Search results for: solar cell
2344 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks
Authors: Shahzad Yousaf, Imran Shafi
Abstract:
This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions
Procedia PDF Downloads 3982343 Structural Changes Induced in Graphene Oxide Film by Low Energy Ion Beam Irradiation
Authors: Chetna Tyagi, Ambuj Tripathi, Devesh Avasthi
Abstract:
Graphene oxide consists of sp³ hybridization along with sp² hybridization due to the presence of different oxygen-containing functional groups on its edges and basal planes. However, its sp³ / sp² hybridization can be tuned by various methods to utilize it in different applications, like transistors, solar cells and biosensors. Ion beam irradiation can also be one of the methods to optimize sp² and sp³ hybridization ratio for its desirable properties. In this work, graphene oxide films were irradiated with 100 keV Argon ions at different fluences varying from 10¹³ to 10¹⁶ ions/cm². Synchrotron X-ray diffraction measurements showed an increase in crystallinity at the low fluence of 10¹³ ions/cm². Raman spectroscopy performed on irradiated samples determined the defects induced by the ion beam qualitatively. Also, identification of different groups and their removal with different fluences was done using Fourier infrared spectroscopy technique.Keywords: graphene oxide, ion beam irradiation, spectroscopy, X-ray diffraction
Procedia PDF Downloads 1412342 The Impact of Sign Language on Generating and Maintaining a Mental Image
Authors: Yi-Shiuan Chiu
Abstract:
Deaf signers have been found to have better mental image performance than hearing nonsigners. The goal of this study was to investigate the ability to generate mental images, to maintain them, and to manipulate them in deaf signers of Taiwanese Sign Language (TSL). In the visual image task, participants first memorized digits formed in a cell of 4 × 5 grids. After presenting a cue of Chinese digit character shown on the top of a blank cell, participants had to form a corresponding digit. When showing a probe, which was a grid containing a red circle, participants had to decide as quickly as possible whether the probe would have been covered by the mental image of the digit. The ISI (interstimulus interval) between cue and probe was manipulated. In experiment 1, 24 deaf signers and 24 hearing nonsigners were asked to perform image generation tasks (ISI: 200, 400 ms) and image maintenance tasks (ISI: 800, 2000 ms). The results showed that deaf signers had had an enhanced ability to generate and maintain a mental image. To explore the process of mental image, in experiment 2, 30 deaf signers and 30 hearing nonsigners were asked to do visual searching when maintaining a mental image. Between a digit image cue and a red circle probe, participants were asked to search a visual search task to see if a target triangle apex was directed to the right or left. When there was only one triangle in the searching task, the results showed that both deaf signers and hearing non-signers had similar visual searching performance in which the searching targets in the mental image locations got facilitates. However, deaf signers could maintain better and faster mental image performance than nonsigners. In experiment 3, we increased the number of triangles to 4 to raise the difficulty of the visual search task. The results showed that deaf participants performed more accurately in visual search and image maintenance tasks. The results suggested that people may use eye movements as a mnemonic strategy to maintain the mental image. And deaf signers had enhanced abilities to resist the interference of eye movements in the situation of fewer distractors. In sum, these findings suggested that deaf signers had enhanced mental image processing.Keywords: deaf signers, image maintain, mental image, visual search
Procedia PDF Downloads 1592341 Neutrophil-to-Lymphocyte Ratio: A Predictor of Cardiometabolic Complications in Morbid Obese Girls
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is a low-grade inflammatory state. Childhood obesity is a multisystem disease, which is associated with a number of complications as well as potentially negative consequences. Gender is an important universal risk factor for many diseases. Hematological indices differ significantly by gender. This should be considered during the evaluation of obese children. The aim of this study is to detect hematologic indices that differ by gender in morbid obese (MO) children. A total of 134 MO children took part in this study. The parents filled an informed consent form and the approval from the Ethics Committee of Namik Kemal University was obtained. Subjects were divided into two groups based on their genders (64 females aged 10.2±3.1 years and 70 males aged 9.8±2.2 years; p ≥ 0.05). Waist-to-hip as well as head-to-neck ratios and body mass index (BMI) values were calculated. The children, whose WHO BMI-for age and sex percentile values were > 99 percentile, were