Search results for: Oman Vision 2040
1021 The Impact of Shared Culture, Trust and Information Exchange on Satisfaction and Financial Performance: Moderating Effects of Supply Chain Dependence
Authors: Hung Nguyen, Norma Harrison
Abstract:
This paper examines the role supply chain dependence as contingency factors which affect the effectiveness of different critical factors (in terms trust, information exchange and shared culture) in delivering supply chain satisfaction and financial performance. Using the data of 468 manufacturing firms in the Global Manufacturing Research Group, this study shows that supply chain dependence strengthens the positive relationship between shared culture & vision and supply chain satisfaction while dampens the relationship between trust and satisfaction. The study also demonstrates the direct positive effect of satisfaction on financial performance. Supply chain managers were advised to emphasize on the alignments of common understanding, codes, languages, common shared vision and similar cultures.Keywords: information exchange, shared culture, satisfaction, supply chain dependence
Procedia PDF Downloads 3841020 Challenging Perceptions of Disability: Exploring the Link between Ableism, Social Stigma, Vision Impairment, and Autism Spectrum Disorder
Authors: Aikaterini Tavoulari
Abstract:
This research aims to address the types of repetitive behaviours (RBs) observed by adults in children with vision impairment (VI) or autism spectrum disorder (ASD), the explanations the adults employ to interpret these behaviours, and the impact RBs have on the child, the caregiver, the professional and society. The underlying reason for this is an attempt to discover any potential differences between two different disabilities in a comparative fashion. The study is based on the interpretivism paradigm and follows a qualitative approach. A comparative case study design based on the ecological systems theory (EST) is adopted. Thirty-five caregivers and accredited professionals were recruited (17 for the VI group, out of whom 8 were caregivers and 9 were professionals, and 18 for the ASD group, out of whom 9 were caregivers and 9 were professionals). Following the completion of a pilot study, all participants were interviewed regarding one specific child – their own child/student – via semi-structured interviews. During the interviews, the researcher used a research diary as a methodological tool and video elicitation as a facilitation tool. A cross-case analysis was conducted, and data were analysed according to the method of thematic analysis. A link has been indicated between VI and ASD, which concerns perceptions about the socially constructed manner in which an RB is perceived. ASD is perceived by the participants as a disability with challenging characteristics, such as an RB. The ASD group perceived RB as linked to ableism, social stigmatisation, and taboo, in contrast to VI, where the existence of RB seems to be a consequence of sensory loss. Bi-directionality of EST seems to have been lost completely, and the macrosystem seems to drive the interactions between the ecological systems.Keywords: ableism, social stigma, disability, repetitive behaviour, vision impairment, autism spectrum disorder, perceptions
Procedia PDF Downloads 901019 Detection of Pharmaceutical Personal Protective Equipment in Video Stream
Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva
Abstract:
Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE
Procedia PDF Downloads 871018 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman
Authors: Aysha Al Sha'aibi
Abstract:
Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.Keywords: abundance, feeding activities, Noctiluca scintillans, Oman
Procedia PDF Downloads 4361017 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 331016 Development of a Social Assistive Robot for Elderly Care
Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He
Abstract:
This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.Keywords: social robot, vision, elderly care, machine learning
Procedia PDF Downloads 4411015 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data
Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed
Abstract:
The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.Keywords: disturbance automation, electric power grid, smart grid, smart switches
Procedia PDF Downloads 3091014 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study
Authors: Ramesh Kumar Behera, Md. Izhar Hassan
Abstract:
Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero
Procedia PDF Downloads 1551013 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 4381012 Exploring Corporate Governance Structure in Gulf Cooperation Council Countries
Authors: Zahra A. Al Nasser, Domenico Campa
Abstract:
This paper investigates board of directors and firms’ ownership structure on non-financial companies listed in Gulf Cooperation council (GCC) countries using data from 2009 to 2013. The overall result of the study is that board size and board meeting have increased over years. Additionally, all combined committee variables have improved as well as audit committee size, audit committee meeting and audit committee experience have improved over the years. Furthermore, Oman is the only country that has not shown any statistically significant change in value of its associated variables.Keywords: corporate governance, GCC countries, board of directors, ownership structure
Procedia PDF Downloads 5711011 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network
Authors: Harshit Mittal, Neeraj Garg
Abstract:
Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network
Procedia PDF Downloads 651010 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements
Procedia PDF Downloads 4151009 Flood Risk Assessment for Agricultural Production in a Tropical River Delta Considering Climate Change
Authors: Chandranath Chatterjee, Amina Khatun, Bhabagrahi Sahoo
Abstract:
With the changing climate, precipitation events are intensified in the tropical river basins. Since these river basins are significantly influenced by the monsoonal rainfall pattern, critical impacts are observed on the agricultural practices in the downstream river reaches. This study analyses the crop damage and associated flood risk in terms of net benefit in the paddy-dominated tropical Indian delta of the Mahanadi River. The Mahanadi River basin lies in eastern part of the Indian sub-continent and is greatly affected by the southwest monsoon rainfall extending from the month of June to September. This river delta is highly flood-prone and has suffered from recurring high floods, especially after the 2000s. In this study, the lumped conceptual model, Nedbør Afstrømnings Model (NAM) from the suite of MIKE models, is used for rainfall-runoff modeling. The NAM model is laterally integrated with the MIKE11-Hydrodynamic (HD) model to route the runoffs up to the head of the delta region. To obtain the precipitation-derived future projected discharges at the head of the delta, nine Global Climate Models (GCMs), namely, BCC-CSM1.1(m), GFDL-CM3, GFDL-ESM2G, HadGEM2-AO, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM and NorESM1-M, available in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) archive are considered. These nine GCMs are previously found to best-capture the Indian Summer Monsoon rainfall. Based on the performance of the nine GCMs in reproducing the historical discharge pattern, three GCMs (HadGEM2-AO, IPSL-CM5A-MR and MIROC-ESM-CHEM) are selected. A higher Taylor Skill Score is considered as the GCM selection criteria. Thereafter, the 10-year return period design flood is estimated using L-moments based flood frequency analysis for the historical and three future projected periods (2010-2039, 2040-2069 and 2070-2099) under Representative Concentration Pathways (RCP) 4.5 and 8.5. A non-dimensional hydrograph analysis is performed to obtain the hydrographs for the historical/projected 10-year return period design floods. These hydrographs are forced into the calibrated and validated coupled 1D-2D hydrodynamic model, MIKE FLOOD, to simulate the flood inundation in the delta region. Historical and projected flood risk is defined based on the information about the flood inundation simulated by the MIKE FLOOD model and the inundation depth-damage-duration relationship of a normal rice variety cultivated in the river delta. In general, flood risk is expected to increase in all the future projected time periods as compared to the historical episode. Further, in comparison to the 2010s (2010-2039), an increased flood risk in the 2040s (2040-2069) is shown by all the three selected GCMs. However, the flood risk then declines in the 2070s as we move towards the end of the century (2070-2099). The methodology adopted herein for flood risk assessment is one of its kind and may be implemented in any world-river basin. The results obtained from this study can help in future flood preparedness by implementing suitable flood adaptation strategies.Keywords: flood frequency analysis, flood risk, global climate models (GCMs), paddy cultivation
Procedia PDF Downloads 751008 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation
Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon
Abstract:
This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence
Procedia PDF Downloads 3291007 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data
Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau
Abstract:
Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.Keywords: calcium imaging, computer vision, neural activity, neural networks
Procedia PDF Downloads 821006 Geothermal Resources of Saudi Arabia: An Update
Authors: Aref Lashin
Abstract:
Saudi Arabia vision of 2030 calls for the diversification of energy sources in the Kingdom. Accordingly, Saudi Arabia has launched a promising plan aims to gradually power the major industrial activities in country by renewable and low carbon energy sources. The geothermal sources are among the promising renewable sources that can support the achievement of the country vision and energy mix plan. Saudi Arabia is enriched with several geothermal resources especially in the western and southwestern regions along the Red Sea region. This paper will give an overview on the different geothermal resources (Hydrothermal, Harrats volcanic eruptions and hot dry rocks) of Saudi Arabia, their categories and classifications as well as the different exploration (Geophysical, geological, geochemical, etc) and drilling enhanced during the last few decades. The economic viability and the possible contribution of geothermal resources in the future of renewable energy of Saudi Arabia is discussed. Some case studies from Jizan, Al-Lith, Harrats and Midyan areas are demonstrated. Scenarios of different low and high geothermal applications for possible power generations, as well as other low-grade utilizations, e.g. direct use, district heating & cooling, medical therapy, etc., are presented.Keywords: KSA vison 2023, energy mix, geothermal resources, applications, Saudi Arabia
Procedia PDF Downloads 241005 An Evaluation of Rational Approach to Management by Objectives in Construction Contracting Organisation
Authors: Zakir H. Shaik, Punam L. Vartak
Abstract:
Management By Objectives (MBO) is a management technique in which objectives of an organisation are conveyed to the employees to establish the individual goals. These objectives and goals are then monitored and assessed jointly by management and the employee time to time. This tool can be used for planning, monitoring as well as for performance appraisal. The success of an organisation is largely dependent on its’s Vision. Thus, it is of paramount importance to achieve the realm of vision through a mission which is well crafted within the organisation to address the objectives. The success of the mission depends upon how realistic and action oriented philosophical approach, an organisation caters to; and how the individual goals are set to track and meet the objectives. Thus, focused and passionate efforts of the team, assigned for the mission, are an absolute obligation for achieving the vision of any organisation. Any construction site is generally a controlled disorder having huge investments, resources and logistics involved. The Construction progression is time-consuming with many isolated as well as interconnected activities. Traditional MBO approach can be unsuccessful if planning and control is non-realistic and inflexible. Moreover, the Construction Industry is far behind understanding these concepts. It is important to address the employee engagement in defining and creating awareness to achieve the targets. Besides, current economic environment and competitive world demands refined management tools to achieve profit, growth and survival of the business. Therefore, the necessity of rational MBO becomes vital part towards the success of an organisation. This paper details about the philosophical assumptions to develop the grounded theory in lieu of achieving objectives through RATIONAL MBO approach in Construction Contracting Organisations. The goals and objectives of the Construction Contracting Organisations can be achieved efficiently by adopting this RATIONAL MBO approach, as those are based on realistic, logical and balanced assumptions.Keywords: growth, leadership, management by objectives, Management By Objectives (MBO), profit, rational
Procedia PDF Downloads 1541004 Effects of Climate Change on Floods of Pakistan, and Gap Analysis of Existing Policies with Vision 2025
Authors: Saima Akbar, Tahseen Ullah Khan
Abstract:
The analysis of the climate change impact on flood frequency represents an important issue for water resource management and flood risk mitigation. This research was conducted to address the effects of climate change on flood incidents of Pakistan and find out gaps in existing policies to reducing the environmental aspects on floods and effects of global warming. The main objective of this research was to critically analyses the National Climate Change Policy (NCCP), National Disaster Management Authority (NDMA), Federal Flood Commission (FFC) and Vision 2025, as an effective policy document which is not only hitting the target of a climate resilient Pakistan but provides room for efficient and flexible policy implementation. The methodology integrates projected changes in monsoon patterns (since last 20 years and overall change in rainfall pattern since 1901 to 2015 from Pakistan Metrological Department), glacier melting, decreasing dam capacity and lacks in existing policies by using SWOT (Strength, Weakness, Opportunities, Threats) model in order to explore the relative impacts of global warming on the system performance. Results indicate the impacts of climate change are significant, but probably not large enough to justify a major effort for adapting the physical infrastructure to expected climatic conditions in Vision 2025 which is our shared destination to progress, ultimate aspiration to see Pakistan among the ten largest economies of the world by 2047– the centennial year of our independence. The conclusion of this research was to adapt sustainable measures to reduce flood impacts and make policies as neighboring countries are adapting for their sustainability.Keywords: climatic factors, monsoon, Pakistan, sustainability
Procedia PDF Downloads 1401003 Status of India towards Achieving the Millennium Development Goals
Authors: Rupali Satsangi
Abstract:
14 years ago, leaders from every country agreed on a vision for the future – a world with less poverty, hunger and disease, greater survival prospects for mothers and their infants, better educated children, equal opportunities for women, and a healthier environment; a world in which developed and developing countries work in partnership for the betterment of all. This vision took the shape of eight Millennium Development Goals, which provide countries around the world a framework for development and time-bound targets by which progress can be measured. However, India has found 35 of the indicators as relevant to India. India’s MDG-framework has been contextualized through a concordance with the existing official indicators of corresponding dimensions in the national statistical system. The present study based on secondary data analyzed the status of India towards achieving the MDGs after reviewing the data study find out that India can miss the MDGs Bus in women health, sanitation and global partnership. These goals were less addressed by India in his policies and takeoffs.Keywords: millennium development goals, national statistical system, global partnership, healthier environment
Procedia PDF Downloads 4041002 Informational Efficiency and Integration: Evidence from Gulf Cooperation Council (GCC) Shariah Equity Market
Authors: Sania Ashraf
Abstract:
The paper focuses on the prevalence of informational efficiency and integration of GCC Shariah Equity market for the period of 01st January 2010 to 31st June 2015 with daily equity returns of Kuwait, Oman, Qatar, Bahrain, Saudi Arabia and United Arab Emirates. The study employs traditional as well as the modern approach of tracing out the efficiency and integration in the return series. From the results of efficiency it was observed that the market lacked efficiency in terms of its past information. The results of integration test clearly indicates that there was a long memory in the returns of GCC Shariah during the study period. Hence it was concluded and proved that the returns of all GCC Equity Shariah were not informationally efficient but fractionally integrated during the study period.Keywords: efficiency, Fama, GCC shariah, hurst exponent, integration, serial correlation
Procedia PDF Downloads 3621001 “Presently”: A Personal Trainer App to Self-Train and Improve Presentation Skills
Authors: Shyam Mehraaj, Samanthi E. R. Siriwardana, Shehara A. K. G. H., Wanigasinghe N. T., Wandana R. A. K., Wedage C. V.
