Search results for: Juan Pablo Marchetti
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 385

Search results for: Juan Pablo Marchetti

145 The Effect of Dendrobium nobile Lindl. Alkaloids on the Blood Glucose and Amyloid Precursor Protein Metabolic Pathways in Db/Db Mice

Authors: Juan Huang, Nanqu Huang, Jingshan Shi, Yu Qiu

Abstract:

Objectives: There are pathophysiological connections between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD), and research on drugs with hypoglycemic and beta-amyloid (Aβ)-clearing effects have great therapeutic potential for AD. Dendrobium nobile Lindl. Alkaloids (DNLA) as one of the active compounds of Dendrobium nobile Lindl. In this study, we attempted to verify the hypoglycemic effect and investigate the effects of DNLA on the amyloid precursor protein (APP) metabolic pathway of the hippocampus in db/db mice. Methods: 4-weeks-old male C57BL/KsJ mice were the control group. And the same age and sexuality db/db mice were: model, DNLA-L (20 mg/kg), DNLA-M (40 mg/kg), and DNLA-H (80 mg/kg). After, mice were treated with different concentrations of DNLA for 17 weeks. The fasting blood glucose (FBG) was detected by glucose oxidase assay every week from the 4th to last week. The protein expression of β-amyloid 1-42 (Aβ1-42), β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and APP were examined by Western blotting. Results: The concentration of FBG and the protein expression of Aβ1-42, BACE1, and APP were increased in the hippocampus of the model group. Moreover, DNLA not only significantly decreased the concentration of FBG but also reduced the protein expressions of Aβ1-42, BACE1 and APP in the hippocampus of db/db mice in a dose-dependent manner. Conclusions: DNLA can decrease the protein expressions of Aβ1-42 in the hippocampus of db/db mice, and the mechanism may be involved in the APP metabolic pathway.

Keywords: Alzheimer's disease, type 2 diabetes mellitus, β-site amyloid precursor protein-cleaving enzyme 1, traditional Chinese medicines, beta-amyloid

Procedia PDF Downloads 252
144 Educational Fieldworks towards Urban Biodiversity Preservation: Case Study of Japanese Gardens Management of Kanazawa City, Japan

Authors: Aida Mammadova, Juan Pastor Ivars

Abstract:

Japanese gardens can be considered as the unique hubs to preserve urban biodiversity, as they provide the habitat for the diverse network of living organisms, facilitating to the movement of the rare species around the urban landscape, became the refuge for the moss and many endangered species. For the centuries, Japanese gardens were considered as ecologically sustainable and well-organized ecosystems, due to the skilled maintenances and management. However, unfortunately, due to the depopulations and ageing in Japanese societies, gardens are becoming more abandoned, and there is an urgent need to increase the awareness about the importance of the Japanese gardens to preserve the urban biodiversity. In this study, we have conducted the participatory educational field trips for 12 students into the to the five gardens protected by Kanazawa City and learned about the preservation activities conducted at the governmental, municipal, and local levels. After the courses, students have found a strong linkage between the gardens with the traditional culture. Kanazawa City, for more than 400 years is famous with traditional craft makings and tea ceremonies, and it was noticed that the cultural diversity of the city was strongly supported by the biodiversity of the gardens, and loss of the gardens would bring to the loss of the traditional culture. Using the experiential approach during the fieldworks, it was observed by the students that the linkage between the bio-cultural diversity strongly depends on humans’ activities. The continuous management and maintenance of the gardens are the contributing factor for the preservation of urban diversity. However, garden management is very time and capital consuming process, and it was also noticed that there is a big need to attract all levels of the society to preserve the urban biodiversity through the participatory urbanism.

Keywords: biodiversity, conservation, educational fieldwork, Japanese gardens

Procedia PDF Downloads 212
143 Synthesis of Highly Efficient Bio-Octane Number Booster Using Nano Au-NiAlZr-Layered Double Hydroxides Catalyst

Authors: Bachir Redouane, Dib Nihel, Bedrane Sumeya, Blanco Ginesa, Calvino José Juan

Abstract:

Furfural, a key biomass-derived platform compound, holds significant potential for biofuel production and the synthesis of high-value intermediates. This study investigates the hydrogenation-condensation reaction of furfural issued from lignocellulosique biomass with isopropyl alcohol to produce isopropylfurfuryl ether (iPFE), a next-generation synfuel with a high-octane number. iPFE’s water stability and resistance to methanol absorption make it a sustainable alternative to conventional gasoline additives, offering comparable performance. The catalyst used in this reaction is based on NiAl layered double hydroxides (LDH), with zirconium incorporated to enhance the distribution and structure of active sites. Gold (Au) was deposited on the NiAlZr-LDH support to improve selectivity and yield. The addition of Zr improved the thermal and mechanical stability of the catalyst, while the Au modification further increased selectivity toward iPFE. Extensive catalytic experiments were conducted to optimize reaction conditions, including temperature, hydrogen pressure, and Au loading, to maximize iPFE yield. The results demonstrate a high conversion rate of furfural, exceeding 90% under optimal conditions, with enhanced selectivity toward iPFE. Moreover, iPFE was shown to have a higher-octane number compared to traditional furfuryl ethers, making it a highly promising candidate for advanced fuel applications.

Keywords: Au-NiAlZr-LDH, biofuels, furfural, green chemistry, hydrogenation, isopropylfurfuryl ether, octane number.

Procedia PDF Downloads 10
142 Effect of Food Supplies Holstein Calves Supplemented with Bacillus Subtilis PB6 in Morbidity and Mortality

Authors: Banca Patricia Pena Revuelta, Ramiro Gonzalez Avalos, Juan Leonardo Rocha Valdez, Jose Gonzalez Avalos, Karla Rodriguez Hernandez

Abstract:

Probiotics are a promising alternative to improve productivity and animals' health. In addition, they can be part of the composition of different types of products, including foods (functional foods), medicines, and dietary supplements. The objective of the present work was to evaluate the effect of the feeding of Holstein calves supplemented with bacillus subtilis PB6 in morbidity and mortality. 60 newborn animals were used, randomly included in 1 of 3 treatments. The treatments were as follows: T1 = control, T2 = 10 g / calf / day. The first takes within 20 min after birth, T3 = 10 g / calf/day. The first takes between 12 and 24 h after birth. In all the treatments, 432 L of pasteurized whole milk divided into two doses/day 07:00 and 15:00, respectively, were given for 60 days. The addition of bacillus subtilis PB6 was carried out in the milk tub at the time of feeding them. The first colostrum intake (2 L • intake) was given within 2 h after birth, after which they were given a second 6 h after the first one. The diseases registered to monitor the morbidity and mortality of the calves were: diarrhea and pneumonia. The registry was carried out from birth to 60 days of life. The parameter evaluated was food consumption. The variable statistical analysis was performed using analysis of variance, and comparison of means was performed using the Tukey test. The value of P < 0.05 was used to consider the statistical difference. The results of the present study in relation to the consumption of food show no statistical difference P < 0.05 between treatments (14,762, 11,698, and 12,403 kg of food average, respectively). Calves group to which they were not provided Bacillus subtilis PB6 obtained higher feed intake. The addition of Bacillus subtilis PB6 in feeding calves does not increase feed intake.

Keywords: feeding, development, milk, probiotic

Procedia PDF Downloads 147
141 Lessons of Passive Environmental Design in the Sarabhai and Shodan Houses by Le Corbusier

Authors: Juan Sebastián Rivera Soriano, Rosa Urbano Gutiérrez

Abstract:

The Shodan House and the Sarabhai House (Ahmedabad, India, 1954 and 1955, respectively) are considered some of the most important works of Le Corbusier produced in the last stage of his career. There are some academic publications that study the compositional and formal aspects of their architectural design, but there is no in-depth investigation into how the climatic conditions of this region were a determining factor in the design decisions implemented in these projects. This paper argues that Le Corbusier developed a specific architectural design strategy for these buildings based on scientific research on climate in the Indian context. This new language was informed by a pioneering study and interpretation of climatic data as a design methodology that would even involve the development of new design tools. This study investigated whether their use of climatic data meets values and levels of accuracy obtained with contemporary instruments and tools, such as Energy Plus weather data files and Climate Consultant. It also intended to find out if Le Corbusier's office’s intentions and decisions were indeed appropriate and efficient for those climate conditions by assessing these projects using BIM models and energy performance simulations from Design Builder. Accurate models were built using original historical data through archival research. The outcome is to provide a new understanding of the environment of these houses through the combination of modern building science and architectural history. The results confirm that in these houses, it was achieved a model of low energy consumption. This paper contributes new evidence not only on exemplary modern architecture concerned with environmental performance but also on how it developed progressive thinking in this direction.