defined as MO. Hematological parameters [haemoglobin, hematocrit, erythrocyte count, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell distribution width, leukocyte count, neutrophil %, lymphocyte %, monocyte %, eosinophil %, basophil %, platelet count, platelet distribution width, mean platelet volume] were determined by the automatic hematology analyzer. SPSS was used for statistical analyses. P ≤ 0.05 was the degree for statistical significance. The groups included children having mean±SD value of BMI as 26.9±3.4 kg/m2 for males and 27.7±4.4 kg/m2 for females (p ≥ 0.05). There was no significant difference between ages of females and males (p ≥ 0.05). Males had significantly increased waist-to-hip ratios (0.95±0.08 vs 0.91±0.08; p=0.005) and mean corpuscular hemoglobin concentration values (33.6±0.92 vs 33.1±0.83; p=0.001) compared to those of females. Significantly elevated neutrophil (4.69±1.59 vs 4.02±1.42; p=0.011) and neutrophil-to-lymphocyte ratios (1.70±0.71 vs 1.39±0.48; p=0.004) were detected in females. There was no statistically significant difference between groups in terms of C-reactive protein values (p ≥ 0.05). Adipose tissue plays important roles during the development of obesity and associated diseases such as metabolic syndrom and cardiovascular diseases (CVDs). These diseases may cause changes in complete blood cell count parameters. These alterations are even more important during childhood. Significant gender effects on the changes of neutrophils, one of the white blood cell subsets, were observed. The findings of the study demonstrate the importance of considering gender in clinical studies. The males and females may have distinct leukocyte-trafficking profiles in inflammation. Female children had more circulating neutrophils, which may be the indicator of an increased risk of CVDs, than male children within this age range during the late stage of obesity. In recent years, females represent about half of deaths from CVDs; therefore, our findings may be the indicator of the increasing tendency of this risk in females starting from childhood.Keywords: children, gender, morbid obesity, neutrophil-to-lymphocyte ratio
Procedia PDF Downloads 2802340 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System
Authors: Iman Janghorban Esfahani
Abstract:
Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy
Procedia PDF Downloads 1412339 Identification of Hub Genes in the Development of Atherosclerosis
Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia
Abstract:
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics
Procedia PDF Downloads 732338 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes
Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren
Abstract:
Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.Keywords: amino acid, genetic diversity, genes, nucleotide
Procedia PDF Downloads 4942337 Spawning Induction and Early Larval Development of the Penshell Atrina maura (Sowerby, 1835) under Controlled Conditions in Ecuador
Authors: Jose Melena, Rosa Santander, Tanya Gonzalez, Richard Duque, Juan Illanes
Abstract:
Ecuador is one of the countries with the greatest aquatic biodiversity worldwide. In particular, there are at least a dozen native marine species with great aquaculture potential locally. This research concerns one of those species. It has proposed to implement experimental protocols in order to induce spawning and to generate the early larval development of the penshell Atrina maura under controlled conditions. Bioassays were carried out with one adult batch (n= 26) with an average valvar length of 307,6 ± 9,4 mm, which were collected in the Puerto El Morro Mangrove (2° 42' 33'' S, 80° 14' 28'' W), Guayas Province. During a short acclimation stage, five adults of penshell A. maura were sacrificed in order to determine their sexual maturity degree and to estimate their sex ratio. Dissection showed that three were ripe females (60%) and two were ripe males (40%). Later, three groups (n= 7 by each) were tested with two treatments in order to induce the broodstock spawning: thermal stress, osmotic shock, and one control. Spawning induction was achieved by the immersion in water to 0 g L⁻¹ per 1 h and immersion in sea water to 34 g L⁻¹ per 1 h. After the delivery of gametes, it was achieved 1,35 × 10⁶ viable zygotes. As results, fertilized eggs had 60 µm diameter; while first and second cell divisions were observed to 1 h post-fertilization, with individual average length of 65 ± 4 µm and polar body. Latter cell divisions, including gastrula stage, appeared at 9 h post-fertilization, with individual average length of 71 ± 4 µm; and trochophore stage at 16 h post-fertilization with individual average length of 75 ± 5 µm. In addition, veliger stage was registered at 20 h post-fertilization with individual average length of 81 ± 5 µm. Umboned larvae appeared at day 8 post-fertilization, with individual average length of 145 ± 6 µm. These pioneering results in Ecuador can strengthen the local conservation process of the overexploited A. maura and to encourage its production for commercial purposes.Keywords: Atrina maura, Ecuador, larval development, spawning induction