Abstract:
A presentation is a critical tool for conveying not just spoken information but also a wide spectrum of human emotions. The single most effective thing to make the presentation successful is to practice it beforehand. Preparing for a presentation has been shown to be essential for improving emotional control, intonation and prosody, pronunciation, and vocabulary, as well as the quality of the presentation slides. As a result, practicing has become one of the most critical parts of giving a good presentation. In this research, the main focus is to analyze the audio, video, and slides of the presentation uploaded by the presenters. This proposed solution is based on the Natural Language Processing and Computer Vision techniques to cater to the requirement for the presenter to do a presentation beforehand using a mobile responsive web application. The proposed system will assist in practicing the presentation beforehand by identifying the presenters’ emotions, body language, tonality, prosody, pronunciations and vocabulary, and presentation slides quality. Overall, the system will give a rating and feedback to the presenter about the performance so that the presenters’ can improve their presentation skills.Keywords: presentation, self-evaluation, natural learning processing, computer vision
Procedia PDF Downloads 1181000 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform
Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba
Abstract:
Real-time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Therefore, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Canny edge detection is one of the common blocks in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.Keywords: high level synthesis, canny edge detection, hardware accelerators, computer vision
Procedia PDF Downloads 478999 Safety Effect of Smart Right-Turn Design at Intersections
Authors: Upal Barua
Abstract:
The risk of severe crashes at high-speed right-turns at intersections is a major safety concern these days. The application of a smart right-turn at an intersection is increasing day by day to address is an issue. The design, ‘Smart Right-turn’ consists of a narrow-angle of channelization at approximately 70°. This design increases the cone of vision of the right-tuning drivers towards the crossing pedestrians as well as traffic on the cross-road. As part of the Safety Improvement Program in Austin Transportation Department, several smart right-turns were constructed at high crash intersections where high-speed right-turns were found to be a contributing factor. This paper features the state of the art techniques applied in planning, engineering, designing and construction of this smart right-turn, key factors driving the success, and lessons learned in the process. This paper also presents the significant crash reductions achieved from the application of this smart right-turn design using Empirical Bayes method. The result showed that smart right-turns can reduce overall right-turn crashes by 43% and severe right-turn crashes by 70%.Keywords: smart right-turn, intersection, cone of vision, empirical Bayes method
Procedia PDF Downloads 266998 Post-modernist Tragi-Comedy: A Study of Tom Stoppard’s “Rosencrantz and Guildenstern Are Dead”
Authors: Azza Taha Zaki
Abstract:
The death of tragedy is probably the most distinctive literary controversy of the twentieth century. There is common critical consent that tragedy in the classical sense of the word is no longer possible. Thinkers, philosophers, and critics such as Nietzsche, Durrenmatt, and George Steiner have all agreed that the decline of the genre in the modern age is due to the total lack of a unified world image and the absence of a shared vision in a fragmented and ideologically diversified world. The production of Rosencrantz and Guildenstern are Dead in 1967 marked the rise of the genre of tragi-comedy as a more appropriate reflection of the spirit of the age. At the hands of such great dramatists as Tom Stoppard (1937- ), the revived genre was not used as an extra comic element to give some comic relief to an otherwise tragic text, but it was given a postmodernist touch to serve the interpretation of the dilemma of man in the postmodernist world. This paper will study features of postmodernist tragi-comedy in Rosencrantz and Guildenstern are Dead as one of the most important plays in modern British theatre and investigate Stoppard’s vision of man and life as influenced by postmodernist thought and philosophy.Keywords: British, drama, postmodernist, Stoppard, tragi-comedy
Procedia PDF Downloads 186997 Excellent Outcome with Early Diagnosis in an Infant with Wiskott-Aldrich Syndrome in a Tertiary Hospital in Oman
Authors: Surekha Tony, Roshan Mevada
Abstract:
Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disease resulting in recurrent infections, eczema, and microthrombocytopenia. In its classical form, significant combined immune deficiency, autoimmune complications, and risk of hematological malignancy necessitate early correction, preferably before 2 years of age, with hematopoietic stem cell transplant (HSCT) or gene therapy. Clinical features and severity are varied, making the diagnosis difficult in milder cases. We report an Omani boy diagnosed in early infancy with WAS based on clinical presentation and confirmed by genetic diagnosis with cure by HSCT from an HLA-identical sibling donor.Keywords: genetic diagnosis, hematopoietic stem cell transplant, infant, Wiskott-Aldrich syndrome