Keywords: bioclimatic architecture, Le Corbusier, Shodan, Sarabhai Houses

Procedia PDF Downloads 65
140 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 36
139 Utilizing Artificial Intelligence to Predict Post Operative Atrial Fibrillation in Non-Cardiac Transplant

Authors: Alexander Heckman, Rohan Goswami, Zachi Attia, Paul Friedman, Peter Noseworthy, Demilade Adedinsewo, Pablo Moreno-Franco, Rickey Carter, Tathagat Narula

Abstract:

Background: Postoperative atrial fibrillation (POAF) is associated with adverse health consequences, higher costs, and longer hospital stays. Utilizing existing predictive models that rely on clinical variables and circulating biomarkers, multiple societies have published recommendations on the treatment and prevention of POAF. Although reasonably practical, there is room for improvement and automation to help individualize treatment strategies and reduce associated complications. Methods and Results: In this retrospective cohort study of solid organ transplant recipients, we evaluated the diagnostic utility of a previously developed AI-based ECG prediction for silent AF on the development of POAF within 30 days of transplant. A total of 2261 non-cardiac transplant patients without a preexisting diagnosis of AF were found to have a 5.8% (133/2261) incidence of POAF. While there were no apparent sex differences in POAF incidence (5.8% males vs. 6.0% females, p=.80), there were differences by race and ethnicity (p<0.001 and 0.035, respectively). The incidence in white transplanted patients was 7.2% (117/1628), whereas the incidence in black patients was 1.4% (6/430). Lung transplant recipients had the highest incidence of postoperative AF (17.4%, 37/213), followed by liver (5.6%, 56/1002) and kidney (3.6%, 32/895) recipients. The AUROC in the sample was 0.62 (95% CI: 0.58-0.67). The relatively low discrimination may result from undiagnosed AF in the sample. In particular, 1,177 patients had at least 1 AI-ECG screen for AF pre-transplant above .10, a value slightly higher than the published threshold of 0.08. The incidence of POAF in the 1104 patients without an elevated prediction pre-transplant was lower (3.7% vs. 8.0%; p<0.001). While this supported the hypothesis that potentially undiagnosed AF may have contributed to the diagnosis of POAF, the utility of the existing AI-ECG screening algorithm remained modest. When the prediction for POAF was made using the first postoperative ECG in the sample without an elevated screen pre-transplant (n=1084 on account of n=20 missing postoperative ECG), the AUROC was 0.66 (95% CI: 0.57-0.75). While this discrimination is relatively low, at a threshold of 0.08, the AI-ECG algorithm had a 98% (95% CI: 97 – 99%) negative predictive value at a sensitivity of 66% (95% CI: 49-80%). Conclusions: This study's principal finding is that the incidence of POAF is rare, and a considerable fraction of the POAF cases may be latent and undiagnosed. The high negative predictive value of AI-ECG screening suggests utility for prioritizing monitoring and evaluation on transplant patients with a positive AI-ECG screening. Further development and refinement of a post-transplant-specific algorithm may be warranted further to enhance the diagnostic yield of the ECG-based screening.

Keywords: artificial intelligence, atrial fibrillation, cardiology, transplant, medicine, ECG, machine learning

Procedia PDF Downloads 134
138 Fluid-Structure Interaction Analysis of a Vertical Axis Wind Turbine Blade Made with Natural Fiber Based Composite Material

Authors: Ivan D. Ortega, Juan D. Castro, Alberto Pertuz, Manuel Martinez

Abstract:

One of the problems considered when scientists talk about climate change is the necessity of utilizing renewable sources of energy, on this category there are many approaches to the problem, one of them is wind energy and wind turbines whose designs have frequently changed along many years trying to achieve a better overall performance on different conditions. From that situation, we get the two main types known today: Vertical and Horizontal axis wind turbines, which have acronyms VAWT and HAWT, respectively. This research aims to understand how well suited a composite material, which is still in development, made with natural origin fibers is for its implementation on vertical axis wind turbines blades under certain wind loads. The study consisted on acquiring the mechanical properties of the materials to be used which where bactris guineenis, also known as pama de lata in Colombia, and adhesive that acts as the matrix which had not been previously studied to the point required for this project. Then, a simplified 3D model of the airfoil was developed and tested under some preliminary loads using finite element analysis (FEA), these loads were acquired in the Colombian Chicamocha Canyon. Afterwards, a more realistic pressure profile was obtained using computational fluid dynamics which took into account the 3D shape of the complete blade and its rotation. Finally, the blade model was subjected to the wind loads using what is known as one way fluidstructure interaction (FSI) and its behavior analyzed to draw conclusions. The observed overall results were positive since the material behaved fairly as expected. Data suggests the material would be really useful in this kind of applications in small to medium size turbines if it is given more attention and time to develop.