Procedia PDF Downloads 1652336 Silver Nanoparticles Synthesized in Plant Extract Against Acute Hepatopancreatic Necrosis of Shrimp: Estimated By Multiple Models
Authors: Luz del Carmen Rubí Félix Peña, Jose Adan Felix-Ortiz, Ely Sara Lopez-Alvarez, Wenceslao Valenzuela-Quiñonez
Abstract:
On a global scale, Mexico is the sixth largest producer of farmed white shrimp (Penaeus vannamei). The activity suffered significant economic losses due to acute hepatopancreatic necrosis (AHPND) caused by a strain of Vibrio parahaemolyticus. For control, the first option is the application of antibiotics in food, causing changes in the environment and bacterial communities, which has produced greater virulence and resistance of pathogenic bacteria. An alternative treatment is silver nanoparticles (AgNPs) generated by green synthesis, which have shown an antibacterial capacity by destroying the cell membrane or denaturing the cell. However, the doses at which these are effective are still unknown. The aim is to calculate the minimum inhibitory concentration (MIC) using the Gompertz, Richard, and Logistic model of biosynthesized AgNPs against a strain of V. parahaemolyticus. Through the testing of different formulations of AgNPs synthesized from Euphorbia prostrate (Ep) extracts against V. parahaemolyticus causing AHPND in white shrimp. Aqueous and ethanol extracts were obtained, and the concentration of phenols and flavonoids was quantified. In the antibiograms, AgNPs were formulated in ethanol extracts of Ep (20 and 30%). The inhibition halo at well dilution test were 18±1.7 and 17.67±2.1 mm against V. parahaemolyticus. A broth microdilution was performed with the inhibitory agents (aqueous and ethanolic extracts and AgNPs) and 20 μL of the inoculum of V. parahaemolyticus. The MIC for AgNPs was 6.2-9.3 μg/mL and for ethanol extract of 49-73 mg/mL. The Akaike index (AIC) was used to choose the Gompertz model for ethanol extracts of Ep as the best data descriptor (AIC=204.8, 10%; 45.5, 20%, and 204.8, 30%). The Richards model was at AgNPs ethanol extract with AIC=-9.3 (10%), -17.5 (20 and 30%). The MIC calculated for EP extracts with the modified Gompertz model were 20 mg/mL (10% and 20% extract) and 40 mg/mL at 30%, while Richard was winner for AgNPs-synthesized it was 5 μg/mL (10% and 20%) and 8 μg/mL (30%). The solver tool Excel was used for the calculations of the models and inhibition curves against V.parahaemolyticus.Keywords: green synthesis, euphorbia prostata, phenols, flavonoids, bactericide
Procedia PDF Downloads 1112335 In situ Ortho-Quinone Methide Reactions for Construction of Flavonoids with Fused Ring Systems
Authors: Vidia A. Nuraini, Eugene M. H. Yee, Mohan Bhadbhade, David StC. Black, Naresh Kumar
Abstract:
Flavonoids are naturally occurring compounds that have been shown to exhibit a wide range of biological properties including anticancer and anti-inflammatory activities. However, flavonoids suffer from low bioavailability, which limits their overall utility for therapeutic applications. One of the methods to overcome this limitation is through structural modification of natural flavonoids. In this study, flavanone, isoflavanone, and isoflavene, were structurally modified through the introduction of additional fused-ring systems via ortho-quinone methide intermediates (o-QMs). These intermediates can readily undergo a [4+2] cycloaddition through an inverse-electron-demand Diels–Alder reaction with electron-rich dienophiles. A regioselective Mannich reaction using bis-(N,N-dimethylamino)methane was employed to generate the o-QM precursors of flavanone, isoflavanone, and isoflavene. The o-QM intermediates were subsequently generated in situ through thermal elimination of the dimethylamine functionality and reacted with a variety of dienophiles to produce novel flavonoids with fused-ring systems. A total of 21 novel flavonoid analogs were successfully synthesized. The X-ray crystal structure of cycloaddition adducts, particularly those derived from 3,4-dihydro-2H-pyran and p-methoxystyrene revealed a special case of enantiomeric disorder, where two enantiomers in equal amounts superpose with one another, with the exception for atoms that have opposite configuration. The anticancer properties of fused-ring systems derived from isoflavene were evaluated against the neuroblastoma SKN-BE(2)C, the triple negative breast cancer MDA-MB-231, and the glioblastoma U87 cancer cell lines. One of these cycloaddition adducts had displayed improved anti-proliferative activity against MDA-MB-231 and U87 cancer cell lines as compared to the parent compound. Further anticancer and anti-inflammatory activities of the flavanone and isoflavanone analogs are currently being investigated.Keywords: Diels-Alder reaction, flavonoids, Mannich reaction, ortho-quinone methide.
