Search results for: connection coefficients
1913 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 901912 The Connection between Body Composition and Blood Samples Results in Aesthetic Sports
Authors: Réka Kovács, György Téglásy, Szilvia Boros
Abstract:
Introduction: Aim of the Study: Low body fat percentage frequently occurs in aesthetic sports. Because of the unrealistic expectations, their quantity and quality of nutrition intake are inadequate. This can be linked to several health issues which appear in blood samples (iron, ferritin, creatine kinase, etc.). Our retrospective study aimed to investigate the connection between body composition (InBody 770 monitor) and blood samples test results among elite adolescent (14-18 years) and adult (19-28 years) aesthetic athletes. Methods: Data collection happened between 01.08.2022. and 15.08.2022 in National Institute for Sports Medicine, Budapest. The final group consisted of 111 athletes (n=111; adolescents: n=68, adults: n=43). We used descriptive statistics, a two-sample t-test, and correlation analysis with Microsoft Office Excel 2007 software. Our results were considered significant if p<0,05. Results: In 33,3% (37/111) we found low body fat percentage (girls and women: <12%, boys and men: <8%) and in 64% (71/111) high creatine kinase levels. Differences were found mainly in the adolescent group. We found a correlation between body weight and total cholesterol, visceral fat and triglyceride, hematocrit and iron-linking capacity, moreover body fat percentage and ferritin levels. Discussion: It is important to start education about sports nutrition at an early age. The connection between low body fat percentage, serum iron, triglyceride, and ferritin levels refers to the fact that the nutrition intake of the athletes is inadequate. High blood concentrations of creatine kinase may show a lack of proper recovery, which is essential to improve health and performance.Keywords: body fat percentage, creatine kinase, recovery, sports nutrition
Procedia PDF Downloads 1281911 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments
Authors: Alaa El-Din Rezk
Abstract:
For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD
Procedia PDF Downloads 2631910 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics
Authors: Nader Ghareeb, Rüdiger Schmidt
Abstract:
Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.Keywords: damping coefficients, finite element analysis, super-element, state-space model
Procedia PDF Downloads 3201909 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method
Authors: Md. Moinul Islam, N. M. Golam Zakaria
Abstract:
Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function
Procedia PDF Downloads 2211908 The Duty of Application and Connection Providers Regarding the Supply of Internet Protocol by Court Order in Brazil to Determine Authorship of Acts Practiced on the Internet
Authors: João Pedro Albino, Ana Cláudia Pires Ferreira de Lima
Abstract:
Humanity has undergone a transformation from the physical to the virtual world, generating an enormous amount of data on the world wide web, known as big data. Many facts that occur in the physical world or in the digital world are proven through records made on the internet, such as digital photographs, posts on social media, contract acceptances by digital platforms, email, banking, and messaging applications, among others. These data recorded on the internet have been used as evidence in judicial proceedings. The identification of internet users is essential for the security of legal relationships. This research was carried out on scientific articles and materials from courses and lectures, with an analysis of Brazilian legislation and some judicial decisions on the request of static data from logs and Internet Protocols (IPs) from application and connection providers. In this article, we will address the determination of authorship of data processing on the internet by obtaining the IP address and the appropriate judicial procedure for this purpose under Brazilian law.Keywords: IP address, digital forensics, big data, data analytics, information and communication technology
Procedia PDF Downloads 1241907 The Effect of Increased Tip Area of Suction Caissons on the Penetration Resistance Coefficients
Authors: Ghaem Zamani, Farveh Aghaye Nezhad, Amin Barari
Abstract:
