Search results for: transition regression model
17535 Simulation of Kinetic Friction in L-Bending of Sheet Metals
Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang
Abstract:
This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.Keywords: friction, L-bending, springback, Stribeck curves
Procedia PDF Downloads 49117534 A Case Study on Smart Energy City of the UK: Based on Business Model Innovation
Authors: Minzheong Song
Abstract:
The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system.Keywords: smart city, smart energy, business model, business model innovation (BMI)
Procedia PDF Downloads 16217533 A Cross-Cultural Investigation of Self-Compassion in Adolescents Across Gender
Authors: H. N. Cheung
Abstract:
Self-compassion encourages one to accept oneself, reduce self-criticism and self-judgment, and see one’s shortcomings and setbacks in a balanced view. Adolescent self-compassion is a crucial protective factor against mental illness. It is, however, affected by gender. Given the scarcity of self-compassion scales for adolescents, the current study evaluates the Self-Compassion Scale for Youth (SCS-Y) in a large cross-cultural sample and investigates how the subscales of SCS-Y relate to the dimensions of depressive symptoms across gender. Through the internet-based Qualtrics, a total of 2881 teenagers aged 12 to 18 years were recruited from Hong Kong (HK), China, and the United Kingdom. A Multiple Indicator Multiple Cause (MIMIC) model was used to evaluate measurement invariance of the SCS-Y, and differential item functioning (DIF) was checked across gender. Upon the establishment of the best model, a multigroup structural equation model (SEM) was built between factors of SCS-Y and Multidimensional depression assessment scale (MDAS) which assesses four dimensions of depressive symptoms (emotional, cognitive, somatic and interpersonal). The SCS-Y was shown to have good reliability and validity. The MIMIC model produced a good model fit for a hypothetical six-factor model (CFI = 0.980; TLI = 0.974; RMSEA = 0.038) and no item was flagged for DIF across gender. A gender difference was observed between SCS-Y factors and depression dimensions. Conclusions: The SCS-Y exhibits good psychometric characteristics, including measurement invariance across gender. The study also highlights the gender difference between self-compassion factors and depression dimensions.Keywords: self compassion, gender, depression, structural equation modelling, MIMIC model
Procedia PDF Downloads 7117532 AIPM:An Integrator and Pull Request Matching Model in Github
Authors: Zhifang Liao, Yanbing Li, Li Xu, Yan Zhang, Xiaoping Fan, Jinsong Wu
Abstract:
Pull Request (PR) is the primary method for code contributions from the external contributors in Github. PR review is an essential part of open source software developments for maintaining the quality of software. Matching a new PR of an appropriate integrator will make the PR review more effective. However, PR and integrator matching are now organized manually in Github. To reduce this cost, we presented an AIPM model to predict highly relevant integrator of incoming PRs. AIPM uses topic model to extract topics from the PRs, and builds a one-to-one correspondence between topics and integrators. Then, AIPM finds the most suitable integrator according to the maximum entry of the topic-document distribution. On average, AIPM can reach a precision of 60%, and even in some projects, can reach a precision of 80%.Keywords: pull Request, integrator matching, Github, open source project, topic model
Procedia PDF Downloads 30017531 Number of Parameters of Anantharam's Model with Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of Anantharam’s model within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters of Anantharam’s model. We consider single-input single-output systems in this paper. By the investigation, we find three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: linear systems, parametrization, coprime factorization, number of parameters
Procedia PDF Downloads 21417530 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 17917529 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model
Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey
Abstract:
This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system
Procedia PDF Downloads 36917528 Factors Affecting Profitability of Pharmaceutical Company During the COVID-19 Pandemic: An Indonesian Evidence
Authors: Septiany Trisnaningtyas
Abstract:
Purpose: This research aims to examine the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia. A sharp decline in the number of patients coming to the hospital for treatment during the pandemic has an impact on the growth of the pharmaceutical sector and brought major changes in financial position and business performance. Pharmaceutical companies that provide products related to the Covid-19 pandemic can survive and continue to grow. This study investigates the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia associated with the number of Covid-19 cases. Design/methodology/approach: This study uses panel-data regression models to evaluate the influence of the number of Covid-19 confirmed cases on profitability of ninelisted pharmaceuticalcompanies in Indonesia. This research is based on four independent variables that were empirically examined for their relationship with profitability. These