Procedia PDF Downloads 2552334 Correlations in the Ising Kagome Lattice
Authors: Antonio Aguilar Aguilar, Eliezer Braun Guitler
Abstract:
Using a previously developed procedure and with the aid of algebraic software, a two-dimensional generalized Ising model with a 4×2 unitary cell (UC), we obtain a Kagome Lattice with twelve different spin-spin values of interaction, in order to determine the partition function per spin L(T). From the partition function we can study the magnetic behavior of the system. Because of the competition phenomenon between spins, a very complex behavior among them in a variety of magnetic states can be observed.Keywords: correlations, Ising, Kagome, exact functions
Procedia PDF Downloads 3732333 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing
Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa
Abstract:
CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology
Procedia PDF Downloads 1042332 Environmental Degradation and Mitigation Measures: A Case Study of Nepal
Authors: Megha Raj Regmi
Abstract:
Nepal is a Himalayan country, land-locked and sandwiched between two neighboring mammoths, China and India. Kathmandu, the capital Valley, is a conglomeration of historical and World heritage cities in the central part of Nepal. All the rivers and rivulets that originate from this middle mountain valley, drain into the major river Bagmati, a tributary of the Ganges. Not so long ago the Bagmati, which is sacred to all the Hindu populace, used to be the source of sustenance to the people, and abundant fauna and flora in the Valley and downstream. At present all the sewerage systems within the Valley directly discharge effluent into the streams nearby. The pollutants thus being fed into the tributary streams have rendered the river useless, just as a wastewater drain. Rapid urbanization and absence of reliable wastewater treatment facilities are the major causes of river pollution. Kathmandu, the capital city having a population of one and half million, has only one functional wastewater treatment plant among the seven wastewater treatment plants. The per capita income of Nepal is 1300 US$; the monthly tariff of electricity for the operation of this extended aeration type treatment plant is US$ 700 with subsidy. The deep oxidation ditch of carousel type has been designed for the discharge of 0.20cumec to treat the sewage containing BOD5 of 270 mg/l and the COD of 1150 mg/l to maintain a modicum of treated water flow in the sacred stretch around the Pashupatinath temple. A model Eco toilet has been designed such that urine and faeces get separated. The faeces are then dehydrated and decomposed with and without solar radiation. As against the normal condition, where the faecesare to be used as soil conditioner in the model with solar radiation, the faeces got decomposed in forty eight days period. The diluted urine with eight parts of water is used as fertilizer for agriculture. Also from the observation by many people on a cluster of the pilot project, annually per person recovered value of N (Nitrogen), P (Phosphorous) and K (Potassium) was found to be 5kg, 0.399Kg, 1.099 Kg, respectively. The combination of decomposed excreta thus received is expected to suffice the local fertilizer needs. The study thus found the Eco toilets to have a clear advantage over the traditional water borne sanitation. This paper presents an in-depth review of the present scenario of the water supply situation of Nepal. Similarly, this paper deals with different types of Eco toilets, their performance and feasibility in the context of Nepal, based on complete laboratory analysis and regular monitoring, as well as river restoration to a healthy state, including biogas generation from excreta.Keywords: bio- gas public toilet, low cost technology, sustainable sanitation, total sanitation
Procedia PDF Downloads 62331 Radioprotective Effects of Super-Paramagnetic Iron Oxide Nanoparticles Used as Magnetic Resonance Imaging Contrast Agent for Magnetic Resonance Imaging-Guided Radiotherapy
Authors: Michael R. Shurin, Galina Shurin, Vladimir A. Kirichenko
Abstract:
Background. Visibility of hepatic malignancies is poor on non-contrast imaging for daily verification of liver malignancies prior to radiation therapy on MRI-guided Linear Accelerators (MR-Linac). Ferumoxytol® (Feraheme, AMAG Pharmaceuticals, Waltham, MA) is a SPION agent that is increasingly utilized off-label as hepatic MRI contrast. This agent has the advantage of providing a functional assessment of the liver based upon its uptake by hepatic Kupffer cells proportionate to vascular perfusion, resulting in strong T1, T2 and T2* relaxation effects and enhanced contrast of malignant tumors, which lack Kupffer cells. The latter characteristic has been recently utilized for MRI-guided radiotherapy planning with precision targeting of liver malignancies. However potential radiotoxicity of SPION has never been addressed for its safe use as an MRI-contrast agent during liver radiotherapy on MRI-Linac. This study defines the radiomodulating properties of SPIONs in vitro on human monocyte and macrophage cell lines exposed to 60Go gamma-rays within clinical radiotherapy dose range. Methods. Human monocyte and macrophages cell line in cultures were loaded with a clinically relevant concentration of Ferumoxytol (30µg/ml) for 2 and 24 h and irradiated to 3Gy, 5Gy and 10Gy. Cells were washed and cultured