The installation process of caissons has usually been a challenging step in the design phase, especially in the case of suction-assisted installation. The engineering practice for estimating the caisson penetration resistance is primarily controlled by the resistance governed by inner and outer skirt friction and the tip resistance. Different methods have been proposed in the literature to evaluate the above components, while the CPT-based methodology has attained notable popularity among others. In this method, two empirical coefficients are suggested, k𝒻 and kp, which relate the frictional resistance and tip resistance to the cone penetration resistance (q𝒸), respectively. A series of jacking installation and uninstallation experiments for different soil densities were carried out in the offshore geotechnical laboratory of Aalborg University, Denmark. The main goal of these tests was to find appropriate values for empirical coefficients of the CPT-based method for the buckets with large embedment ratio (i.e., d/D=1, where d is the skirt length and D is the diameter) and increased tip area penetrated into dense sand deposits. The friction resistance effects were isolated during the pullout experiments; hence, the k𝒻 was back-measured from the tests in the absence of tip resistance. The actuator force during jacking installation equals the sum of frictional resistance and tip resistance. Therefore, the tip resistance of the bucket is calculated by subtracting the back-measured frictional resistance from penetration resistance; hence the relevant coefficient kp would be achieved. The cone penetration test was operated at different points before and after each installation attempt to measure the cone penetration resistance (q𝒸), and the average value of q𝒸 is used for calculations. The experimental results of the jacking installation tests indicated that a larger friction area considerably increased the penetration resistance; however, this effect was completely diminished when foundation suction-assisted penetration was used. Finally, the values measured for the empirical coefficient of the CPT-based method are compared with the highest expected and most probable values suggested by DNV(1992) for uniform thickness buckets.Keywords: suction caisson, offshore geotechnics, cone penetration test, wind turbine foundation
Procedia PDF Downloads 851906 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea
Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das
Abstract:
This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea
Procedia PDF Downloads 1351905 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters
Authors: Badreddine Chemali, Boualem Tiliouine
Abstract:
This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response
Procedia PDF Downloads 2801904 X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions
Authors: Vincent Kheswa
Abstract:
X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV.Keywords: bismuth-titanium-phosphate glass, x-ray shielding, LAC, MAC, radiation shielding
Procedia PDF Downloads 591903 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor
Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng
Abstract:
Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.Keywords: electrohysterogram, feature, preterm labor, term labor
Procedia PDF Downloads 5711902 Stability Analysis and Experimental Evaluation on Maxwell Model of Impedance Control
Authors: Le Fu, Rui Wu, Gang Feng Liu, Jie Zhao
Abstract:
Normally, impedance control methods are based on a model that connects a spring and damper in parallel. The series connection, namely the Maxwell model, has emerged as a counterpart and draw the attention of robotics researchers. In the theoretical analysis, it turns out that the two pattern are both equivalents to some extent, but notable differences of response characteristics exist, especially in the effect of damping viscosity. However, this novel impedance control design is lack of validation on realistic robot platforms. In this study, stability analysis and experimental evaluation are achieved using a 3-fingered Barrett® robotic hand BH8-282 endowed with tactile sensing, mounted on a torque-controlled lightweight and collaborative robot KUKA® LBR iiwa 14 R820. Object handover and incoming objects catching tasks are executed for validation and analysis. Experimental results show that the series connection pattern has much better performance in natural impact or shock absorption, which indicate promising applications in robots’ safe and physical interaction with humans and objects in various environments.Keywords: impedance control, Maxwell model, force control, dexterous manipulation
Procedia PDF Downloads 4981901 Investigation on an Innovative Way to Connect RC Beam and Steel Column
Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil
Abstract:
An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.Keywords: composite column, reinforced concrete beam, steel column, transfer part
Procedia PDF Downloads 4311900 Depth-Averaged Velocity Distribution in Braided Channel Using Calibrating Coefficients