Keywords: CFD, FEA, FSI, natural fiber, VAWT

Procedia PDF Downloads 226
137 Spontaneous Generation of Wrinkled Patterns on pH-Sensitive Smart-Hydrogel Films

Authors: Carmen M. Gonzalez-Henriquez, Mauricio A. Sarabia-Vallejos, Juan Rodriguez-Hernandez

Abstract:

DMAEMA, as a monomer, has been widely studied and used in several application fields due to their pH-sensitive capacity (tertiary amine protonation), being relevant in the biomedical area as a potential carrier for drugs focused on the treatment of genetic or acquired diseases (efficient gene transfection), among others. Additionally, the inhibition of bacterial growth and, therefore, their antimicrobial activity, can be used as dual-functional antifogging/antimicrobial polymer coatings. According to their interesting physicochemical characteristics and biocompatible properties, DMAEMA was used as a monomer to synthesize a smart pH-sensitive hydrogel, namely poly(HEMA-co-PEGDA575-co-DMAEMA). Thus, different mole ratios (ranging from 5:1:0 to 0:1:5, according to the mole ratio between HEMA, PEGDA, and DEAEMA, respectively) were used in this research. The surface patterns formed via a two-step polymerization (redox- and photo-polymerization) were first chemically studied via 1H-NMR and elemental analysis. Secondly, the samples were morphologically analyzed by using Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Then, a particular relation between HEMA, PEGDA, and DEAEMA (0:1:5) was also characterized at three different pH (5.4, 7.4 and 8.3). The hydrodynamic radius and zeta potential of the micro-hydrogel particles (emulsion) were carried out as a possible control for morphology, exploring the effect that produces hydrogel micelle dimensions in the wavelength, height, and roughness of the wrinkled patterns. Finally, contact angle and cross-hatch adhesion test was carried out for the hydrogels supported on glass using TSM-silanized surfaces in order to measure their mechanical properties.

Keywords: wrinkled patterns, smart pH-sensitive hydrogels, hydrogel micelle diameter, adhesion tests

Procedia PDF Downloads 206
136 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 63
135 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 205
134 Design of 3D Bioprinted Scaffolds for Cartilage Regeneration

Authors: Gloria Pinilla, Jose Manuel Baena, Patricia Gálvez-Martín, Juan Antonio Marchad

Abstract:

Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine.

Keywords: cartilage regeneration, bioprinting, bioink, scaffold, chondrocyte

Procedia PDF Downloads 313
133 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil

Procedia PDF Downloads 306
132 Perception of Public Transport Quality of Service among Regular Private Vehicle Users in Five European Cities

Authors: Juan de Ona, Esperanza Estevez, Rocío de Ona

Abstract:

Urban traffic levels can be reduced by drawing travelers away from private vehicles over to using public transport. This modal change can be achieved by either introducing restrictions on private vehicles or by introducing measures which increase people’s satisfaction with public transport. For public transport users, quality of service affects customer satisfaction, which, in turn, influences the behavioral intentions towards the service. This paper intends to identify the main attributes which influence the perception private vehicle users have about the public transport services provided in five European cities: Berlin, Lisbon, London, Madrid and Rome. Ordinal logit models have been applied to an online panel survey with a sample size of 2,500 regular private vehicle users (approximately 500 inhabitants per city). To achieve a comprehensive analysis and to deal with heterogeneity in perceptions, 15 models have been developed for the entire sample and 14 user segments. The results show differences between the cities and among the segments. Madrid was taken as reference city and results indicate that the inhabitants are satisfied with public transport in Madrid and that the most important public transport service attributes for private vehicle users are frequency, speed and intermodality. Frequency is an important attribute for all the segments, while speed and intermodality are important for most of the segments. An analysis by segments has identified attributes which, although not important in most cases, are relevant for specific segments. This study also points out important differences between the five cities. Findings from this study can be used to develop policies and recommendations for persuading.

