Search results for: temperature dependent viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9610

Search results for: temperature dependent viscosity

6970 Income Inequality and the Poverty of Youth in the Douala Metropolis of Cameroon

Authors: Nanche Billa Robert

Abstract:

More and more youth are doubtful of making a satisfactory labour market transition because of the present global economic instability and this is more so in Africa of the Sahara and metropolis like Douala. We use the explanatory sequential mixed method: in the first phase we randomly administered 610 questionnaires in the Douala metropolis respecting the population size of each division and its gender composition. We constructed the questionnaire using the desired values for living a comfortable life in Douala. In the second phase, we purposefully selected and interviewed 50 poor youth in order to explain in detail the initial quantitative results. We obtain the following result: The modal income class is 24,000-74,000 frs Central Africa Franc (CFA) and about 67% of the youth of the Douala metropolis earn below 75,000 frs CFA. They earn only 31.02% of the total income. About 85.7% earn below 126,000 frs CFA and about 92.14% earn below 177,000 frs CFA. The poverty-line is estimated at 177,000 frs CFA per month based on the desired predominant values in Douala and only about 9% of youth earn this sum, therefore, 91% of the youth are poor. We discovered that the salary a youth earns influences his level of poverty. Low income earners eat once or twice per day, rent low-standard houses of below 20,000 frs, are dependent and possess very limited durable goods, consult traditional doctors when they are sick, sleep and gamble during their leisure time. Intermediate income earners feed themselves either twice or thrice per day, eat healthy meals weekly, possess more durable goods, are independent, gamble and drink during their leisure time. High income earners feed themselves at least thrice per day, eat healthy food daily, inhabit high quality and expensive houses, are more stable by living longer in their neighbourhoods, like travelling and drinking during their leisure time. Unsalaried youth, are students, housewives or unemployed youth, they eat four times per day, take healthy meals daily, weekly, fortnightly or occasionally, are dependent or homeless depending on whether they are students or unemployed youth. The situation of the youth can be ameliorated through investing in the productive sector and promoting entrepreneurship as well as formalizing the informal sector.

Keywords: income, inequality, poverty, metropolis

Procedia PDF Downloads 95
6969 Application of Dissolved Air Flotation for Removal of Oil from Wastewater

Authors: Talat Ghomashchi, Zahra Akbari, Shirin Malekpour, Marjan Alimirzaee

Abstract:

Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively.

Keywords: dissolved air flotation, oil industry, waste water, treatment

Procedia PDF Downloads 530
6968 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System

Authors: Emma S. Bowers

Abstract:

Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).

Keywords: air circulation, PassivHaus, stack effect, thermal gradient

Procedia PDF Downloads 154
6967 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 281
6966 Mannosidase Alpha Class 1B Member 1 Targets F Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein and Ebola Virus Glycoprotein to Endoplasmic Reticulum-To-Lysosome-Associated Degradation by Micro-Endoplasmic Reticulum-Phagy

Authors: Yong-Hui Zheng

Abstract:

Viruses hijack host machineries to propagate and spread, which disrupts cellular homeostasis and activates various counteractive mechanisms. Infection of enveloped viruses is dependent on their fusion proteins, which bind to viral receptors to allow virus entry into cells. Fusion proteins are glycoproteins and expressed in the endoplasmic reticulum (ER) by hijacking the secretory pathway. Previously, we reported that Zaire ebolavirus (EBOV)-glycoprotein (GP) expression induces ER stress, and EBOV-GP is targeted by the calnexin cycle to macro-ER-phagy for degradation. We now report that expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/SARS2)-spike (S) protein also causes ER stress, and its expression is strongly downregulated by mannosidase alpha class 1B member 1 (MAN1B1), a class I α-mannosidase from the ER. MAN1B1 co-localizes with SARS2-S in the ER, and its downregulation of SARS2-S is blocked by inhibitors targeting lysosomes and autophagy, but not proteasomes, indicating SARS2-S degradation by autolysosomes. Notably, the SARS2-S degradation does not require the core autophagy machinery including ATG3, ATG5, ATG7, and phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3)/vacuolar protein sorting 34 (VPS34), and instead, it requires Beclin 1 (BECN1), a core component in the PI3KC3 complex. In addition, MAN1B1 does not trigger SARS2-S polyubiquitination, and consistently, the SARS2-S degradation does not require the autophagy receptor sequestosome 1 (SQSTM1)/p62. MAN1B1 also downregulates EBOV-GP similarly, but this degradation does not require BECN1. Collectively, we conclude that MAN1B1 downregulates viral fusions by micro-ER-phagy, and importantly, we have identified BECN1-dependent and BECN1-independent mechanisms for micro-ER-phagy.

