Search results for: slice thickness accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5265

Search results for: slice thickness accuracy

2625 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 243
2624 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi

Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu

Abstract:

A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.

Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi

Procedia PDF Downloads 177
2623 A Supervised Face Parts Labeling Framework

Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad

Abstract:

Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.

Keywords: face labeling, semantic segmentation, classification, face segmentation

Procedia PDF Downloads 260
2622 Pricing European Continuous-Installment Options under Regime-Switching Models

Authors: Saghar Heidari

Abstract:

In this paper, we study the valuation problem of European continuous-installment options under Markov-modulated models with a partial differential equation approach. Due to the opportunity for continuing or stopping to pay installments, the valuation problem under regime-switching models can be formulated as coupled partial differential equations (CPDE) with free boundary features. To value the installment options, we express the truncated CPDE as a linear complementarity problem (LCP), then a finite element method is proposed to solve the resulted variational inequality. Under some appropriate assumptions, we establish the stability of the method and illustrate some numerical results to examine the rate of convergence and accuracy of the proposed method for the pricing problem under the regime-switching model.

Keywords: continuous-installment option, European option, regime-switching model, finite element method

Procedia PDF Downloads 142
2621 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 265
2620 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress

Procedia PDF Downloads 99
2619 A Quantitative Evaluation of Text Feature Selection Methods

Authors: B. S. Harish, M. B. Revanasiddappa

Abstract:

Due to rapid growth of text documents in digital form, automated text classification has become an important research in the last two decades. The major challenge of text document representations are high dimension, sparsity, volume and semantics. Since the terms are only features that can be found in documents, selection of good terms (features) plays an very important role. In text classification, feature selection is a strategy that can be used to improve classification effectiveness, computational efficiency and accuracy. In this paper, we present a quantitative analysis of most widely used feature selection (FS) methods, viz. Term Frequency-Inverse Document Frequency (tfidf ), Mutual Information (MI), Information Gain (IG), CHISquare (x2), Term Frequency-Relevance Frequency (tfrf ), Term Strength (TS), Ambiguity Measure (AM) and Symbolic Feature Selection (SFS) to classify text documents. We evaluated all the feature selection methods on standard datasets like 20 Newsgroups, 4 University dataset and Reuters-21578.

Keywords: classifiers, feature selection, text classification

Procedia PDF Downloads 462
2618 Dynamic Foot Pressure Measurement System Using Optical Sensors

Authors: Tanapon Keatsamarn, Chuchart Pintavirooj

Abstract:

Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.

Keywords: foot, foot pressure, image processing, optical sensors

Procedia PDF Downloads 252
2617 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 77
2616 Information Technology Application for Knowledge Management in Medium-Size Businesses

Authors: S. Thongchai

Abstract:

Result of the study on knowledge management systems in businesses was shown that the most of these businesses provide internet accessibility for their employees in order to study new knowledge via internet, corporate website, electronic mail, and electronic learning system. These business organizations use information technology application for knowledge management because of convenience, time saving, ease of use, accuracy of information and knowledge usefulness. The result indicated prominent improvements for corporate knowledge management systems as the following; 1) administrations must support corporate knowledge management system 2) the goal of corporate knowledge management must be clear 3) corporate culture should facilitate the exchange and sharing of knowledge within the organization 4) cooperation of personnel of all levels must be obtained 5) information technology infrastructure must be provided 6) they must develop the system regularly and constantly.

Keywords: business organizations, information technology application, knowledge management systems, prominent improvements

Procedia PDF Downloads 391
2615 Investigation of New Gait Representations for Improving Gait Recognition

Authors: Chirawat Wattanapanich, Hong Wei

Abstract:

This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.

Keywords: convolutional image, lower knee, gait

Procedia PDF Downloads 206
2614 Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System

Authors: Pouya Kaafi, Gholamreza Ghodrati Amiri

Abstract:

Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab system for the floors have a crucial role in the progressive collapse evaluation. In this research, a 3D finite element model of a 5-story steel building is modeled by the ABAQUS software once with modeling the slabs, and the next time without considering them. Then, the progressive collapse potential is evaluated. The results of the analyses indicate that the lack of the consideration of the slabs during the analyses, can lead to inaccuracy in assessing the progressive failure potential of the structure.

