Search results for: passive optical networks (PONs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5149

Search results for: passive optical networks (PONs)

2539 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 216
2538 Satellite Connectivity for Sustainable Mobility

Authors: Roberta Mugellesi Dow

Abstract:

As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.

Keywords: sustainability, connectivity, mobility, satellites

Procedia PDF Downloads 138
2537 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 419
2536 Efficacy of Heart Failure Reversal Treatment Followed by 90 Days Follow up in Chronic Heart Failure Patients with Low Ejection Fraction

Authors: Rohit Sane, Snehal Dongre, Pravin Ghadigaonkar, Rahul Mandole

Abstract:

The present study was designed to evaluate efficacy of heart failure reversal therapy (HFRT) that uses herbal procedure (panchakarma) and allied therapies, in chronic heart failure (CHF) patients with low ejection fraction. Methods: This efficacy study was conducted in CHF patients (aged: 25-65 years, ejection fraction (EF) < 30%) wherein HFRT (60-75 minutes) consisting of snehana (external oleation), swedana (passive heat therapy), hrudaydhara(concoction dripping treatment) and basti(enema) was administered twice daily for 7 days. During this therapy and next 30 days, patients followed the study dinarcharya and were prescribed ARJ kadha in addition to their conventional treatment. The primary endpoint of this study was evaluation of maximum aerobic capacity uptake (MAC) as assessed by 6-minute walk distance (6MWD) using Cahalins equation from baseline, at end of 7 day treatment, follow-up after 30 days and 90 days. EF was assessed by 2D Echo at baseline and after 30 days of follow-up. Results: CHF patients with < 30% EF (N=52, mean [SD] age: 58.8 [10.8], 85% men) were enrolled in the study. There was a 100% compliance to study therapy. A significant improvement was observed in MAC levels (7.11%, p =0.029), at end of 7 day therapy as compared to baseline. This improvement was maintained at two follow-up visits. Moreover, ejection fraction was observed to be increased by 6.38%, p=0,012 as compared to baseline at day 7 of the therapy. Conclusions: This 90 day follow up study highlights benefit of HFRT, as a part of maintenance treatment for CHF patients with reduced ejection fraction.

Keywords: chronic heart failure, functional capacity, heart failure reversal therapy, oxygen uptake, panchakarma

Procedia PDF Downloads 234
2535 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 342
2534 Optimising Transcranial Alternating Current Stimulation

Authors: Robert Lenzie

Abstract:

Transcranial electrical stimulation (tES) is significant in the research literature. However, the effects of tES on brain activity are still poorly understood at the surface level, the Brodmann Area level, and the impact on neural networks. Using a method like electroencephalography (EEG) in conjunction with tES might make it possible to comprehend the brain response and mechanisms behind published observed alterations in more depth. Using a method to directly see the effect of tES on EEG may offer high temporal resolution data on the brain activity changes/modulations brought on by tES that correlate to various processing stages within the brain. This paper provides unpublished information on a cutting-edge methodology that may reveal details about the dynamics of how the human brain works beyond what is now achievable with existing methods.

Keywords: tACS, frequency, EEG, optimal

Procedia PDF Downloads 85
2533 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure

Authors: A. Arya, R. Laha, V. R. Dantham

Abstract:

We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.

Keywords: localized surface plasmons, photonic nanojet, SERS, whispering gallery mode

Procedia PDF Downloads 248
2532 Counselor and Object of Hate: A Case Study of Latina Clinician and Two White Supremacist Patients

Authors: Reagan Rodriguez

Abstract:

The following research is a case study of two white patients with white extremist values and their Latina Clinician. Researchers suggest that white supremacy as an ideology has been documented in the United States since the early 1800s. Ethnicity and race were growing key factors linked to central motives behind hate crimes in U.S., which may suggest that we are living in another wave of white supremacist and domestic terrorism that seek to eradicate a threatening and dangerous “other”. This research seeks to address and contribute a qualitative perspective to white supremacist ideology within a bio-psycho-social framework. The current research seeks to contribute to address the gap in literature on ethnic minority clinicians and white patients with racist ideology. The research also seeks to examine the themes not commonly found in racially matched and gendered matched therapeutic dyads where patients hold white extremist values. This case study examines white supremacist ideology from a psychodynamic perspective, examining themes such as “feeling forgotten”, reduced empathy related to “broken promises”, sexualization of the passing minority counselor, and utilizing minimal autonomy in verbal and non-verbal signals. A thematic analysis of case notes and quotes are used to further contextualize emerging therapeutic themes and the psychodynamic analysis of the manifestation of white supremacist actions ranging from active to passive forms of violence.