Keywords: Micro-ER-phagy, reticulophagy, fusion proteins, ER stress

Procedia PDF Downloads 69
6965 The Cytoprotective Role of Antioxidants in Mammalian Cells Exposed to Variable Temperature, Pressure Overload and Radiation in the Stratosphere

Authors: Dawid Przystupski, Agata Gorska, Paulina Rozborska, Weronika Bartosik, Olga Michel, Joanna Rossowska, Anna Szewczyk, Malgorzata Drag-Zalesinska, Jedrzej Gorski, Julita Kulbacka

Abstract:

Researchers are still looking for an answer to the question which has been fascinating the mankind for generations, specifically – is there life beyond Earth? As long as routine flights to other planets remain beyond our reach, there is a need to find alternative ways to conduct the astrobiological research. It is worth noticing that the part of the Earth’s atmosphere, stratosphere, has been found to show subcosmic environmental conditions, namely temperatures around -50°C, very rarefied air, increased cosmic radiation and the Sun’s ultraviolet radiation. This phenomenon gives rise to the opportunity for the use of stratospheric environment as a research model for the space conditions. Therefore the idea of conducting astrobiological experiments during the stratospheric flights arose. Up to now, the preliminary work in this field included launching balloons containing solely microbiological samples into the stratosphere to figure out if they would be able to survive under the stratospheric conditions. In our study, we take this concept further, sending the human healthy and cancerous cells treated with various compounds to investigate whether these medicines are capable to protect the cells against stratospheric stress. Due to oxidative stress caused by ionizing radiation and temperature shock, we used natural compounds which display antioxidant properties. In this way, we were able to reduce the reactive oxygen species production affecting cells, which results in their death. After-flight laboratory tests of biological samples from the stratosphere have been performed and indicated the most active antioxidants as potential agents which can minimize the harmful impacts of stratospheric conditions, especially radiation and temperature.

Keywords: antioxidants, stratosphere, balloon flight, oxidative stress, cell death, radiation

Procedia PDF Downloads 138
6964 Rheological and Morphological Properties of Investment Casting Pattern Material Based on Paraffin Wax Fortified with Linear Low-Density Polyethylene and Filled with Poly Methyl Methacrylate

Authors: Robert Kimutai Tewo, Hilary Limo Rutto, Tumisang Seodigeng

Abstract:

The rheological and morphological properties of paraffin wax, linear low-density polyethylene (LLDPE), and poly (methyl methacrylate) (PMMA) microbeads formulations were prepared via an extrusion process. The blends were characterized by rheometry, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the viscosity of the blends increased as compared to that of neat wax. SEM confirmed that LLDPE alters the wax crystal habit at higher concentrations. The rheological experimental data fitted with predicted data using the modified Krieger and Dougherty expression. The SEM micrograph of wax/LLDPE/PMMA revealed a near-perfect spherical nature for the filler particles in the wax/EVA polymer matrix. The FT-IR spectra show the deformation vibrations stretch of a long-chain aliphatic hydrocarbon (C-H) and also the presence of carbonyls absorption group denoted by -C=O- stretch.

Keywords: investment casting pattern, paraffin wax, LLDPE, PMMA, rheological properties, modified Krieger and Dougherty expression

Procedia PDF Downloads 170
6963 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.

Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy

Procedia PDF Downloads 443
6962 Investigation of Dynamic Heat Transfer in Masonry Walls

Authors: Joelle Al Fakhoury, Emilio Sassine, Yassine Cherif, Joseph Dgheim, Emmanuel Antczak

Abstract:

Hollow block masonry is the most used building technology in the Lebanese context. These blocks are manufactured in an artisanal way and have unknown thermal properties; their overall thermos-physical performance is thus unknown and also poorly investigated scientifically in both single wall and also double wall configurations. In this work, experimental measurements and numerical simulations are performed for a better understanding of the heat transfer in masonry walls. This study was realized using an experimental setup consisting of a masonry hollow block wall (0.1m x 1m x 1m) and two heat boxes, such that each covers one side of the wall. The first is a reference box having a constant interior temperature, and the other is a control box having an adjustable interior temperature. At first, the numerical model is validated using an experimental setup; then 3D numerical analyzes are held in order to investigate the effect of the air gap, the mortar joints, and the plastering on the thermal performance of masonry walls for a better understanding of the heat transfer process and the recommendation of suitable thermal improvements.

Keywords: masonry wall, hollow blocks, heat transfer, wall instrumentation, thermal improvement

Procedia PDF Downloads 233
6961 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 285
6960 Effect of Treated Grey Water on Bacterial Concrete

Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.

Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater

Procedia PDF Downloads 99
6959 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 69
6958 Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine

Authors: Hisham Elmouazen, Xiaobing Zhang

Abstract:

In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor.

Keywords: computational fluid dynamics CFD, regenerative-cooled system, thermal performance, V-rib cross-sections

Procedia PDF Downloads 75
6957 Thermodynamics Analysis of Transcritical HTHP Cycles Using Eco-Friendly Refrigerant and low-Grade Waste Heat Recovery: A Theoretical Evaluation

Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt

Abstract:

Decarbonization of the industrial sector in developed countries has become indispensable for addressing climate change. Industrial processes including drying, distillation, and injection molding require a process heat exceeding 180°C, rendering the subcriticalHigh-Temperature heat pump(HTHP) technique unsuitable. A transcritical HTHP utilizing ecologically friendly working fluids is a highly recommended system that incorporates the features of high-energy efficiency, extended operational range, and decarbonizing the industrial sector. This paper delves into the possibility and feasibility of leveraging the HTTP system to provide up to 200°C of heat using R1233zd(E) as a working fluid. Using a steady-state model, various transcritical HTHP cycle configurations aretheoretically compared,analyzed, and evaluatedin this study. The heat transfer characteristics for the evaporator and gas cooler are investigated, as well as the cycle's energy, exergetic, and environmental performance. Using the LMTD method, the gas cooler's heat transfer coefficient, overall length, and heat transfer area were calculated. The findings indicate that the heat sink pressure level, as well as the waste heat temperature provided to the evaporator, have a significant impact on overall cycle performance. The investigation revealed the potential challenges and barriers, including the length of the gas cooler and the lubrication of the compression process. The basic transcritical HTTP cycle with additional IHX was demonstrated to be the most efficient cycle across a variety of heat source temperatures ranging from 70 to 90 °C based on theoretical energetic and exergetic performance.

Keywords: high-temperature heat pump, transcritical cycle, refrigerants, gas cooler, energy, exergy

Procedia PDF Downloads 163
6956 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel

Authors: Huei Chu Weng

Abstract:

This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.