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
Rivers are the backbone of human civilization as well as one of the most important components of nature. In this paper, a method for predicting lateral depth-averaged velocity distribution in a two-flow braided compound channel is proposed. Experiments were conducted to study the boundary shear stress in the tip of the two flow path. The cross-section of the channel is divided into several panels to study the flow phenomenon on both the main channel and the flood plain. It can be inferred from the study that the flow coefficients get affected by boundary shear stress. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress has been taken into account. The SKM is based on hydraulic parameters, which signify the bed friction factor (f), lateral eddy viscosity, and depth-averaged flow. While applying the SKM to different panels, the equations are solved considering the boundary conditions between panels. The boundary shear stress data, which are obtained from experimentation, are compared with CES software, which is based on quasi-one-dimensional Reynold's Averaged Navier-Stokes (RANS) approach.Keywords: boundary shear stress, lateral depth-averaged velocity, two-flow braided compound channel, velocity distribution
Procedia PDF Downloads 1291899 Multi-Granularity Feature Extraction and Optimization for Pathological Speech Intelligibility Evaluation
Authors: Chunying Fang, Haifeng Li, Lin Ma, Mancai Zhang
Abstract:
Speech intelligibility assessment is an important measure to evaluate the functional outcomes of surgical and non-surgical treatment, speech therapy and rehabilitation. The assessment of pathological speech plays an important role in assisting the experts. Pathological speech usually is non-stationary and mutational, in this paper, we describe a multi-granularity combined feature schemes, and which is optimized by hierarchical visual method. First of all, the difference granularity level pathological features are extracted which are BAFS (Basic acoustics feature set), local spectral characteristics MSCC (Mel s-transform cepstrum coefficients) and nonlinear dynamic characteristics based on chaotic analysis. Latterly, radar chart and F-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96-dimensions.The experimental results denote that new features by support vector machine (SVM) has the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.Keywords: pathological speech, multi-granularity feature, MSCC (Mel s-transform cepstrum coefficients), F-score, radar chart
Procedia PDF Downloads 2831898 The Role of Smartphones on Iranian Couples' Relationship: An Analysis
Authors: Niloofar Hooman
Abstract:
The present study aims at investigating the positive and negative effects of using Smartphones on couples committed relationships. Despite the fact that many couples may benefit from the positive aspects of Smartphones, it is not clear how their feeling of trust, intimacy and connection in their relationships get affected by Smartphones. This is important as it highlights the ambivalent influences of Smartphones on couple’s relationships. On the one hand, Smartphones can enhance their social and emotional interactions and on the other hand, they can cause mistrust and isolation between them. Trust, intimacy and honesty are of important factors through which a stable relationship can be constructed. Nevertheless, some characteristics of Smartphones such as being fluid and personalized can harm the relationship and consequently destroy it. Thus, it is necessary to investigate how Iranian couples in committed relationships use Smartphone to manage their relationship and how couples feel Smartphone have enhanced or detracted a sense of trust, intimacy and connection with their partner? In the first phase of the study, in-depth-interview will be conducted with 30 couples and data will be analyzed using NVIVO software. In the next phase of the study, 1500 participants aged 20 and above will be selected based on cluster sampling. Data will be analyzed both qualitatively and quantitatively.Keywords: couple, family, internet, intimacy, Smartphone, trust
Procedia PDF Downloads 3911897 Analysis of Steel Beam-Column Joints Under Seismic Loads
Authors: Mizam Doğan
Abstract:
Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.Keywords: column-beam connection, seismic analysis, seismic load, steel structure
Procedia PDF Downloads 2771896 Generalized Correlation for the Condensation and Evaporation Heat Transfer Coefficients of Propane (R290), Butane (R600), R134a, and R407c in Porous Horizontal Tubes: Experimental Investigation
Authors: M. Tarawneh
Abstract:
This work is an experimental study on the heat transfer characteristics and pressure drop of different refrigerants during the condensation and evaporation processes in porous media. Four different refrigerants (R134a, R407C, 600a, R290), with different porosities were used to reach a real understanding of the actual heat transfer characteristics and pressure drop when using porous material inside the condenser and evaporator. Steel balls were used as porous media with different porosities (38%, 43%, 48%). The main goal of this project is to enhance the heat transfer coefficient during the condensation and evaporation processes when using different refrigerants and different porosities. Different correlations for the heat transfer coefficient and the pressure drop of the different refrigerants were developed. Also a generalized empirical correlation was developed for the different refrigerants. The experimental and predicted heat transfer coefficients and pressure drops were compared. It was found that, the Absolute standard deviation for the heat transfer coefficient and the pressure drop not exceeded values of 15% and 20%, respectively.Keywords: condensation, evaporation, porous media, horizontal tubes, heat transfer coefficient, propane, butane
Procedia PDF Downloads 5381895 Heat Transfer Characteristics on Blade Tip with Unsteady Wake
Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho
Abstract:
Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.Keywords: gas turbine, blade tip, heat transfer, unsteady wakes
Procedia PDF Downloads 3741894 A Quadratic Model to Early Predict the Blastocyst Stage with a Time Lapse Incubator
Authors: Cecile Edel, Sandrine Giscard D'Estaing, Elsa Labrune, Jacqueline Lornage, Mehdi Benchaib
Abstract:
Introduction: The use of incubator equipped with time-lapse technology in Artificial Reproductive Technology (ART) allows a continuous surveillance. With morphocinetic parameters, algorithms are available to predict the potential outcome of an embryo. However, the different proposed time-lapse algorithms do not take account the missing data, and then some embryos could not be classified. The aim of this work is to construct a predictive model even in the case of missing data. Materials and methods: Patients: A retrospective study was performed, in biology laboratory of reproduction at the hospital ‘Femme Mère Enfant’ (Lyon, France) between 1 May 2013 and 30 April 2015. Embryos (n= 557) obtained from couples (n=108) were cultured in a time-lapse incubator (Embryoscope®, Vitrolife, Goteborg, Sweden). Time-lapse incubator: The morphocinetic parameters obtained during the three first days of embryo life were used to build the predictive model. Predictive model: A quadratic regression was performed between the number of cells and time. N = a. T² + b. T + c. N: number of cells at T time (T in hours). The regression coefficients were calculated with Excel software (Microsoft, Redmond, WA, USA), a program with Visual Basic for Application (VBA) (Microsoft) was written for this purpose. The quadratic equation was used to find a value that allows to predict the blastocyst formation: the synthetize value. The area under the curve (AUC) obtained from the ROC curve was used to appreciate the performance of the regression coefficients and the synthetize value. A cut-off value has been calculated for each regression coefficient and for the synthetize value to obtain two groups where the difference of blastocyst formation rate according to the cut-off values was maximal. The data were analyzed with SPSS (IBM, Il, Chicago, USA). Results: Among the 557 embryos, 79.7% had reached the blastocyst stage. The synthetize value corresponds to the value calculated with time value equal to 99, the highest AUC was then obtained. The AUC for regression coefficient ‘a’ was 0.648 (p < 0.001), 0.363 (p < 0.001) for the regression coefficient ‘b’, 0.633 (p < 0.001) for the regression coefficient ‘c’, and 0.659 (p < 0.001) for the synthetize value. The results are presented as follow: blastocyst formation rate under cut-off value versus blastocyst rate formation above cut-off value. For the regression coefficient ‘a’ the optimum cut-off value was -1.14.10-3 (61.3% versus 84.3%, p < 0.001), 0.26 for the regression coefficient ‘b’ (83.9% versus 63.1%, p < 0.001), -4.4 for the regression coefficient ‘c’ (62.2% versus 83.1%, p < 0.001) and 8.89 for the synthetize value (58.6% versus 85.0%, p < 0.001). Conclusion: This quadratic regression allows to predict the outcome of an embryo even in case of missing data. Three regression coefficients and a synthetize value could represent the identity card of an embryo. ‘a’ regression coefficient represents the acceleration of cells division, ‘b’ regression coefficient represents the speed of cell division. We could hypothesize that ‘c’ regression coefficient could represent the intrinsic potential of an embryo. This intrinsic potential could be dependent from oocyte originating the embryo. These hypotheses should be confirmed by studies analyzing relationship between regression coefficients and ART parameters.Keywords: ART procedure, blastocyst formation, time-lapse incubator, quadratic model