Keywords: service quality, satisfaction, public transportation, private vehicle users, car users, segmentation, ordered logit

Procedia PDF Downloads 117
131 Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter

Authors: Mauricio Cruz, Andrés Díaz García, Martha Isabel Gómez, Juan Carlos Serrato Bermúdez

Abstract:

The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1.

Keywords: bioprocess, scale up, fractional design, C:N ratio, air flow

Procedia PDF Downloads 509
130 Effects of an Envious Experience on Schadenfreude and Economic Decisions Making

Authors: Pablo Reyes, Vanessa Riveros Fiallo, Cesar Acevedo, Camila Castellanos, Catalina Moncaleano, Maria F. Parra, Laura Colmenares

Abstract:

Social emotions are physiological, cognitive and behavioral phenomenon that intervene in the mechanisms of adaptation of individuals and their context. These are mediated by interpersonal relationship and language. Such emotions are subdivided into moral and comparison. The present research emphasizes two comparative emotions: Envy and Schadenfreude. Envy arises when a person lack of quality, possessions or achievements and these are superior in someone else. The Schadenfreude (SC) expresses the pleasure that someone experienced by the misfortune of the other. The relationship between both emotions has been questioned before. Hence there are reports showing that envy increases and modulates SC response. Other documents suggest that envy causes SC response. However, the methodological approach of the topic has been made through self-reports, as well as the hypothetical scenarios. Given this problematic, the neuroscience social framework provides an alternative and demonstrates that social emotions have neurophysiological correlates that can be measured. This is relevant when studying social emotions that are reprehensible like envy or SC are. When tested, the individuals tend to report low ratings due to social desirability. In this study, it was drawn up a proposal in research's protocol and the progress on its own piloting. The aim is to evaluate the effect of feeling envy and Schadenfreude has on the decision-making process, as well as the cooperative behavior in an economic game. To such a degree, it was proposed an experimental model that will provoke to feel envious by performing games against an unknown opponent. The game consists of asking general knowledge questions. The difficulty level in questions and the strangers' facial response have been manipulated in order to generate an ecological comparison framework and be able to arise both envy and SC emotions. During the game, an electromyography registry will be made for two facial muscles that have been associated with the expressiveness of envy and SC emotions. One of the innovations of the current proposal is the measurement of the effect that emotions have on a specific behavior. To that extent, it was evaluated the effect of each condition on the dictators' economic game. The main intention is to evaluate if a social emotion can modulate actions that have been associated with social norms, in the literacy. The result of the evaluation of a pilot model (without electromyography record and self-report) have shown an association between envy and SC, in a way that as the individuals report a greater sense of envy, the greater the chance to experience SC. The results of the economic game show a slight tendency towards profit maximization decisions. It is expected that at the time of using real cash this behavior will be strengthened and also to correlate with the responses of electromyography.

Keywords: envy, schadenfreude, electromyography, economic games

Procedia PDF Downloads 370
129 Automatic Aggregation and Embedding of Microservices for Optimized Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.

Keywords: aggregation, deployment, embedding, resource allocation

Procedia PDF Downloads 203
128 Historical Analysis of the Landscape Changes and the Eco-Environment Effects on the Coastal Zone of Bohai Bay, China

Authors: Juan Zhou, Lusan Liu, Yanzhong Zhu, Kuixuan Lin, Wenqian Cai, Yu Wang, Xing Wang

Abstract:

During the past few decades, there has been an increase in the number of coastal land reclamation projects for residential, commercial and industrial purposes in more and more coastal cities of China, which led to the destruction of the wetlands and loss of the sensitive marine habitats. Meanwhile, the influences and nature of these projects attract widespread public and academic concern. For identifying the trend of landscape (esp. Coastal reclamation) and ecological environment changes, understanding of which interacted, and offering a general science for the development of regional plans. In the paper, a case study was carried out in Bohai Bay area, based on the analysis of remote sensing data. Land use maps were created for 1954, 1970, 1981, 1990, 2000 and 2010. Landscape metrics were calculated and illustrated that the degree of reclamation changes was linked to the hydrodynamic environment and macrobenthos community. The results indicated that the worst of the loss of initial areas occurred during 1954-1970, with 65.6% lost mostly to salt field; to 2010, Coastal reclamation area increased more than 200km² as artificial landscape. The numerical simulation of tidal current field in 2003 and 2010 respectively showed that the flow velocity in offshore became faster (from 2-5 cm/s to 10-20 cm/s), and the flow direction seem to go astray. These significant changes of coastline were not conducive to the spread of pollutants and degradation. Additionally, the dominant macrobenthos analysis from 1958 to 2012 showed that Musculus senhousei (Benson, 1842) spread very fast and had been the predominant species in the recent years, which was a disturbance tolerant species.