for additional 24 and 48 h prior to assessing their phenotypic activation by flow cytometry and function, including viability (Annexin V/PI assay), proliferation (MTT assay) and cytokine expression (Luminex assay). Results. Our results reveled that SPION affected both human monocytes and macrophages in vitro. Specifically, iron oxide nanoparticles decreased radiation-induced apoptosis and prevented radiation-induced inhibition of human monocyte proliferative activity. Furthermore, Ferumoxytol protected monocytes from radiation-induced modulation of phenotype. For instance, while irradiation decreased polarization of monocytes to CD11b+CD14+ and CD11bnegCD14neg phenotype, Ferumoxytol prevented these effects. In macrophages, Ferumoxytol counteracted the ability of radiation to up-regulate cell polarization to CD11b+CD14+ phenotype and prevented radiation-induced down-regulation of expression of HLA-DR and CD86 molecules. Finally, Ferumoxytol uptake by human monocytes down-regulated expression of pro-inflammatory chemokines MIP-1α (Macrophage inflammatory protein 1α), MIP-1β (CCL4) and RANTES (CCL5). In macrophages, Ferumoxytol reversed the expression of IL-1RA, IL-8, IP-10 (CXCL10) and TNF-α, and up-regulates expression of MCP-1 (CCL2) and MIP-1α in irradiated macrophages. Conclusion. SPION agent Ferumoxytol increases resistance of human monocytes to radiation-induced cell death in vitro and supports anti-inflammatory phenotype of human macrophages under radiation. The effect is radiation dose-dependent and depends on the duration of Feraheme uptake. This study also finds strong evidence that SPIONs reversed the effect of radiation on the expression of pro-inflammatory cytokines involved in initiation and development of radiation-induced liver damage. Correlative translational work at our institution will directly assess the cyto-protective effects of Ferumoxytol on human Kupfer cells in vitro and ex vivo analysis of explanted liver specimens in a subset of patients receiving Feraheme-enhanced MRI-guided radiotherapy to the primary liver tumors as a bridge to liver transplant.Keywords: superparamagnetic iron oxide nanoparticles, radioprotection, magnetic resonance imaging, liver
Procedia PDF Downloads 792330 Gene Expression Signature-Based Chemical Genomic to Identify Potential Therapeutic Compounds for Colorectal Cancer
Authors: Yen-Hao Su, Wan-Chun Tang, Ya-Wen Cheng, Peik Sia, Chi-Chen Huang, Yi-Chao Lee, Hsin-Yi Jiang, Ming-Heng Wu, I-Lu Lai, Jun-Wei Lee, Kuen-Haur Lee
Abstract:
There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II–IV. Therefore, new, more efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly down regulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVPAUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1–β-catenin–cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.Keywords: berberine, colorectal cancer, connectivity map, heat shock protein 90 inhibitor
Procedia PDF Downloads 3102329 Design and Implementation of Remote Control Application for Elderly People Who Live Alone
Authors: Cristina Nieves Perdomo Delgado
Abstract:
The study consists of the design and use of an application for cell phones called “Me Cuido” that consists of remote control of elderly people who live alone with their families. The objective of the study is to analyze the usability of the application by 40-year-olds using the Questionnaire for User Interaction Satisfaction (QUIS) method. The results highlight that the application has a design adapted to the elderly and that it is easy to use and understand.Keywords: design, assistive technology, elderly people, independence
Procedia PDF Downloads 2542328 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles
Authors: N. Soli, B. Chaouachi, M. Bourouis
Abstract:
We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.Keywords: absorption, DAR cycle, diffusion, propyléne
Procedia PDF Downloads 2772327 Antibacterial and Cytotoxicity Activity of Cinchona Alkaloids
Authors: Alma Ramić, Mirjana Skočibušić, Renata Odžak, Tomica Hrenar, Ines Primožič
Abstract:
In an attempt to identify a new class of antimicrobial agents, the antimicrobial potential of Cinchona alkaloid derivatives was evaluated. The bark of the Cinchona trees is the source of a variety of alkaloids, among which the best known are quinine, quinidine, cinchonine and cinchonidine. They are very useful as organocatalysts in stereoselective synthesis. On the other hand, quinine is traditionally used in the treatment of malaria. Furthermore, Cinchona alkaloids possess various analgesic, anti-inflammatory and anti–arrhythmic properties as well. In this work we present the synthesis of twenty quaternary derivatives of pseudo−enantiomeric Cinchona alkaloid derivatives to evaluate their antibacterial activity. Quaternization of quinuclidine moiety was carried out with groups diverse in their size. The structures of compounds were systematically modified to obtain drug-like properties with proper physical and chemical properties and avoiding toxophore. All compounds were prepared in good yields and were characterized by standard analytical spectroscopy methods (1D and 2D NMR, IR, MS). The antibacterial activities of all compounds were evaluated against series of recent clinical isolates of antibiotic susceptible Gram-positive and resistant Gram-negative pathogens by determining their zone of inhibition and minimum inhibitory concentrations. All compounds showed good to strong broad-spectrum activity, equivalent or better in comparison with standard antibiotics used. Furthermore, seven compounds exhibited significant antibacterial efficiency against Gram-negative isolates. To visualize the results, principal component analysis was used as an additional classification tool. Cytotoxicity of compounds with different cell lines in human cell culture was determined. Based on these results, substituted quaternary Cinchona scaffold can be considered as promising new class of antimicrobials and further investigations should be performed. Supported by Croatian Science Foundation, Project No 3775 ADESIRE.Keywords: antibacterial efficiency, cinchona alkaloids, cytotoxicity, pseudo‐enantiomers