Keywords: microfluidics, forced convection, thermal creep, second-order boundary conditions

Procedia PDF Downloads 314
6955 Preservice Science Teachers' Understanding of Equitable Assessment

Authors: Kemal Izci, Ahmet Oguz Akturk

Abstract:

Learning is dependent on cognitive and physical differences as well as other differences such as ethnicity, language, and culture. Furthermore, these differences also influence how students show their learning. Assessment is an integral part of learning and teaching process and is essential for effective instruction. In order to provide effective instruction, teachers need to provide equal assessment opportunities for all students to see their learning difficulties and use them to modify instruction to aid learning. Successful assessment practices are dependent upon the knowledge and value of teachers. Therefore, in order to use assessment to assess and support diverse students learning, preservice and inservice teachers should hold an appropriate understanding of equitable assessment. In order to prepare teachers to help them support diverse student learning, as a first step, this study aims to explore how preservice teachers’ understand equitable assessment. 105 preservice science teachers studying at teacher preparation program in a large university located at Eastern part of Turkey participated in the current study. A questionnaire, preservice teachers’ reflection papers and interviews served as data sources for this study. All collected data qualitatively analyzed to develop themes that illustrate preservice science teachers’ understanding of equitable assessment. Results of the study showed that preservice teachers mostly emphasized fairness including fairness in grading and fairness in asking questions not out of covered concepts for equitable assessment. However, most of preservice teachers do not show an understanding of equity for providing equal opportunities for all students to display their understanding of related content. For some preservice teachers providing different opportunities (providing extra time for non-native speaking students) for some students seems to be unfair for other students and therefore, these kinds of refinements do not need to be used. The results of the study illustrated that preservice science teachers mostly understand equitable assessment as fairness and less highlight the role of using equitable assessment to support all student learning, which is more important in order to improve students’ achievement of science. Therefore, we recommend that more opportunities should be provided for preservice teachers engage in a more broad understanding of equitable assessment and learn how to use equitable assessment practices to aid and support all students learning trough classroom assessment.

Keywords: science teaching, equitable assessment, assessment literacy, preservice science teachers

Procedia PDF Downloads 304
6954 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature

Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah

Abstract:

The continuous increase in vehicle uptake escalates the number of rubber tyre waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of rubber crumbs in clay roof tiles. The properties of roof tiles composed of clay, rubber crumbs, NaOH, and Na₂SiO₃ with a 10% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50°C for 72 hours, followed by a higher heating temperature of 200°C for 24 hours. The effect of rubber crumbs aggregates as a substitution for the raw clay materials was investigated by varying their concentration from 0% to 2.5%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5% and 1%, while cracks and larger porosity were found at higher crumbs concentrations. Water absorption and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.

Keywords: rubber crumbs, clay, roof tiles, alkaline activators

Procedia PDF Downloads 104
6953 The shaping of Metal-Organic Frameworks for Water Vapor Adsorption

Authors: Tsung-Lin Hsieh, Jiun-Jen Chen, Yuhao Kang

Abstract:

Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared.

Keywords: granulation, granules, metal-organic frameworks, water vapor adsorption

Procedia PDF Downloads 158
6952 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System

Authors: Nesrine Gaaliche

Abstract:

This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.

Keywords: viscoelastic, FE analysis, polypropylene, bearings

Procedia PDF Downloads 104
6951 The Effects of Nanoemulsions Based on Commercial Oils: Sunflower, Canola, Corn, Olive, Soybean, and Hazelnut Oils for the Quality of Farmed Sea Bass at 2±2°C

Authors: Yesim Ozogul, Mustafa Durmuş, Fatih Ozogul, Esmeray Kuley Boğa, Yılmaz Uçar, Hatice Yazgan

Abstract:

The effects of oil-in-water nanoemulsions on the sensory, chemical (total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), peroxide value (PV) and free fatty acids (FFA), and microbiological qualities (total viable count (TVC), total psychrophilic bacteria, and total Enterbactericaea bacteria) of sea bream fillets stored at 2 ± 2°C were investigated. Physical properties of emulsions (viscosity, the particle size of droplet, thermodynamic stability, refractive index and surface tension) were determined. The results showed that the use of nanoemulsion extended the shelf life of fish 2 days when compared with the control. Treatment with nanoemulsions significantly (p<0.05) decreased the values of biochemical parameters during storage period. Bacterial growth was inhibited by the use of nanoemulsions. Based on the results, it can be concluded that nanoemulsions based on commercial oils extended the shelf life and improved the quality of sea bass fillets during storage period.