Keywords: Bohai Bay, coastal reclamation, landscape change, spatial patterns

Procedia PDF Downloads 290
127 Healthy Architecture Applied to Inclusive Design for People with Cognitive Disabilities

Authors: Santiago Quesada-García, María Lozano-Gómez, Pablo Valero-Flores

Abstract:

The recent digital revolution, together with modern technologies, is changing the environment and the way people interact with inhabited space. However, in society, the elderly are a very broad and varied group that presents serious difficulties in understanding these modern technologies. Outpatients with cognitive disabilities, such as those suffering from Alzheimer's disease (AD), are distinguished within this cluster. This population group is in constant growth, and they have specific requirements for their inhabited space. According to architecture, which is one of the health humanities, environments are designed to promote well-being and improve the quality of life for all. Buildings, as well as the tools and technologies integrated into them, must be accessible, inclusive, and foster health. In this new digital paradigm, artificial intelligence (AI) appears as an innovative resource to help this population group improve their autonomy and quality of life. Some experiences and solutions, such as those that interact with users through chatbots and voicebots, show the potential of AI in its practical application. In the design of healthy spaces, the integration of AI in architecture will allow the living environment to become a kind of 'exo-brain' that can make up for certain cognitive deficiencies in this population. The objective of this paper is to address, from the discipline of neuroarchitecture, how modern technologies can be integrated into everyday environments and be an accessible resource for people with cognitive disabilities. For this, the methodology has a mixed structure. On the one hand, from an empirical point of view, the research carries out a review of the existing literature about the applications of AI to build space, following the critical review foundations. As a unconventional architectural research, an experimental analysis is proposed based on people with AD as a resource of data to study how the environment in which they live influences their regular activities. The results presented in this communication are part of the progress achieved in the competitive R&D&I project ALZARQ (PID2020-115790RB-I00). These outcomes are aimed at the specific needs of people with cognitive disabilities, especially those with AD, since, due to the comfort and wellness that the solutions entail, they can also be extrapolated to the whole society. As a provisional conclusion, it can be stated that, in the immediate future, AI will be an essential element in the design and construction of healthy new environments. The discipline of architecture has the compositional resources to, through this emerging technology, build an 'exo-brain' capable of becoming a personal assistant for the inhabitants, with whom to interact proactively and contribute to their general well-being. The main objective of this work is to show how this is possible.

Keywords: Alzheimer’s disease, artificial intelligence, healthy architecture, neuroarchitecture, architectural design

Procedia PDF Downloads 61
126 Envy and Schadenfreude Domains in a Model of Neurodegeneration

Authors: Hernando Santamaría-García, Sandra Báez, Pablo Reyes, José Santamaría-García, Diana Matallana, Adolfo García, Agustín Ibañez

Abstract:

The study of moral emotions (i.e., Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as monolithic domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested 20 patients with behavioral variant frontotemporal dementia (bvFTD), 24 patients with Alzheimer’s disease (AD), as a contrastive neurodegeneration model, and 20 healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the AD and control groups, bvFTD patients obtained significantly higher scores on all dimensions for both emotions. Interestingly, the legal dimension for both envy and Schadenfreude elicited higher emotional scores than the deservingness and moral dimensions. Furthermore, correlational analyses in bvFTD showed that higher envy and Schadenfreude scores were associated with greater deficits in social cognition, inhibitory control, and behavior. Brain anatomy findings (restricted to bvFTD and controls) confirmed differences in how these groups process each dimension. Schadenfreude was associated with the ventral striatum in all subjects. Also, in bvFTD patients, increased Schadenfreude across dimensions was negatively correlated with regions supporting social-value rewards, mentalizing, and social cognition (frontal pole, temporal pole, angular gyrus and precuneus). In all subjects, all dimensions of envy positively correlated with the volume of the anterior cingulate cortex, a region involved in processing unfair social comparisons. By contrast, in bvFTD patients, the intensified experience of envy across all dimensions was negatively correlated with a set of areas subserving social cognition, including the prefrontal cortex, the parahippocampus, and the amygdala. Together, the present results provide the first lesion-based evidence for the multidimensional nature of the emotional experiences of envy and Schadenfreude. Moreover, this is the first demonstration of a selective exacerbation of envy and Schadenfreude in bvFTD patients, probably triggered by atrophy to social cognition networks. Our results offer new insights into the mechanisms subserving complex emotions and moral cognition in neurodegeneration, paving the way for groundbreaking research on their interaction with other cognitive, social, and emotional processes.

