, mainly due to the narrow definition of cultural heritage in the statistical classification and the inability to identify part of the contribution of cultural heritage that is hidden in other sectors. Yet it is not possible to clearly determine whether the value chain method overestimates or underestimates the actual economic impact of cultural heritage since there is a risk that the direct effects are overestimated and double counted, but not all indirect and induced effects are considered. Accordingly, these two approaches are not substitutes but rather complementary. Consequently, a direct comparison of the estimated impacts is not possible and should not be done due to the different scope. To illustrate the difference of the impact assessment of the cultural heritage, we apply both approaches to the case of Slovenia in the 2015-2022 period and measure the economic impact of cultural heritage sector in terms of turnover, gross value added and employment. The empirical results clearly show that the estimation of the economic impact of a sector using the multiplier approach is more conservative, while the estimates based on value added capture a much broader range of impacts. According to the multiplier approach, each euro in cultural heritage sector generates an additional 0.14 euros in indirect effects and an additional 0.44 euros in induced effects. Based on the value-added approach, the indirect economic effect of the “narrow” heritage sectors is amplified by the impact of cultural heritage activities on other sectors. Accordingly, every euro of sales and every euro of gross value added in the cultural heritage sector generates approximately 6 euros of sales and 4 to 5 euros of value added in other sectors. In addition, each employee in the cultural heritage sector is linked to 4 to 5 jobs in other sectors.

Keywords: economic value of cultural heritage, multiplier approach, value chain approach, indirect effects, slovenia

Procedia PDF Downloads 75
35759 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 479
35758 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format

Authors: Utkan Caliskan

Abstract:

Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.

Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP

Procedia PDF Downloads 319
35757 The Effect of Behavioral and Risk Factors of Investment Growth on Stock Returns

Authors: Majid Lotfi Ghahroud, Seyed Jalal Tabatabaei, Ebrahim Karami, AmirArsalan Ghergherechi, Amir Ali Saeidi

Abstract:

In this study, the relationship between investment growth and stock returns of companies listed in Tehran Stock Exchange and whether their relationship -behavioral or risk factors- are discussed. Generally, there are two perspectives; risk-based approach and behavioral approach. According to the risk-based approach due to increase investment, systemic risk and consequently the stock returns are reduced. But due to the second approach, an excessive optimism or pessimism leads to assuming stock price with high investment growth in the past, higher than its intrinsic value and the price of stocks with lower investment growth, less than its intrinsic value. The investigation period is eight years from 2007 to 2014. The sample consisted of all companies listed on the Tehran Stock Exchange. The method is a portfolio test, and the analysis is based on the t-student test (t-test). The results indicate that there is a negative relationship between investment growth and stock returns of companies and this negative correlation is stronger for firms with higher cash flow. Also, the negative relationship between asset growth and stock returns is due to behavioral factors.

Keywords: behavioral theory, investment growth, risk-based theory, stock returns

Procedia PDF Downloads 156
35756 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing

Procedia PDF Downloads 130
35755 From the Bright Lights of the City to the Shadows of the Bush: Expanding Knowledge through a Case-Based Teaching Approach

Authors: Henriette van Rensburg, Betty Adcock

Abstract:

Concern about the lack of knowledge of quality teaching and teacher retention in rural and remote areas of Australia, has caused academics to improve pre-service teachers’ understanding of this problem. The participants in this study were forty students enrolled in an undergraduate educational course (EDO3341 Teaching in rural and remote communities) at the University of Southern Queensland in Toowoomba in 2012. This study involved an innovative case-based teaching approach in order to broaden their generally under-informed understanding of teaching in a rural and remote area. Three themes have been identified through analysing students’ critical reflections: learning expertise, case-based learning support and authentic learning. The outcomes identified the changes in pre-service teachers’ understanding after they have deepened their knowledge of the realities of teaching in rural and remote areas.

Keywords: rural and remote education, case based teaching, innovative education approach, higher education

Procedia PDF Downloads 492
35754 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 143
35753 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 638
35752 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies

Authors: Abdelhadi Adel, Kadri Ouahab

Abstract:

This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.

Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling

Procedia PDF Downloads 336
35751 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark

Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos

Abstract:

This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.

Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark

Procedia PDF Downloads 120
35750 Applying Knowledge Management and Attitude Based on Holistic Approach in Learning Andragogy, as an Effort to Solve Environmental Problems after Mining Activities

Authors: Aloysius Hardoko, Susilo

Abstract:

The root cause of environmental damage post coal mining activities as determined by the province of East Kalimantan as a corridor of economic activity masterplan acceleration of economic development expansion (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest posttest group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post coal mining activity.

Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental damage

Procedia PDF Downloads 241
35749 Competence-Based Human Resources Selection and Training: Making Decisions

Authors: O. Starineca, I. Voronchuk

Abstract:

Human Resources (HR) selection and training have various implementation possibilities depending on an organization’s abilities and peculiarities. We propose to base HR selection and training decisions about on a competence-based approach. HR selection and training of employees are topical as there is room for improvement in this field; therefore, the aim of the research is to propose rational decision-making approaches for an organization HR selection and training choice. Our proposals are based on the training development and competence-based selection approaches created within previous researches i.e. Analytic-Hierarchy Process (AHP) and Linear Programming. Literature review on non-formal education, competence-based selection, AHP form our theoretical background. Some educational service providers in Latvia offer employees training, e.g. motivation, computer skills, accounting, law, ethics, stress management, etc. that are topical for Public Administration. Competence-based approach is a rational base for rational decision-making in both HR selection and considering HR training.

Keywords: competence-based selection, human resource, training, decision-making

Procedia PDF Downloads 337
35748 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images

Authors: Qiang Wang, Hongyang Yu

Abstract:

Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.

Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations

Procedia PDF Downloads 80
35747 From Mathematics Project-Based Learning to Commercial Product Using Geometer’s Sketchpad (GSP)

Authors: Krongthong Khairiree

Abstract:

The purpose of this research study is to explore mathematics project-based learning approach and the use of technology in the context of school mathematics in Thailand. Data of the study were collected from 6 sample secondary schools and the students were 6-14 years old. Research findings show that through mathematics project-based learning approach and the use of GSP, students were able to make mathematics learning fun and challenging. Based on the students’ interviews they revealed that, with GSP, they were able to visualize and create graphical representations, which will enable them to develop their mathematical thinking skills, concepts and understanding. The students had fun in creating variety of graphs of functions which they can not do by drawing on graph paper. In addition, there are evidences to show the students’ abilities in connecting mathematics to real life outside the classroom and commercial products, such as weaving, patterning of broomstick, and ceramics design.

Keywords: mathematics, project-based learning, Geometer’s Sketchpad (GSP), commercial products

Procedia PDF Downloads 336
35746 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 134