Procedia PDF Downloads 3071893 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition
Authors: F. Laatar, S. Ktifa, H. Ezzaouia
Abstract:
Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties
Procedia PDF Downloads 3771892 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology
Authors: Alime Cengiz, Talip Kahyaoglu
Abstract:
Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.Keywords: genetic expression programming, response surface methodology, roasting, sesame seed
Procedia PDF Downloads 4181891 Analyzing Oil Seeps Manifestations and Petroleum Impregnation in Northwestern Tunisia From Aliphatic Biomarkers and Statistical Data
Authors: Sawsen Jarray, Tahani Hallek, Mabrouk Montacer
Abstract:
The tectonically damaged terrain in Tunisia's Northwest is seen in the country's numerous oil leaks. Finding a genetic link between these oil seeps and the area's putative source rocks is the goal of this investigation. Here, we use aliphatic biomarkers assessed by GC-MS to describe the organic geochemical data of 18 oil seeps samples and 4 source rocks (M'Cherga, Fahdene, Bahloul, and BouDabbous). In order to establish correlations between oil and oil and oil and source rock, terpanes, hopanes, and steranes biomarkers were identified. The source rocks under study were deposited in a marine environment and were suboxic, with minor signs of continental input for the M'Cherga Formation. There is no connection between the Fahdene and Bahloul source rocks and the udied oil seeps. According to the biomarkers C27 18-22,29,30trisnorneohopane (Ts) and C27 17-22,29,30-trisnorhopane (Tm), these source rocks are mature and have reached the oil window. Regarding oil seeps, geochemical data indicate that, with the exception of four samples that showed some continental markings, the bulk of samples were deposited in an open marine environment. These most recent samples from oil seeps have a unique lithology (marl) that distinguishes them from the others (carbonate). There are two classes of oil seeps, according to statistical analysis of relationships between oil and oil and oil and source rocks. The first comprised samples that showed a positive connection with carbonate-lithological and marine-derived BouDabbous black shales. The second is a result of M'Cherga source rock and is made up of oil seeps with remnants of the terrestrial environment and a lithology with a marl trend. The Fahdene and Bahloul source rocks have no connection to the observed oil seeps. There are two different types of hydrocarbon spills depending on their link to tectonic deformations (oil seeps) and outcropping mature source rocks (oil impregnations), in addition to the existence of two generations of hydrocarbon spills in Northwest Tunisia (Lower Cretaceous/Ypresian).Keywords: petroleum seeps, source rocks, biomarkers, statistic, Northern Tunisia
Procedia PDF Downloads 691890 Origins of the Tattoo: Decoding the Ancient Meanings of Terrestrial Body Art to Establish a Connection between the Natural World and Humans Today
Authors: Sangeet Anand
Abstract:
Body art and tattooing have long been practiced as a form of self-expression for centuries, and this study studies and analyzes the pertinence of tattoo culture in our everyday lives and ancient past. Individuals of different cultures represent ideas, practices, and elements of their cultures through symbolic representation. These symbols come in all shapes and sizes and can be as simple as the makeup you put on every day to something more permanent such as a tattoo. In the long run, these individuals who choose to display art on their bodies are seeking to express their individuality. In addition, these visuals are ultimately a reflection of our own appropriate cultures deem as beautiful, important, and powerful to the human eye. They make us known to the world and give us a plausible identity in an ever-changing world. We have lived through and seen a rise in hippie culture today. This type of bodily decoration displayed by this fad has made it seem as though body art is a visual language that is relatively new. But quite to the contrary, it is not. Through cultural symbolic exploration, we can answer key questions to ideas that have been raised for centuries. Through careful, in-depth interviews, this study takes a broad subject matter-art, and