Keywords: abnormal loads, composite floor system, intermediate steel moment resisting frame system, progressive collapse

Procedia PDF Downloads 459
2613 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images

Authors: A. Nachour, L. Ouzizi, Y. Aoura

Abstract:

Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.

Keywords: edge detection, medical MRImages, multi-agent systems, vector field convolution

Procedia PDF Downloads 394
2612 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation

Procedia PDF Downloads 389
2611 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite

Authors: G. Purushotham, Joel Hemanth

Abstract:

An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.

Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills

Procedia PDF Downloads 403
2610 Improving Egg Production by Using Split-Phase Lighting Program

Authors: Hanan Al-Khalaifah, Afaf Al-Nasser

Abstract:

The egg shell quality and oviposition in laying hens are influenced by a range of factors including strain of birds, age, nutrition, water quality, general stress, heat stress, disease, and lighting program inside houses. A layer experiment was conducted to investigate the effect of split-phase lighting program on egg production efficiency. Four different feeds and average phosphorus (av. P) levels were tested. Diet A was a ration with an av. P level of 0.471%; Diet B was a ration with an av. P level of 0.510%; Diet C contained an av. P level of 0.293%; and Diet D contained an av. P level of 0.327%. The split-phase lighting program tested was one that inserted a 7-hour dark period from 9 am to 4 pm to reduce the heat produced by the feeding increment and physical activity of the hens. Diet B produced significantly more eggs than Diet C, or Diet D. Diet A was not significantly different from any of the other diets. Diet B also had the best feed efficiency with the other three diets in the same order and significance as for egg production. Diet D produced eggshells significantly thicker than either Diet A, or Diet B. Diet C produced thicker eggshells than Diet B, whose shells were significantly thinner than the other three diets. There were no differences in egg size. From these data, it is apparent that the minimal av. P level for the Lohmann strain of layer in Kuwait is above 0.327%. There was no difference in egg production or eggshell thickness between the split-phase light treatment and the standard light program. There was no difference in oviposition frequency. The split-phase light used 3.66% less feed, however, which was significant. The standard light produced eggs that were significantly heavier (66.30g vs. 65.73g). These results indicate that considerable savings in feed costs could be attained by using split-phase lighting, especially when cooling is not very efficient.

Keywords: egg, laying, nutrition, oviposition

Procedia PDF Downloads 227
2609 Preparation of Catalyst-Doped TiO2 Nanotubes by Single Step Anodization and Potential Shock

Authors: Hyeonseok Yoo, Kiseok Oh, Jinsub Choi

Abstract:

Titanium oxide nanotubes have attracted great attention because of its photocatalytic activity and large surface area. For enhancing electrochemical properties, catalysts should be doped into the structure because titanium oxide nanotubes themselves have low electroconductivity and catalytic activity. It has been reported that Ru and Ir doped titanium oxide electrodes exhibit high efficiency and low overpotential in the oxygen evolution reaction (OER) for water splitting. In general, titanium oxide nanotubes with high aspect ratio cannot be easily doped by conventional complex methods. Herein, two types of facile routes, namely single step anodization and potential shock, for Ru doping into high aspect ratio titanium oxide nanotubes are introduced in detail. When single step anodization was carried out, stability of electrodes were increased. However, onset potential was shifted to anodic direction. On the other hand, when high potential shock voltage was applied, a large amount of ruthenium/ruthenium oxides were doped into titanium oxide nanotubes and thick barrier oxide layers were formed simultaneously. Regardless of doping routes, ruthenium/ ruthenium oxides were homogeneously doped into titanium oxide nanotubes. In spite of doping routes, doping in aqueous solution generally led to incorporate high amount of Ru in titanium oxide nanotubes, compared to that in non-aqueous solution. The amounts of doped catalyst were analyzed by X-ray photoelectron spectroscopy (XPS). The optimum condition for water splitting was investigated in terms of the amount of doped Ru and thickness of barrier oxide layer.

