Search results for: Hash algorithm
3379 A Matheuristic Algorithm for the School Bus Routing Problem
Authors: Cagri Memis, Muzaffer Kapanoglu
Abstract:
The school bus routing problem (SBRP) is a variant of the Vehicle Routing Problem (VRP) classified as a location-allocation-routing problem. In this study, the SBRP is decomposed into two sub-problems: (1) bus route generation and (2) bus stop selection to solve large instances of the SBRP in reasonable computational times. To solve the first sub-problem, we propose a genetic algorithm to generate bus routes. Once the routes have been fixed, a sub-problem remains of allocating students to stops considering the capacity of the buses and the walkability constraints of the students. While the exact method solves small-scale problems, treating large-scale problems with the exact method becomes complex due to computational problems, a deficiency that the genetic algorithm can overcome. Results obtained from the proposed approach on 150 instances up to 250 stops show that the matheuristic algorithm provides better solutions in reasonable computational times with respect to benchmark algorithms.Keywords: genetic algorithm, matheuristic, school bus routing problem, vehicle routing problem
Procedia PDF Downloads 703378 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots
Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar
Abstract:
Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.Keywords: agricultural mobile robot, image processing, path recognition, hough transform
Procedia PDF Downloads 1463377 Improving the Security of Internet of Things Using Encryption Algorithms
Authors: Amirhossein Safi
Abstract:
Internet of things (IOT) is a kind of advanced information technology which has drawn societies’ attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously, IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission, and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually, the suggested encryption algorithm has been simulated by MATLAB software, and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.Keywords: internet of things, security, hybrid algorithm, privacy
Procedia PDF Downloads 4663376 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm
Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata
Abstract:
In previous study, technique to estimate a self-location by using a lunar image is proposed. We consider the improvement of the conventional method in consideration of FPGA implementation in this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time. In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.Keywords: SLIM, Artificial Bee Colony Algorithm, location estimate, evolutional triangle similarity
Procedia PDF Downloads 5163375 FPGA Implementation of Novel Triangular Systolic Array Based Architecture for Determining the Eigenvalues of Matrix
Authors: Soumitr Sanjay Dubey, Shubhajit Roy Chowdhury, Rahul Shrestha
Abstract:
In this paper, we have presented a novel approach of calculating eigenvalues of any matrix for the first time on Field Programmable Gate Array (FPGA) using Triangular Systolic Arra (TSA) architecture. Conventionally, additional computation unit is required in the architecture which is compliant to the algorithm for determining the eigenvalues and this in return enhances the delay and power consumption. However, recently reported works are only dedicated for symmetric matrices or some specific case of matrix. This works presents an architecture to calculate eigenvalues of any matrix based on QR algorithm which is fully implementable on FPGA. For the implementation of QR algorithm we have used TSA architecture, which is further utilising CORDIC (CO-ordinate Rotation DIgital Computer) algorithm, to calculate various trigonometric and arithmetic functions involved in the procedure. The proposed architecture gives an error in the range of 10−4. Power consumption by the design is 0.598W. It can work at the frequency of 900 MHz.Keywords: coordinate rotation digital computer, three angle complex rotation, triangular systolic array, QR algorithm
Procedia PDF Downloads 4113374 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding
Authors: Aiman Alshare, Sahar Qaadan
Abstract:
A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm
Procedia PDF Downloads 3603373 Frequent-Pattern Tree Algorithm Application to S&P and Equity Indexes
Authors: E. Younsi, H. Andriamboavonjy, A. David, S. Dokou, B. Lemrabet
Abstract:
Software and time optimization are very important factors in financial markets, which are competitive fields, and emergence of new computer tools further stresses the challenge. In this context, any improvement of technical indicators which generate a buy or sell signal is a major issue. Thus, many tools have been created to make them more effective. This worry about efficiency has been leading in present paper to seek best (and most innovative) way giving largest improvement in these indicators. The approach consists in attaching a signature to frequent market configurations by application of frequent patterns extraction method which is here most appropriate to optimize investment strategies. The goal of proposed trading algorithm is to find most accurate signatures using back testing procedure applied to technical indicators for improving their performance. The problem is then to determine the signatures which, combined with an indicator, outperform this indicator alone. To do this, the FP-Tree algorithm has been preferred, as it appears to be the most efficient algorithm to perform this task.Keywords: quantitative analysis, back-testing, computational models, apriori algorithm, pattern recognition, data mining, FP-tree
Procedia PDF Downloads 3613372 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1203371 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study
Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu
Abstract:
With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray
Procedia PDF Downloads 7283370 Incorporating Priority Round-Robin Scheduler to Sustain Indefinite Blocking Issue and Prioritized Processes in Operating System
Authors: Heng Chia Ying, Charmaine Tan Chai Nie, Burra Venkata Durga Kumar
Abstract:
Process scheduling is the method of process management that determines which process the CPU will proceed with for the next task and how long it takes. Some issues were found in process management, particularly for Priority Scheduling (PS) and Round Robin Scheduling (RR). The proposed recommendations made for IPRRS are to combine the strengths of both into a combining algorithm while they draw on others to compensate for each weakness. A significant improvement on the combining technique of scheduler, Incorporating Priority Round-Robin Scheduler (IPRRS) address an algorithm for both high and low priority task to sustain the indefinite blocking issue faced in the priority scheduling algorithm and minimize the average turnaround time (ATT) and average waiting time (AWT) in RR scheduling algorithm. This paper will delve into the simple rules introduced by IPRRS and enhancements that both PS and RR bring to the execution of processes in the operating system. Furthermore, it incorporates the best aspects of each algorithm to build the optimum algorithm for a certain case in terms of prioritized processes, ATT, and AWT.Keywords: round Robin scheduling, priority scheduling, indefinite blocking, process management, sustain, turnaround time
Procedia PDF Downloads 1453369 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis
Procedia PDF Downloads 3853368 Parameter Estimation of Induction Motors by PSO Algorithm
Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad
Abstract:
After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method
Procedia PDF Downloads 6323367 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm
Authors: Ramnath Narhete, Saket Pandey, Puran Gour
Abstract:
This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator
Procedia PDF Downloads 5773366 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm
Authors: Dipti Patra, Guguloth Uma, Smita Pradhan
Abstract:
Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information
Procedia PDF Downloads 4063365 Intrusion Detection Based on Graph Oriented Big Data Analytics
Authors: Ahlem Abid, Farah Jemili
Abstract:
Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud
Procedia PDF Downloads 1443364 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3013363 Modern Imputation Technique for Missing Data in Linear Functional Relationship Model
Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, Rahmatullah Imon
Abstract:
Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in the LFRM. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators
Procedia PDF Downloads 3983362 Tank Barrel Surface Damage Detection Algorithm
Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský
Abstract:
The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank
Procedia PDF Downloads 1363361 DCT and Stream Ciphers for Improved Image Encryption Mechanism
Authors: T. R. Sharika, Ashwini Kumar, Kamal Bijlani
Abstract:
Encryption is the process of converting crucial information’s unreadable to unauthorized persons. Image security is an important type of encryption that secures all type of images from cryptanalysis. A stream cipher is a fast symmetric key algorithm which is used to convert plaintext to cipher text. In this paper we are proposing an image encryption algorithm with Discrete Cosine Transform and Stream Ciphers that can improve compression of images and enhanced security. The paper also explains the use of a shuffling algorithm for enhancing securing.Keywords: decryption, DCT, encryption, RC4 cipher, stream cipher
Procedia PDF Downloads 3593360 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant
Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon
Abstract:
In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt
Procedia PDF Downloads 5463359 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3333358 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm
Authors: Alireza Alesaadi
Abstract:
Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering
Procedia PDF Downloads 5073357 Design Data Sorter Circuit Using Insertion Sorting Algorithm
Authors: Hoda Abugharsa
Abstract:
In this paper we propose to design a sorter circuit using insertion sorting algorithm. The circuit will be designed using Algorithmic State Machines (ASM) method. That means converting the insertion sorting flowchart into an ASM chart. Then the ASM chart will be used to design the sorter circuit and the control unit.Keywords: insert sorting algorithm, ASM chart, sorter circuit, state machine, control unit
Procedia PDF Downloads 4433356 Product Development in Company
Authors: Giorgi Methodishvili, Iuliia Methodishvili
Abstract:
In this paper product development algorithm is used to determine the optimal management of financial resources in company. Aspects of financial management considered include put initial investment, examine all possible ways to solve the problem and the optimal rotation length of profit. The software of given problems is based using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.Keywords: management, software, optimal, greedy algorithm, graph-diagram
Procedia PDF Downloads 553355 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4753354 Autonomous Control of Ultrasonic Transducer Drive System
Authors: Dong-Keun Jeong, Jong-Hyun Kim, Woon-Ha Yoon, Hee-Je Kim
Abstract:
In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system.Keywords: ultrasonic transducer drive system, impedance change, sensorless, autonomous control algorithm
Procedia PDF Downloads 3593353 Detect Circles in Image: Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: image processing, median filter, projection, scale-space, segmentation, threshold
Procedia PDF Downloads 4303352 Using Self Organizing Feature Maps for Automatic Prostate Segmentation in TRUS Images
Authors: Ahad Salimi, Hassan Masoumi
Abstract:
Prostate cancer is one of the most common recognized cancers in men, and, is one of the most important mortality factors of cancer in this group. Determining of prostate’s boundary in TRUS (Transrectal Ultra Sound) images is very necessary for prostate cancer treatments. The weakness edges and speckle noise make the ultrasound images inherently to segment. In this paper a new automatic algorithm for prostate segmentation in TRUS images proposed that include three main stages. At first morphological smoothing and sticks filtering are used for noise removing. In second step, for finding a point in prostate region, SOFM algorithm is enlisted and in the last step, the boundary of prostate extracting accompanying active contour is employed. For validation of proposed method, a number of experiments are conducted. The results obtained by our algorithm show the promise of the proposed algorithm.Keywords: SOFM, preprocessing, GVF contour, segmentation
Procedia PDF Downloads 3253351 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm
Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot
Abstract:
The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump
Procedia PDF Downloads 1533350 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm
Authors: Ping Bo, Meng Yunshan
Abstract:
Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter
Procedia PDF Downloads 323