symbolism-and culminates it into a deeper philosophical connection between the world and its past. The basic methodologies used in this sociocultural study include interview questionnaires and textual analysis, which encompass a subject and interviewer as well as source material. The major findings of this study contain a distinct connection between cultural heritage and the day-to-day likings of an individual. The participant that was studied during this project demonstrated a clear passion for hobbies that were practiced even by her ancestors. We can conclude, through these findings, that there is a deeper cultural connection between modern day humans, the first humans, and the surrounding environments. Our symbols today are a direct reflection of the elements of nature that our human ancestors were exposed to, and, through cultural acceptance, we can adorn ourselves with these representations to help others identify our pasts. Body art embraces the different aspects of different cultures and holds significance, tells stories, and persists, even as the human population rapidly integrates. With this pattern, our human descendents will continue to represent their cultures and identities in the future. Body art is an integral element in understanding how and why people identify with certain aspects of life over others and broaden the scope for conducting more analysis cross-culturally.Keywords: natural, symbolism, tattoo, terrestrial
Procedia PDF Downloads 1071889 A Prospective Randomised Observational Study of Obstructed Total Anamalous Pulmonary Venous Connection (TAPVC) Repair Patients
Authors: Sanjeev Singh
Abstract:
Background: Obstructed total anomalous pulmonary venous connection (OTAPVC) typically presents with severe cardiovascular decompensation and requires urgent surgical management. Pulmonary arterial hypertension (PAH) is a major risk factor affecting mortality. Perioperative management focuses on providing inotropic support and managing potential pulmonary hypertensive episodes. The aim of this study was to determine the outcome of patients with high pulmonary arterial pressure (PAP) with milrinone alone and a combination of milrinone and inhaled nitric oxide (INO). Material and Methods: After the approval of the ethical committee, this single-center prospective randomized and observational study was conducted over a period of two years among eighty-six patients with obstructed TAPVC repair with severe PAH. Group-I patients received milrinone, and Group-II patients received both milrinone (after aortic cross-clamp removal) and INO during the post-operative period at the cardiac care unit (CCU). Clinical outcomes such as ventilation time, length of stay (LOS) in the CCU, LOS in the hospital, complications, and hospital mortality were compared between the two groups. Result: The average ventilation time, LOS in CCU, and LOS in hospital for group I were 96.82 ± 19.46 hours, 10.91 ± 7.53 days, and 14.46 ± 7.58 days, respectively, and for group II, it was 85.14 ± 15.79 hours, 7.28 ± 3.68 days, and 10.21 ± 3.14 days, respectively, which was statistically significantly lower for group II. Reintubation, RV dysfunction, and hospital mortality were 16.3%, 37.2%, and 6.9% in group I, and 4.8%, 14.6%, and 2.4% in group II, respectively. The P value for each variable was significant < 0.05 (except mortality). Conclusion: Preoperative obstruction is a risk factor for postoperative obstruction, as 235 patients with obstructed TAPVC had severe PAH (39.98%) in this study. Management of severe PAH with a combination of milrinone and INO had a better outcome than milrinone alone.Keywords: inhaled nitric oxide, milrinone, pulmonary artery hypertension, total anomalous pulmonary venous connection
Procedia PDF Downloads 231888 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients
Authors: Boguslaw Schreyer
Abstract:
During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.Keywords: wheeled robots, braking, traction coefficient, asymmetric
Procedia PDF Downloads 1651887 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System
Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal
Abstract:
The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.Keywords: microgravity effect, response surface, terminal speed, unmanned system
Procedia PDF Downloads 1731886 Secularism and Political Inclusion: Turkey in the 2000s
Authors: Edgar Sar
Abstract:
For more than a decade, secularism’s compatibility with religion has been called into question. Particularly, secular states’ exclusionary practices were raised to prove that secularism is not necessary for democracy. Meanwhile, with the debut of Turkey’s Justice and Development Party (AKP) in 2002, Turkish state’s approach to religion has gradually changed. It is argued in that presentation that this change has led Turkey to a process of de-secularization, which refers to a considerable regress in state’s inclusionary and pluralist credentials. In this regard, this study both reflects on the relationship between secularism and democracy within the context of Turkish experience and analyses the consequences of the process of de-secularization of state in Turkey. To analyze Turkish state’s changing approach to religion and measure the de-secularization of the state, the connection between state and religion will be examined in three levels: ends, institutions, and law and policies. The presentation will indicate that Turkish state’s connection with religion in all three levels significantly weakened its secular credentials, which at the same time risked state’s commitment to neutrality, freedom of conscience and equality. In this regard, the change in Turkish state’s approach to religion throughout the 2000s, which this study refers to as the process of the de-secularization of the state, also brought about a process of de-democratization for Turkey.Keywords: AKP, political inclusion, secularism, Turkey
Procedia PDF Downloads 3471885 The Connection of the Nibbāna with the Six Sense Bases
Authors: Wattegama Subhavi
Abstract:
A being is the working of the six sense bases. The sense bases are the eye, the ear, the nose, the tongue, the body and the mind. Buddhism describes what these sense bases are and how they work. These sense bases can be related to many of the philosophical and psychological teachings of the Buddha. One of the most important teachings of the Buddha is the Four Noble Truths. Buddhism explains that one who needs to attain Nibbāna must understand and realize these Four Noble Truths. These noble truths have a direct connection with the sense bases. The ultimate goal of Buddhism is Nibbāna. But there is no place or a special world called the “Nibbāna”. This paper describes that the noble truths can be identified within one’s own sense bases. The noble truth of suffering occurs within the functioning of the sense bases and the cause of suffering, “craving” operates inside the senses bases and the cessation of suffering, or Nibbāna is also experienced in the Sense Bases. Relevant material will be drawn for this paper directly from the Pāli canonical sources. The major finding is that the first three noble truths can be experienced through the six sense bases. The conclusion derived from the study is that the sense bases have direct relevance to Nibbāna, which is not to be conceived as another place or another dimension, but phenomena that can be experienced through one’s own sense bases, and that the other noble truths are also to be experienced in relation to one’s own sense bases.Keywords: Buddhism, Four Noble Truths, sense bases, Nibbāna
Procedia PDF Downloads 1831884 The Comparison and Optimization of the Analytic Method for Canthaxanthin, Food Colorants
Authors: Hee-Jae Suh, Kyung-Su Kim, Min-Ji Kim, Yeon-Seong Jeong, Ok-Hwan Lee, Jae-Wook Shin, Hyang-Sook Chun, Chan Lee
Abstract:
Canthaxanthin is keto-carotenoid produced from beta-carotene and it has been approved to be used in many countries as a food coloring agent. Canthaxanthin has been analyzed using High Performance Liquid Chromatography (HPLC) system with various ways of pretreatment methods. Four official methods for verification of canthaxanthin at FSA (UK), AOAC (US), EFSA (EU) and MHLW (Japan) were compared to improve its analytical and the pretreatment method. The Linearity, the limit of detection (LOD), the limit of quantification (LOQ), the accuracy, the precision and the recovery ratio were determined from each method with modification in pretreatment method. All HPLC methods exhibited correlation coefficients of calibration curves for canthaxanthin as 0.9999. The analysis methods from FSA, AOAC, and MLHW showed the LOD of 0.395 ppm, 0.105 ppm, and 0.084 ppm, and the LOQ of 1.196 ppm, 0.318 ppm, 0.254 ppm, respectively. Among tested methods, HPLC method of MHLW with modification in pretreatments was finally selected for the analysis of canthaxanthin in lab, because it exhibited the resolution factor of 4.0 and the selectivity of 1.30. This analysis method showed a correlation coefficients value of 0.9999 and the lowest LOD and LOQ. Furthermore, the precision ratio was lower than 1 and the accuracy was almost 100%. The method presented the recovery ratio of 90-110% with modification in pretreatment method. The cross-validation of coefficient variation was 5 or less among tested three institutions in Korea.Keywords: analytic method, canthaxanthin, food colorants, pretreatment method
Procedia PDF Downloads 683