Procedia PDF Downloads 1572326 Effect of Geometric Imperfections on the Vibration Response of Hexagonal Lattices
Authors: P. Caimmi, E. Bele, A. Abolfathi
Abstract:
Lattice materials are cellular structures composed of a periodic network of beams. They offer high weight-specific mechanical properties and lend themselves to numerous weight-sensitive applications. The periodic internal structure responds to external vibrations through characteristic frequency bandgaps, making these materials suitable for the reduction of noise and vibration. However, the deviation from architectural homogeneity, due to, e.g., manufacturing imperfections, has a strong influence on the mechanical properties and vibration response of these materials. In this work, we present results on the influence of geometric imperfections on the vibration response of hexagonal lattices. Three classes of geometrical variables are used: the characteristics of the architecture (relative density, ligament length/cell size ratio), imperfection type (degree of non-periodicity, cracks, hard inclusions) and defect morphology (size, distribution). Test specimens with controlled size and distribution of imperfections are manufactured through selective laser sintering. The Frequency Response Functions (FRFs) in the form of accelerance are measured, and the modal shapes are captured through a high-speed camera. The finite element method is used to provide insights on the extension of these results to semi-infinite lattices. An updating procedure is conducted to increase the reliability of numerical simulation results compared to experimental measurements. This is achieved by updating the boundary conditions and material stiffness. Variations in FRFs of periodic structures due to changes in the relative density of the constituent unit cell are analysed. The effects of geometric imperfections on the dynamic response of periodic structures are investigated. The findings can be used to open up the opportunity for tailoring these lattice materials to achieve optimal amplitude attenuations at specific frequency ranges.Keywords: lattice architectures, geometric imperfections, vibration attenuation, experimental modal analysis
Procedia PDF Downloads 1252325 Gene Expression Analysis for Corals / Zooxanthellae under High Seawater Temperature Stress
Authors: Haruka Ito, Toru Maruyama, Michihiro Ito, Chuya Shinzato, Hiroyuki Fujimura, Yoshikatsu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama
Abstract:
Clarifying symbiotic relationships is one of the most important theme for understanding the marine eco-system. Coral reef has been regarded as an important environmental resource. Coral holobiont composed by coral, symbiotic microalgae zooxanthellae, and bacteria have complexed relationship. Zooxanthellae mainly supply organic matter to the host corals through their photosynthetic activity. The symbiotic relationship is indispensable for corals but may easily collapses due to the rise of seawater temperature. However, the molecular mechanism how seawater temperature influences their relationships still remain unclear. In this study, the transcriptomic analysis has applied to elucidate the coral-zooxanthellae relationships under high seawater temperature stress. To observe reactions of corals and zooxanthellae against the rise of seawater temperature, meta-gene expression in coral have been analyzed. The branches from six different colonies of a stony coral, Acropora tenuis, were sampled at nine times by 2016 at two locations, Ishikawabaru and South of Sesoko Island, Okinawa, Japan. The mRNAs extracted from the branches including zooxanthellae were sequenced by illumina HiSeq. Gene Set Enrichment Analysis (GSEA) based on hyper geometric distribution was performed. The seawater temperature at 2016 summer was unusually high, which was caused by El Niño event, and the number of zooxanthellae in coral was decreased in August. GSEA derived the several specific genes expressed in A. tenuis under heat stress conditions. The upregulated genes under heat stress highly related with infection immunity. The downregulated genes significantly contained cell cycle related genes. Thu, it is considered that heat stress cause disorder in cell metabolism of A. tenuis, resulting in serious influence to coral holobiont.Keywords: coral, symbiosis, thermal stress response, transcriptome analysis
Procedia PDF Downloads 2752324 Optimization of a Hybrid PV-Diesel Mini grid System: A Case Study of Vimtim-Mubi, Nigeria
Authors: Julius Agaka Yusufu
Abstract:
This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.Keywords: Vimtim-Nigeria, homer, renewable energy, PV-diesel hybrid system.