Keywords: lipid oxidation, nanoemulsion, sea bass, quality parameters

Procedia PDF Downloads 479
6950 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm³ and 5.64 cm³.

Keywords: liver cancer, Helix antenna, finite element, microwave ablation

Procedia PDF Downloads 309
6949 Chitin Nanocrystals as Sustainable Surfactant Alternative for Enhancing Oil-in-Water Emulsions Stability in Oil and Gas Fields

Authors: A. Altomi, A. Alhebshi, M. Rasm, B. Osman

Abstract:

This study explored the application of chitin nanocrystals (ChiNCs), derived from a renewable and environmentally friendly material, as stabilizers for oil-in-water (O/W) emulsions. O/W emulsions are commonly used in various applications but are prone to instability and degradation over time. Instability can occur due to factors such as flocculation, coalescence, and gravitational separation, including creaming and sedimentation, either independently or simultaneously. To produce ChiNCs, chitin powder underwent acid hydrolysis. Transmission electron microscopy (TEM) analysis revealed that ChiNCs exhibited a needle-like morphology, with lengths ranging from 200 to 800 nm and widths ranging from 20 to 80 nm. The surface charge of ChiNCs was negative at pH values above 7 and positive at pH values below 7. The rheological properties of O/W emulsions stabilized by ChiNCs were compared to those stabilized by synthetic surfactants, namely Tween 80 and CTAB. The emulsions stabilized by ChiNCs demonstrated higher yield stress and lower shear viscosity compared to those stabilized by synthetic surfactants. This indicates that ChiNC-stabilized emulsions are more stable and less prone to breakdown. Based on these findings, ChiNCs show promise as an alternative to synthetic surfactants for stabilizing O/W emulsions.

Keywords: chitin nanocrystals, colloidal pickering, emulsion rheology, oil-in-water, synthetic surfactant

Procedia PDF Downloads 62
6948 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test

Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela

Abstract:

Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.

Keywords: EBSD, plain strain compression test, Ti alloys

Procedia PDF Downloads 380
6947 Understanding the Thermal Resistance of Active Dry Yeast by Differential Scanning Calorimetry Approach

Authors: Pauline Ribert, Gaelle Roudaut, Sebastien Dupont, Laurent Beney

Abstract:

Yeasts, anhydrobiotic organisms, can survive extreme water disturbances, thanks to the prolonged and reversible suspension of their cellular activity as well as the establishment of a defense arsenal. This property is exploited by many industrialists. One of the protection systems implemented by yeast is the vitrification of its cytoplasm by trehalose. The thermal resistance of dry yeasts is a crucial parameter for their use. However, studies on the thermal resistance of dry yeasts are often based on yeasts produced in laboratory conditions with non-optimal drying processes. We, therefore, propose a study on the thermal resistance of industrial dry yeasts in relation to their thermophysical properties. Heat stress was applied at three temperatures (50, 75, and 100°C) for 10, 30, or 60-minute treatments. The survival of yeasts to these treatments was estimated, and their thermophysical properties were studied by differential scanning calorimetry. The industrial dry yeasts resisted 60 minutes at 50°C and 75°C and 10 minutes at a temperature close to 100°C. At 100°C, yeast was above their glass transition temperature. Industrial dry yeasts are therefore capable of withstanding high thermal stress if maintained in a specific thermophysical state.