Keywords: doping, potential shock, single step anodization, titanium oxide nanotubes

Procedia PDF Downloads 464
2608 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 219
2607 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 236
2606 Semi-automatic Design and Fabrication of Ring-Bell Control by IoT

Authors: Samart Rungjarean, Benchalak Muangmeesri, Dechrit Maneetham

Abstract:

Monks' and Novices' chimes may have some restrictions, such as during the rain when a structure or location chimes or at a certain period. Alternately, certain temple bells may be found atop a tall, difficult-to-reach bell tower. As a result, the concept of designing a brass bell for use with a mobile phone over great distances was proposed. The Internet of Things (IoT) system will be used to regulate the bell by testing each of the three beatings with a wooden head. A stone-beating head and a steel beater. The sound resonates nicely, with the distance and rhythm of the hit contributing to this. An ESP8266 microcontroller is used by the control system to manage its operations and will communicate with the pneumatic system to convey a signal. Additionally, a mobile phone will be used to operate the entire system. In order to precisely direct and regulate the rhythm, There is a resonance of roughly 50 dB for this test, and the operating distance can be adjusted. Timing and accuracy were both good.

Keywords: automatic ring-bell, microcontroller, ring-bell, iot

Procedia PDF Downloads 113
2605 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 127
2604 Nonparametric Quantile Regression for Multivariate Spatial Data

Authors: S. H. Arnaud Kanga, O. Hili, S. Dabo-Niang

Abstract:

Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values.

Keywords: conditional quantile, kernel, nonparametric, stationary

Procedia PDF Downloads 157
2603 Two-Photon Ionization of Silver Clusters

Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian

Abstract:

Resonant two-photon ionization (TPI) is a valuable technique for the study of clusters due to its ultrahigh sensitivity. The comparison of the observed TPI spectra with results of calculations allows to deduce important information on the shape, rotational and vibrational temperatures of the clusters with high accuracy. In this communication we calculate the TPI cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is chosen to be close to the surface plasmon (SP) energy of cluster in dielectric media. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows to take into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.

Keywords: resonance enhancement, silver clusters, surface plasmon, two-photon ionization

Procedia PDF Downloads 429
2602 Navigating Uncertainties in Project Control: A Predictive Tracking Framework

Authors: Byung Cheol Kim

Abstract:

This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.

Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference

Procedia PDF Downloads 27
2601 Assessing the Use of Fractional Radiofrequency for the Improvement of Skin Texture in Asian Patients

Authors: Mandy W. M. Chan, Samantha Y. N. Shek, Chi K. Yeung, Taro Kono, Henry H. L. Chan

Abstract:

Fractional radiofrequency devices have shown to improve skin texture such as smoothness, rhytides, brightness as well as atrophic acne scars by increasing dermal thickness, dermal collagen content and dermal fibrillin content. The objective of the study is to assess the efficacy and adverse effects of this device on Asian patients with skin textural changes. In this study, 20 Chinese patients (ranging from 21-60 years old) with irregularities of skin texture, rhytides and acne scars were recruited. Patients received six treatments at 2-4 week intervals. Treatment was initiated with maximum energy tolerated and was adjustable during treatment if patients felt excessive discomfort. A total of two passes were delivered at each session. Physician assessment and standardized photographs were taken at baseline, all treatment visits and at one, two, and six month after final treatment. As a result, 17 patients were recruited and completed the study according to the study protocol. One patient withdrew after the first treatment due to reaction to local anesthesia and two patients were lost to follow-up. At six months follow-up, 71% of the patients were satisfied and 24% were very satisfied, while treatment physician reported various degrees of improvement based on the global assessment scale in 60% of the subjects. Anticipated side effects including erythema, edema, pinpoint bleeding, scabs formation and flare of acne were recorded, but there were no serious adverse effects noted. Conclude up, the use of fractional radiofrequency improves skin texture and appears to be safe in Asian patients. No long-term serious adverse effect was noted.