Procedia PDF Downloads 792323 A Strategy to Oil Production Placement Zones Based on Maximum Closeness
Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes
Abstract:
Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone
Procedia PDF Downloads 3332322 Implementation of Ecological and Energy-Efficient Building Concepts
Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler
Abstract:
A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.Keywords: energy-efficiency, green architecture, renewable resources, sustainable building
Procedia PDF Downloads 1542321 Gut Mycobiome Dysbiosis and Its Impact on Intestinal Permeability in Attention-Deficit/Hyperactivity Disorder
Authors: Liang-Jen Wang, Sung-Chou Li, Yuan-Ming Yeh, Sheng-Yu Lee, Ho-Chang Kuo, Chia-Yu Yang
Abstract:
Background: Dysbiosis in the gut microbial community might be involved in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). The fungal component of the gut microbiome, namely the mycobiota, is a hyperdiverse group of multicellular eukaryotes that can influence host intestinal permeability. This study therefore aimed to investigate the impact of fungal mycobiome dysbiosis and intestinal permeability on ADHD. Methods: Faecal samples were collected from 35 children with ADHD and from 35 healthy controls. Total DNA was extracted from the faecal samples, and the internal transcribed spacer (ITS) regions were sequenced using high-throughput next-generation sequencing (NGS). The fungal taxonomic classification was analysed using bioinformatics tools, and the differentially expressed fungal species between the ADHD and healthy control groups were identified. An in vitro permeability assay (Caco-2 cell layer) was used to evaluate the biological effects of fungal dysbiosis on intestinal epithelial barrier function. Results: The β-diversity (the species diversity between two communities), but not α-diversity (the species diversity within a community), reflected the differences in fungal community composition between ADHD and control groups. At the phylum level, the ADHD group displayed a significantly higher abundance of Ascomycota and significantly lower abundance of Basidiomycota than the healthy control group. At the genus level, the abundance of Candida (especially Candida albicans) was significantly increased in ADHD patients compared to the healthy controls. In addition, the in vitro cell assay revealed that C. albicans secretions significantly enhanced the permeability of Caco-2 cells. Conclusions: The current study is the first to explore altered gut mycobiome dysbiosis using the NGS platform in ADHD. The findings from this study indicated that dysbiosis of the fungal mycobiome and intestinal permeability might be associated with susceptibility to ADHD.Keywords: ADHD, fungus, gut–brain axis, biomarker, child psychiatry
Procedia PDF Downloads 1222320 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process
Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois
Abstract:
Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor
Procedia PDF Downloads 1432319 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis
Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh
Abstract:
The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.Keywords: antibiotics, Bacillus subtilis, inhibition, Syzygium cumini
Procedia PDF Downloads 2042318 Identification of Genes Regulating Differentiation and Stemness of Human Mesenchymal Stem Cells for Gene Therapy in Regenerative Medicine
Authors: Tong Ming Liu
Abstract:
Human mesenchymal stem cells (MSCs) represent the most used stem cells for clinical application, which have been used in over 1000 clinical trials to treat over 30 diseases due to multilineage differentiation potential, secretome and immunosuppression. Gene therapies of MSCs hold great promise in the treatment of many diseases due to enhanced MSC-based clinical outcomes. To identify genes for gene therapy of MSCs, by comparing gene expression profile before and after MSC differentiation following by functional screening, we have identified ZNF145 that regulated MSC differentiation. Forced expression of ZNF145 resulted in enhanced in vitro chondrogenesis of MSCs as an upstream factor of SOX9 and improved osteochondral repair upon implant into osteochondral defects in rodents. By comparing gene expression profile during differentiation of iPSCs toward MSCs, we also identified gene HOX regulating MSC stemness, which was much downregulated in late-passaged MSCs. Knockdown of this gene greatly compromised MSC stemness including abolished proliferation, decreased