variables are liquidity (current ratio), growth rate (sales growth), firm size (total sales), and market power (the Lerner index). Covid-19 case is used as moderating variable. Data of nine pharmaceutical companies listed on the Indonesia Stock Exchange covering the period of 2018–2021 were extracted from companies’ quarterly annual reports. Findings: In the period during Covid-19, company growth (sales growth) and market power (lerner index) have a positive and significant relationship to ROA and ROE. Total of confirmed Covid-19 cases has a positive and significant relationship to ROA and is proven to have a moderating effect between company’s growth (sales growth) to ROA and ROE and market power (Lerner index) to ROA. Research limitations/implications: Due to data availability, this study only includes data from nine listed pharmaceutical companies in Indonesian Stock exchange and quarterly annual reportscovering the period of 2018-2021. Originality/value: This study focuses onpharmaceutical companies in Indonesia during Covid-19 pandemic. Previous study analyzes the data from pharmaceutical companies’ annual reports since 2014 and focus on universal health coverage (national health insurance) implementation from the Indonesian government. This study analyzes the data using fixed effect panel-data regression models to evaluate the influence of Covid-19 confirmed cases on profitability. Pooled ordinary least squares regression and fixed effects were used to analyze the data in previous study. This study also investigate the moderating effect of Covid-19 confirmed cases to profitability in relevant with the pandemic situation.Keywords: profitability, indonesia, pharmaceutical, Covid-19
Procedia PDF Downloads 12317527 Admission C-Reactive Protein Serum Levels and In-Hospital Mortality in the Elderly Admitted to the Acute Geriatrics Department
Authors: Anjelika Kremer, Irina Nachimov, Dan Justo
Abstract:
Background: C-reactive protein (CRP) serum levels are commonly measured in hospitalized patients. Elevated admission CRP serum levels and in-hospital mortality has been seldom studied in the general population of elderly patients admitted to the acute Geriatrics department. Methods: A retrospective cross-sectional study was conducted at a tertiary medical center. Included were all elderly patients (age 65 years or more) admitted to a single acute Geriatrics department from the emergency room between April 2014 and January 2015. CRP serum levels were measured routinely in all patients upon the first 24 hours of admission. A logistic regression analysis was used to study if admission CRP serum levels were associated with in-hospital mortality independent of age, gender, functional status, and co-morbidities. Results: Overall, 498 elderly patients were included in the analysis: 306 (61.4%) female patients and 192 (38.6%) male patients. The mean age was 84.8±7.0 years (median: 85 years; IQR: 80-90 years). The mean admission CRP serum levels was 43.2±67.1 mg/l (median: 13.1 mg/l; IQR: 2.8-51.7 mg/l). Overall, 33 (6.6%) elderly patients died during the hospitalization. A logistic regression analysis showed that in-hospital mortality was independently associated with history of stroke (p < 0.0001), heart failure (p < 0.0001), and admission CRP serum levels (p < 0.0001) – and to a lesser extent with age (p = 0.042), collagen vascular disease (p=0.011), and recent venous thromboembolism (p=0.037). Receiver operating characteristic (ROC) curve showed that admission CRP serum levels predict in-hospital mortality fairly with an area under the curve (AUC) of 0.694 (p < 0.0001). Cut-off value with maximal sensitivity and specificity was 19.7 mg/L. Conclusions: Admission CRP serum levels may be used to predict in-hospital mortality in the general population of elderly patients admitted to the acute Geriatrics department.Keywords: c-reactive protein, elderly, mortality, prediction
Procedia PDF Downloads 23917526 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 35317525 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability
Procedia PDF Downloads 27417524 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications
Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu
Abstract:
On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.Keywords: cloud computing, CPU intensive applications, resource optimization, strategy
Procedia PDF Downloads 27917523 Simulation Model of Biosensor Based on Gold Nanoparticles
Authors: Kholod Hajo
Abstract:
In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics
Procedia PDF Downloads 25717522 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical
Authors: Nai-Chia Chao, Meng-Chi Shih
Abstract:
Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.Keywords: arts integration, co-working, children's musical
Procedia PDF Downloads 30217521 Classification of Barley Varieties by Artificial Neural Networks
Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran
Abstract:
In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.Keywords: physical properties, artificial neural networks, barley, classification
Procedia PDF Downloads 17817520 Tackling the Value-Action-Gap: Improving Civic Participation Using a Holistic Behavioral Model Approach
Authors: Long Pham, Julia Blanke
Abstract:
An increasingly popular way of establishing citizen engagement within communities is through ‘city apps’. Currently, most of these mobile applications seem to be extensions of the existing communication media, sometimes merely replicating the information available on the classical city web sites, and therefore provide minimal additional impact on citizen behavior and engagement. In order to overcome this challenge, we propose to use a holistic behavioral model to generate dynamic and contextualized app content based on optimizing well defined city-related performance goals constrained by the proposed behavioral model. In this paper, we will show how the data collected by the CorkCitiEngage project in the Irish city of Cork can be utilized to calibrate aspects of the proposed model enabling the design of a personalized citizen engagement app aiming at positively influencing people’s behavior towards more active participation in their communities. We will focus on the important aspect of intentions to act, which is essential for understanding the reasons behind the common value-action-gap being responsible for the mismatch between good intentions and actual observable behavior, and will discuss how customized app design can be based on a rigorous model of behavior optimized towards maximizing well defined city-related performance goals.Keywords: city apps, holistic behaviour model, intention to act, value-action-gap, citizen engagement
Procedia PDF Downloads 22617519 The Display of Environmental Information to Promote Energy Saving Practices: Evidence from a Massive Behavioral Platform
Authors: T. Lazzarini, M. Imbiki, P. E. Sutter, G. Borragan
Abstract:
While several strategies, such as the development of more efficient appliances, the financing of insulation programs or the rolling out of smart meters represent promising tools to reduce future energy consumption, their implementation relies on people’s decisions-actions. Likewise, engaging with consumers to reshape their behavior has shown to be another important way to reduce energy usage. For these reasons, integrating the human factor in the energy transition has become a major objective for researchers and policymakers. Digital education programs based on tangible and gamified user interfaces have become a new tool with potential effects to reduce energy consumption4. The B2020 program, developed by the firm “Économie d’Énergie SAS”, proposes a digital platform to encourage pro-environmental behavior change among employees and citizens. The platform integrates 160 eco-behaviors to help saving energy and water and reducing waste and CO2 emissions. A total of 13,146 citizens have used the tool so far to declare the range of eco-behaviors they adopt in their daily lives. The present work seeks to build on this database to identify the potential impact of adopted energy-saving behaviors (n=62) to reduce the use of energy in buildings. To this end, behaviors were classified into three categories regarding the nature of its implementation (Eco-habits: e.g., turning-off the light, Eco-actions: e.g., installing low carbon technology such as led light-bulbs and Home-Refurbishments: e.g., such as wall-insulation or double-glazed energy efficient windows). General Linear Models (GLM) disclosed the existence of a significantly higher frequency of Eco-habits when compared to the number of home-refurbishments realized by the platform users. While this might be explained in part by the high financial costs that are associated with home renovation works, it also contrasts with the up to three times larger energy-savings that can be accomplished by these means. Furthermore, multiple regression models failed to disclose the expected relationship between energy-savings and frequency of adopted eco behaviors, suggesting that energy-related practices are not necessarily driven by the correspondent energy-savings. Finally, our results also suggested that people adopting more Eco-habits and Eco-actions were more likely to engage in Home-Refurbishments. Altogether, these results fit well with a growing body of scientific research, showing that energy-related practices do not necessarily maximize utility, as postulated by traditional economic models, and suggest that other variables might be triggering them. Promoting home refurbishments could benefit from the adoption of complementary energy-saving habits and actions.Keywords: energy-saving behavior, human performance, behavioral change, energy efficiency
Procedia PDF Downloads 20017518 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem
Authors: E. Koyuncu
Abstract:
The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling
Procedia PDF Downloads 33917517 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma
Authors: Abderazak Guettaf
Abstract:
The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma
Procedia PDF Downloads 49417516 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation
Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab
Abstract:
This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation
Procedia PDF Downloads 13817515 Thermal Processing of Zn-Bi Layered Double Hydroxide ZnO Doped Bismuth for a Photo-Catalytic Efficiency under Light Visible
Authors: Benyamina Imane, Benalioua Bahia, Mansour Meriem, Bentouami Abdelhadi
Abstract:
The objective of this study is to use a synthetic route of the layered double hydroxide as a method of zinc oxide by doping a transition metal. The material is heat-treated at different temperatures then tested on the photo-fading of an acid dye indigo carmine under visible radiation compared with ZnO. The photo catalytic efficiency of Bi-ZnO in a visible light of 500 W was tested on photo-bleaching of an indigoid dye in comparison with the commercial ZnO. Indeed, a complete discoloration of indigo carmine solution of 16 mg / L was obtained after 40 and 120 minutes of irradiation in the presence of ZnO and ZnO-Bi respectively.Keywords: LDH, POA, photo-catalysis, Bi-ZnO doping
Procedia PDF Downloads 45317514 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling
Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna
Abstract:
The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.Keywords: piers, scouring, HEC-RAS, physical model
Procedia PDF Downloads 1517513 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications
Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar
Abstract:
Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.Keywords: boron nitride nanotube, radiation shielding, young modulus, atomistic modeling
Procedia PDF Downloads 29717512 Effect of Micro Credit Access on Poverty Reduction among Small Scale Women Entrepreneurs in Ondo State, Nigeria
Authors: Adewale Oladapo, C. A. Afolami
Abstract:
The study analyzed the effect of micro credit access on poverty reduction among small scale women entrepreneurs in Ondo state, Nigeria. Primary data were collected in a cross-sectional survey of 100 randomly selected woman entrepreneurs. These were drawn in multistage sampling process covering four local government areas (LGAS). Data collected include socio economics characteristics of respondents, access to micro credit, sources of micro credit, and constraints faced by the entrepreneur in sourcing for micro credit. Data were analyzed using descriptive statistics, Foster, Greer and Thorbecke (FGT) index of poverty measure, Gini coefficients and probit regression analysis. The study found that respondents sampled for the survey were within the age range of 31-40 years with mean age 38.6%. Mostly (56.0%) of the respondents were educated to the tune of primary school. Majority (87.0%) of the respondents were married with fairly large household size of (4-5). The poverty index analysis revealed that most (67%) of the sample respondents were poor. The result of the Probit regression analyzed showed that income was a significant variable in micro credit access, while the result of the Gini coefficient revealed a very high income inequality among the respondents. The study concluded that most of the respondents were poor and return on investment (income) was an important variable that increased the chance of respondents in sourcing for micro-credit loan and recommended that income realized by entrepreneur should be properly documented to facilitate loan accessibility.Keywords: entrepreneurs, income, micro-credit, poverty
Procedia PDF Downloads 12817511 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis
Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu
Abstract:
Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.Keywords: pediatric cancer, cluster analysis, family resilience, quality of life
Procedia PDF Downloads 3717510 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes
Procedia PDF Downloads 17717509 Examining Motivational Strategies of Foreign Manufacturing Firms in Ghana
Authors: Samuel Ato Dadzie
Abstract:
The objective of this study is to examine the influence of eclectic paradigm on motivational strategy of foreign subsidiaries in Ghana. This study uses binary regression model, and the analysis was based on 75 manufacturing investments made by MNEs from different countries in 1994–2008. The results indicated that perceived market size increases the probability of foreign firms undertaking a market seeking (MS) in Ghana, while perceived cultural distance between Ghana and foreign firm’s home countries decreased the probability of foreign firms undertaking an market seeking (MS) foreign direct investment (FDI) in Ghana. Furthermore, extensive international experience decreases the probability of foreign firms undertaking a market seeking (MS) foreign direct investment (FDI) in Ghana. Most of the studies done by earlier researchers were based on the advanced and emerging countries and offered support for the theory, which was used in generalizing the result that multinational corporations (MNCs) normally used the theory regarding investment strategy outside their home country. In using the same theory in the context of Ghana, the result does not offer strong support for the theory. This means that MNCs that come to Sub-Sahara Africa cannot rely much on eclectic paradigm for their motivational strategies because prevailing economic conditions in Ghana are different from that of the advanced and emerging economies where the institutional structures work.Keywords: foreign subsidiary, motives, Ghana, foreign direct investment
Procedia PDF Downloads 43317508 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition
Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva
Abstract:
This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization
Procedia PDF Downloads 16917507 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy
Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy
Abstract:
The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability
Procedia PDF Downloads 24417506 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 470