Keywords: social cognition, moral emotions, neuroimaging, frontotemporal dementia

Procedia PDF Downloads 290
125 Comparison of the Results of a Parkinson’s Holter Monitor with Patient Diaries, in Real Conditions of Use: A Sub-Analysis of the MoMoPa-EC Clinical Trial

Authors: Alejandro Rodríguez-Molinero, Carlos Pérez-López, Jorge Hernández-Vara, Àngels Bayes-Rusiñol, Juan Carlos Martínez-Castrillo, David A. Pérez-Martínez

Abstract:

Background: Monitoring motor symptoms in Parkinson's patients is often a complex and time-consuming task for clinicians, as Hauser's diaries are often poorly completed by patients. Recently, new automatic devices (Parkinson's holter: STAT-ON®) have been developed capable of monitoring patients' motor fluctuations. The MoMoPa-EC clinical trial (NCT04176302) investigates which of the two methods produces better clinical results. In this sub-analysis, the concordance between both methods is analyzed. Methods: In the MoMoPa-EC clinical trial, 164 patients with moderate-severe Parkinson's disease and at least two hours a day of Off will be included. At the time of patient recruitment, all of them completed a seven-day motor fluctuation diary at home (Hauser’s diary) while wearing the Parkinson's holter. In this sub-analysis, 71 patients with complete data for the purpose of this comparison were included. The intraclass correlation coefficient was calculated between the patient diary entries and the Parkinson's holter data in terms of time On, Off, and time with dyskinesias. Results: The intra-class correlation coefficient of both methods was 0.57 (95% CI: 0.3-0.74) for daily time in Off (%), 0.48 (95% CI: 0.14-0.68) for daily time in On (%), and 0.37 (95% CI %: -0.04-0.62) for daily time with dyskinesias (%). Conclusions: Both methods have a moderate agreement with each other. We will have to wait for the results of the MoMoPa-EC project to estimate which of them has the greatest clinical benefits. Acknowledgment: This work is supported by AbbVie S.L.U, the Instituto de Salud Carlos III [DTS17/00195], and the European Fund for Regional Development, 'A way to make Europe'.

Keywords: Parkinson, sensor, motor fluctuations, dyskinesia

Procedia PDF Downloads 231
124 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas

Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas

Abstract:

Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.

Keywords: biological breakdown, plastic bags, prototype, desert regions

Procedia PDF Downloads 287
123 Use of Smartwatches for the Emotional Self-Regulation of Individuals with Autism Spectrum Disorder (ASD)

Authors: Juan C. Torrado, Javier Gomez, Guadalupe Montero, German Montoro, M. Dolores Villalba

Abstract:

One of the most challenging aspects of the executive dysfunction of people with Autism Spectrum Disorders is the behavior control. This is related to a deficit in their ability to regulate, recognize and manage their own emotions. Some researchers have developed applications for tablets and smartphones to practice strategies of relaxation and emotion recognition. However, they cannot be applied to the very moment of temper outbursts, anger episodes or anxiety, since they require to carry the device, start the application and be helped by caretakers. Also, some of these systems are developed for either obsolete technologies (old versions of tablet devices, PDAs, outdated operative systems of smartphones) or specific devices (self-developed or proprietary ones) that create differentiation between the users and the rest of the individuals in their context. For this project we selected smartwatches. Focusing on emergent technologies ensures a wide lifespan of the developed products, because the derived products are intended to be available in the same moment the very technology gets popularized, not later. We also focused our research in commercial versions of smartwatches, since this way differentiation is easily avoided, so the users’ abandonment rate lowers. We have developed a smartwatch system along with a smartphone authoring tool to display self-regulation strategies. These micro-prompting strategies are conformed of pictograms, animations and temporizers, and they are designed by means of the authoring tool: When both devices synchronize their data, the smartwatch holds the self-regulation strategies, which are triggered when the smartwatch sensors detect a remarkable rise of heart rate and movement. The system is being currently tested in an educational center of people with ASD of Madrid, Spain.