Keywords: Asian, fractional radiogrequency, skin, texture

Procedia PDF Downloads 149
2600 Removal of Na₂SO₄ by Electro-Confinement on Nanoporous Carbon Membrane

Authors: Jing Ma, Guotong Qin

Abstract:

We reported electro-confinement desalination (ECMD), a desalination method combining electric field effects and confinement effects using nanoporous carbon membranes as electrode. A carbon membrane with average pore size of 8.3 nm was prepared by organic sol-gel method. The precursor of support was prepared by curing porous phenol resin tube. Resorcinol-formaldehyde sol was coated on porous tubular resin support. The membrane was obtained by carbonisation of coated support. A well-combined top layer with the thickness of 35 μm was supported by macroporous support. Measurements of molecular weight cut-off using polyethylene glycol showed the average pore size of 8.3 nm. High salt rejection can be achieved because the water molecules need not overcome high energy barriers in confined space, while huge inherent dehydration energy was required for hydrated ions to enter the nanochannels. Additionally, carbon membrane with additional electric field can be used as an integrated membrane electrode combining the effects of confinement and electric potential gradient. Such membrane electrode can repel co-ions and attract counter-ions using pressure as the driving force for mass transport. When the carbon membrane was set as cathode, the rejection of SO₄²⁻ was 94.89%, while the removal of Na⁺ was less than 20%. We set carbon membrane as anode chamber to treat the effluent water from the cathode chamber. The rejection of SO₄²⁻ and Na⁺ reached to 100% and 88.86%, respectively. ECMD will be a promising energy efficient method for salt rejection.

Keywords: nanoporous carbon membrane, confined effect, electric field, desalination, membrane reactor

Procedia PDF Downloads 130
2599 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: cutting condition, surface roughness, decision tree, CART algorithm

Procedia PDF Downloads 379
2598 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis

Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam

Abstract:

The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.

Keywords: hollow steel plate shear wall, time history analysis, finite element method, abaqus software

Procedia PDF Downloads 105
2597 Magnetic Resonance Imaging for Assessment of the Quadriceps Tendon Cross-Sectional Area as an Adjunctive Diagnostic Parameter in Patients with Patellofemoral Pain Syndrome

Authors: Jae Ni Jang, SoYoon Park, Sukhee Park, Yumin Song, Jae Won Kim, Keum Nae Kang, Young Uk Kim

Abstract:

Objectives: Patellofemoral pain syndrome (PFPS) is a common clinical condition characterized by anterior knee pain. Here, we investigated the quadriceps tendon cross-sectional area (QTCSA) as a novel predictor for the diagnosis of PFPS. By examining the association between the QTCSA and PFPS, we aimed to provide a more valuable diagnostic parameter and more equivocal assessment of the diagnostic potential of PFPS by comparing the QTCSA with the quadriceps tendon thickness (QTT), a traditional measure of quadriceps tendon hypertrophy. Patients and Methods: This retrospective study included 30 patients with PFPS and 30 healthy participants who underwent knee magnetic resonance imaging. T1-weighted turbo spin echo transverse magnetic resonance images were obtained. The QTCSA was measured on the axial-angled phases of the images by drawing outlines, and the QTT was measured at the most hypertrophied quadriceps tendon. Results: The average QTT and QTCSA for patients with PFPS (6.33±0.80 mm and 155.77±36.60 mm², respectively) were significantly greater than those for healthy participants (5.77±0.36 mm and 111.90±24.10 mm2, respectively; both P<0.001). We used a receiver operating characteristic curve to confirm the sensitivities and specificities for both the QTT and QTCSA as predictors of PFPS. The optimal diagnostic cutoff value for QTT was 5.98 mm, with a sensitivity of 66.7%, a specificity of 70.0%, and an area under the curve of 0.75 (0.62–0.88). The optimal diagnostic cutoff value for QTCSA was 121.04 mm², with a sensitivity of 73.3%, a specificity of 70.0%, and an area under the curve of 0.83 (0.74–0.93). Conclusion: The QTCSA was found to be a more reliable diagnostic indicator for PFPS than QTT.

Keywords: patellofemoral pain syndrome, quadriceps muscle, hypertrophy, magnetic resonance imaging

Procedia PDF Downloads 58
2596 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching

Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei

Abstract:

Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.

Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness

Procedia PDF Downloads 392