CFU-F, promoted senescence and reduced expression of cell surface antigens linked to the MSC phenotype. In addition, multi-linage differentiation was also greatly impaired. Notably, HOX overexpression resulted in improved multi-lineage differentiation. In the mechanism, HOX expression significantly deceased in late passage of MSCs compared with early passage of MSCs, correlating with MSC important genes. ChIP-seq data shown that HOX binds to genes related to MSC self-renewal and differentiation. Most importantly, most HOX binding sites are lost in late passage of MSCs. HOX exerts its effects by directing binding Twist1, one important gene of MSCs. The identification of the genes regulating MSC differentiation and stemness will provide and promising strategies for gene therapy of MSCs in regenerative medicine.Keywords: mesenchymal stem cell, novel transcription factor, stemness, gene therapy, cartilage repair, signaling pathway
Procedia PDF Downloads 602317 T Cell Immunity Profile in Pediatric Obesity and Asthma
Authors: Mustafa M. Donma, Erkut Karasu, Burcu Ozdilek, Burhan Turgut, Birol Topcu, Burcin Nalbantoglu, Orkide Donma
Abstract:
The mechanisms underlying the association between obesity and asthma may be related to a decreased immunological tolerance induced by a defective function of regulatory T cells (Tregs). The aim of this study is to establish the potential link between these diseases and CD4+, CD25+ FoxP3+ Tregs as well as T helper cells (Ths) in children. This is a prospective case control study. Obese (n:40), asthmatic (n:40), asthmatic obese (n:40), and healthy children (n:40), who don't have any acute or chronic diseases, were included in this study. Obese children were evaluated according to WHO criteria. Asthmatic patients were chosen based on GINA criteria. Parents were asked to fill up the questionnaire. Informed consent forms were taken. Blood samples were marked with CD4+, CD25+ and FoxP3+ in order to determine Tregs and Ths by flow cytometric method. Statistical analyses were performed. p≤0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0,16%; p≤0,001), asthmatic (0,25%; p≤0,01) and asthmatic obese (0,29%; p≤0,05) groups than the control group (0,38%). Ths were counted higher in asthma group than the control (p≤0,01) and obese (p≤0,001)) groups. T cell immunity plays important roles in obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic and asthmatic obese children may help to elucidate some questions in pathophysiology of these diseases. For HOMA-IR levels, any significant difference was not noted between control and obese groups, but statistically higher values were found for obese asthmatics. The values obtained in all groups were found to be below the critical cut off points. This finding has made the statistically significant difference observed between Tregs of obese, asthmatic, obese asthmatic, and control groups much more valuable. These findings will be useful in diagnosis and treatment of these disorders and future studies are needed. The production and propagation of Tregs may be promising in alternative asthma and obesity treatments.Keywords: asthma, flow cytometry, pediatric obesity, T cells
Procedia PDF Downloads 3522316 Characterization the Tin Sulfide Thin Films Prepared by Spray Ultrasonic
Authors: A. Attaf A., I. Bouhaf Kharkhachi
Abstract:
Spray ultrasonic deposition technique of tin disulfide (SnS2) thin films know wide application due to their adequate physicochemical properties for microelectronic applications and especially for solar cells. SnS2 film was deposited by spray ultrasonic technique, on pretreated glass substrates at well-determined conditions.The effect of SnS2 concentration on different optical properties of SnS2 Thin films, such us MEB, XRD, and UV spectroscopy visible spectrum was investigated. MEB characterization technique shows that the morphology of this films is uniform, compact and granular. x-ray diffraction study detects the best growth crystallinity in hexagonal structure with preferential plan (001). The results of UV spectroscopy visible spectrum show that films deposited at 0.1 mol/l is large transmittance greater than 25% in the visible region.The band gap energy is 2.54 Ev for molarity 0.1 mol/l.Keywords: MEB, thin disulfide, thin films, ultrasonic spray, X-Ray diffraction, UV spectroscopy visible
Procedia PDF Downloads 6092315 Preliminary Study of Desiccant Cooling System under Algerian Climates
Abstract:
The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.Keywords: dehumidification, efficiency, humidity, Trnsys
Procedia PDF Downloads 443