Keywords: dry yeast, glass transition, thermal resistance, vitrification

Procedia PDF Downloads 150
6946 Evaluation of Key Performance Indicators as Determinants of Dividend Paid on Ordinary Shares in Nigeria Banking Sector

Authors: Oliver Ikechukwu Inyiama, Boniface Uche Ugwuanyi

Abstract:

The aim of the research is to evaluate the key financial performance indicators that help both managers and their shareholders of Nigerian Banks to determine the appropriate dividend payout to their ordinary shareholders in an accounting year. Profitability, total asset, and earnings of commercial banks were selected as key performance indicators in Nigeria Banking Sector. They represent the independent variables of the study while dividend per share is the proxy for the dividend paid on ordinary shares which represent the dependent variable. The effect of profitability, total asset and earnings on dividend per share were evaluated through the ordinary least square method of multiple regression analysis. Test for normality of frequency distribution was conducted through descriptive statistics such as Jacque Bera Statistic, skewness and kurtosis. Rate of dividend payout was subsequently applied as an alternate dependent variable to test for robustness of the earlier results. The 64% adjusted R-squared of the pooled data indicates that profitability, total asset, and earnings explain the variation in dividend per share during the period under research while the remaining 36% variation in dividend per share could be explained by changes in other variables not captured by this study as well as the error term. The study concentrated on four leading Nigeria Commercial Banks namely; First Bank of Nigeria Plc, GTBank Plc, United Bank for Africa Plc and Zenith International Bank Plc. Dividend per share was found to be positively affected by total assets and earnings of the commercial banks. However, profitability which was proxied by profit after tax had a negative effect on dividend per share. The implication of the findings is that commercial banks in Nigeria pay more dividend when they are having a dwindling fortune in order to retain the confidence of the shareholders provided their gross earnings and size is on the increase. Therefore, the management and board of directors of Nigeria commercial banks should apply decent marketing strategies to enhance earnings through investment in profitable ventures for an improved dividend payout rate.

Keywords: assets, banks, indicators, performance, profitability, shares

Procedia PDF Downloads 163
6945 Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting

Authors: Olubusuyi Ayowole, Bashir Khoda

Abstract:

Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise.

Keywords: green bioprinting, 3d bioprinting, microalgae cell, hybrid hydrogel scaffolds, spectrophotometric analysis, bioink development, shear thinning properties

Procedia PDF Downloads 29
6944 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis

Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov

Abstract:

The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).

Keywords: alumina distribution, aluminum electrolyzer, cryolie-alumina electrolyte, side ledge

Procedia PDF Downloads 273
6943 Improvement of Thermal Comfort Conditions in an Urban Space "Case Study: The Square of Independence, Setif, Algeria"

Authors: Ballout Amor, Yasmina Bouchahm, Lacheheb Dhia Eddine Zakaria

Abstract:

Several studies all around the world were conducted on the phenomenon of the urban heat island, and referring to the results obtained, one of the most important factors that influence this phenomenon is the mineralization of the cities which means the reducing of evaporative urban surfaces, replacing vegetation and wetlands with concrete and asphalt. The use of vegetation and water can change the urban environment and improve comfort, thus reduce the heat island. The trees act as a mask to the sun, wind, and sound, and also as a source of humidity which reduces air temperature and surrounding surfaces. Water also acts as a buffer to noise; it is also a source of moisture and regulates temperature not to mention the psychological effect on humans. Our main objective in this paper is to determine the impact of vegetation, ponds and fountains on the urban micro climate in general and on the thermal comfort of people along the Independence square in the Algerian city of Sétif, which is a semi-arid climate, in particularly. In order to reach this objective, a comparative study between different scenarios has been done; the use of the Envi-met program enabled us to model the urban environment of the Independence Square and to study the possibility of improving the conditions of comfort by adding an amount of vegetation and water ponds. After studying the results obtained (temperature, relative humidity, wind speed, PMV and PPD indicators), the efficiency of the additions we've made on the square was confirmed and this is what helped us to confirm our assumptions regarding the terms of comfort in the studied site, and in the end we are trying to develop recommendations and solutions which may contribute to improve the conditions for greater comfort in the Independence square.

Keywords: comfort in outer space, urban environment, scenarisation, vegetation, water ponds, public square, simulation

Procedia PDF Downloads 454
6942 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 92
6941 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs

Authors: Abdul Jamil Nazari, Shigeo Honma

Abstract:

This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.

Keywords: fractional flow, relative permeability, oil recovery, water fingering

Procedia PDF Downloads 303