Procedia PDF Downloads 19996 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 305995 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety
Authors: Hengameh Hosseini
Abstract:
Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety
Procedia PDF Downloads 116994 Perceptions of Senior Academics in Teacher Education Colleges Regarding the Integration of Digital Games during the Pandemic
Authors: Merav Hayakac, Orit Avidov-Ungarab
Abstract:
The current study adopted an interpretive-constructivist approach to examine how senior academics from a large sample of Israeli teacher education colleges serving general or religious populations perceived the integration of digital games into their teacher instruction and what their policy and vision were in this regard in the context of the COVID-19 pandemic. Half the participants expressed a desire to integrate digital games into their teaching and learning but acknowledged that this practice was uncommon. Only a small minority believed they had achieved successful integration, with doubt and skepticism expressed by some religious colleges. Most colleges had policies encouraging technology integration supported by ongoing funding. Although a considerable gap between policy and implementation remained, the COVID-19 pandemic was viewed as having accelerated the integration of digital games into pre-service teacher instruction. The findings suggest that discussions around technology-related vision and policy and their translation into practice should relate to the specific cultural needs and academic preparedness of the population(s) served by the college.Keywords: COVID-19, digital games, pedagogy, teacher education colleges
Procedia PDF Downloads 98993 Factors Related to Teachers’ Analysis of Classroom Assessments
Authors: Hussain A. Alkharusi, Said S. Aldhafri, Hilal Z. Alnabhani, Muna Alkalbani
Abstract:
Analysing classroom assessments is one of the responsibilities of the teacher. It aims improving teacher’s instruction and assessment as well as student learning. The present study investigated factors that might explain variation in teachers’ practices regarding analysis of classroom assessments. The factors considered in the investigation included gender, in-service assessment training, teaching load, teaching experience, knowledge in assessment, attitude towards quantitative aspects of assessment, and self-perceived competence in analysing assessments. Participants were 246 in-service teachers in Oman. Results of a stepwise multiple linear regression analysis revealed that self-perceived competence was the only significant factor explaining the variance in teachers’ analysis of assessments. Implications for research and practice are discussed.Keywords: analysis of assessment, classroom assessment, in-service teachers, self-competence
Procedia PDF Downloads 333992 The Meaningful Pixel and Texture: Exploring Digital Vision and Art Practice Based on Chinese Cosmotechnics
Authors: Xingdu Wang, Charlie Gere, Emma Rose, Yuxuan Zhao
Abstract:
The study introduces a fresh perspective on the digital realm through an examination of the Chinese concept of Xiang, elucidating how it can build an understanding of pixels and textures on screens as digital trigrams. This concept attempts to offer an outlook on the intersection of digital technology and the natural world, thereby contributing to discussions about the harmonious relationship between humans and technology. The study looks for the ancient Chinese theory of Xiang as a key to establishing the theories and practices to respond to the problem of Contemporary Chinese technics. Xiang is a Chinese method of understanding the essentials of things through appearances, which differs from the method of science in the Westen. Xiang, the basement of Chinese visual art, is rooted in ancient Chinese philosophy and connected to the eight trigrams. The discussion of Xiang connects art, philosophy, and technology. This paper connects the meaning of Xiang with the 'truth appearing' philosophically through the analysis of the concepts of phenomenon and noumenon and the unique Chinese way of observing. Hereafter, the historical interconnection between ancient painting and writing in China emphasizes their relationship between technical craftsmanship and artistic expression. In digital, the paper blurs the traditional boundaries between images and text on digital screens in theory. Lastly, this study identified an ensemble concept relating to pixels and textures in computer vision, drawing inspiration from AI image recognition in Chinese paintings. In art practice, by presenting a fluid visual experience in the form of pixels, which mimics the flow of lines in traditional calligraphy and painting, it is hoped that the viewer will be brought back to the process of the truth appearing as defined by the 'Xiang’.Keywords: Chinese cosmotechnics, computer vision, contemporary Neo-Confucianism, texture and pixel, Xiang
Procedia PDF Downloads 64