Keywords: assistive technologies, emotion regulation, human-computer interaction, smartwatches

Procedia PDF Downloads 296
122 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 63
121 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 148
120 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes

Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez

Abstract:

In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.

Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation

Procedia PDF Downloads 69
119 Effects of Accelerated Environment Aging on the Mechanical Properties of a Coir Fiber Reinforced Polyester Composite

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

Coir natural fiber reinforced polyester composites were exposed to an accelerated environment aging in order to study the influence on the mechanical properties. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. A physical and mechanical characterization was necessary to found the best behavior between three types of coconut. Composites were fabricated by hand lay-up technique and samples were cut by water jet technique. An accelerated aging test simulates environmental climate conditions in a hygrothermal and ultraviolet chamber. Samples were exposed to the UV/moisture rich environment for 500 and 1000 hours. The tests were performed in accordance with ASTM G154. An additional water absorption test was carried out by immersing specimens in a water bath. Mechanical behaviors of the composites were tested by tensile, flexural and impact test according to ASTM standards, after aging and compared with unaged composite specimens. It was found that accelerated environment aging affects mechanical properties in comparison with unaged ones. Tensile and flexural strength were lower after aging, meantime elongation at break and flexural deflection increased. Impact strength was found that reduced after aging. Other result revealed that the percentage of moisture uptake increased with aging. This results showed that composite materials reinforced with natural fibers required an improvement adding a protective barrier to reduce water absorption and increase UV resistance.

Keywords: coir fiber, polyester composites, environmental aging, mechanical properties

Procedia PDF Downloads 272
118 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract:

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave

Procedia PDF Downloads 345
117 Hybrid Bimodal Magnetic Force Microscopy

Authors: Fernández-Brito David, Lopez-Medina Javier Alonso, Murillo-Bracamontes Eduardo Antonio, Palomino-Ovando Martha Alicia, Gervacio-Arciniega José Juan

Abstract:

Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared.

Keywords: magnetic force microscopy, atomic force microscopy, magnetism, bimodal MFM

Procedia PDF Downloads 72
116 Using Problem-Based Learning on Teaching Early Intervention for College Students

Authors: Chen-Ya Juan

Abstract:

In recent years, the increasing number of children with special needs has brought a lot of attention by many scholars and experts in education, which enforced the preschool teachers face the harsh challenge in the classroom. To protect the right of equal education for all children, enhance the quality of children learning, and take care of the needs of children with special needs, the special education paraprofessional becomes one of the future employment trends for students of the department of the early childhood care and education. Problem-based learning is a problem-oriented instruction, which is different from traditional instruction. The instructor first designed an ambiguous problem direction, following the basic knowledge of early intervention, students had to find clues to solve the problem defined by themselves. In the class, the total instruction included 20 hours, two hours per week. The primary purpose of this paper is to investigate the relationship of student academic scores, self-awareness, learning motivation, learning attitudes, and early intervention knowledge. A total of 105 college students participated in this study and 97 questionnaires were effective. The effective response rate was 90%. The student participants included 95 females and two males. The average age of the participants was 19 years old. The questionnaires included 125 questions divided into four major dimensions: (1) Self-awareness, (2) learning motivation, (3) learning attitudes, and (4) early intervention knowledge. The results indicated (1) the scores of self-awareness were 58%; the scores of the learning motivations was 64.9%; the scores of the learning attitudes was 55.3%. (2) After the instruction, the early intervention knowledge has been increased to 64.2% from 38.4%. (3) Student’s academic performance has positive relationship with self-awareness (p < 0.05; R = 0.506), learning motivation (p < 0.05; R = 0.487), learning attitudes (p < 0.05; R = 0.527). The results implied that although students had gained early intervention knowledge by using PBL instruction, students had medium scores on self-awareness and learning attitudes, medium high in learning motivations.

Keywords: college students, children with special needs, problem-based learning, learning motivation

Procedia PDF Downloads 157