Keywords: case study, extremism, race and gender, white supremacist ideology

Procedia PDF Downloads 146
2531 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 618
2530 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence

Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács

Abstract:

The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.

Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility

Procedia PDF Downloads 120
2529 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 112
2528 Wear Behavior of Intermetallic (Ni3Al) Coating at High Temperature

Authors: K. Mehmood, Muhammad Asif Rafiq, A. Nasir Khan, M. Mudassar Rauf

Abstract:

Air plasma spraying system was utilized to deposit Ni3Al coatings on AISI 321 steel samples. After thermal spraying, the nickel aluminide intermetallic coatings were isothermal heat treated at various temperatures. In this regard, temperatures from 500 °C to 800 °C with 100 °C increments were selected. The coatings were soaked for 10, 30, 60 and 100 hours at the mentioned temperatures. These coatings were then tested by a pin on disk method. It was observed that the coatings exposed at comparatively higher temperature experienced lower wear rate. The decrease in wear rate is due to the formation of NiO phase. Further, the as sprayed and heat treated coatings were characterized by other tools such as Microhardness testing, optical and scanning electron microscopy (SEM) and X-Ray diffraction analysis. After isothermal heat treatment, NiO was observed the main phase by X-Ray diffraction technique. Moreover, the surface hardness was also determined higher than cross sectional hardness.

Keywords: air plasma spraying, Ni -20Al, tribometer, intermetallic coating, nickel aluminide

Procedia PDF Downloads 332
2527 Spatially Encoded Hyperspectral Compressive Microscope for Broadband VIS/NIR Imaging

Authors: Lukáš Klein, Karel Žídek

Abstract:

Hyperspectral imaging counts among the most frequently used multidimensional sensing methods. While there are many approaches to capturing a hyperspectral data cube, optical compression is emerging as a valuable tool to reduce the setup complexity and the amount of data storage needed. Hyperspectral compressive imagers have been created in the past; however, they have primarily focused on relatively narrow sections of the electromagnetic spectrum. A broader spectral study of samples can provide helpful information, especially for applications involving the harmonic generation and advanced material characterizations. We demonstrate a broadband hyperspectral microscope based on the single-pixel camera principle. Captured spatially encoded data are processed to reconstruct a hyperspectral cube in a combined visible and near-infrared spectrum (from 400 to 2500 nm). Hyperspectral cubes can be reconstructed with a spectral resolution of up to 3 nm and spatial resolution of up to 7 µm (subject to diffraction) with a high compressive ratio.

Keywords: compressive imaging, hyperspectral imaging, near-infrared spectrum, single-pixel camera, visible spectrum

Procedia PDF Downloads 89
2526 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes

Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi

Abstract:

The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.

Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm

Procedia PDF Downloads 305
2525 Investigation of Chip Formation Characteristics during Surface Finishing of HDPE Samples

Authors: M. S. Kaiser, S. Reaz Ahmed

Abstract:

Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.

Keywords: HDPE, surface-finishing, chip formation, deformation, roughness

Procedia PDF Downloads 148
2524 Measurement of Thermal Protrusion Profile in Magnetic Recording Heads via Wyko Interferometry

Authors: Joseph Christopher R. Ragasa, Paolo Gabriel P. Casas, Nemesio S. Mangila, Maria Emma C. Villamin, Myra G. Bungag

Abstract:

A procedure in measuring the thermal protrusion profiles of magnetic recording heads was developed using a Wyko HD-8100 optical interference-based instrument. The protrusions in the heads were made by the application of a constant power through the thermal flying height controller pads. It was found that the thermally-induced bubble is confined to form in the same head locations, primarily in the reader and writer regions, regardless of the direction of approach of temperature. An application of power to the thermal flying height control pads ranging from 0 to 50 milliWatts showed that the protrusions demonstrate a linear dependence with the supplied power. The efficiencies calculated using this method were compared to that obtained through Guzik and found to be 19.57% greater due to the static testing environment used in the testing.

Keywords: thermal protrusion profile, magnetic recording heads, wyko interferometry, thermal flying height control

Procedia PDF Downloads 470
2523 Wear Behavior and Microstructure of Eutectic Al - Si Alloys Manufactured by Selective Laser Melting

Authors: Nan KANG, Pierre Coddet, Hanlin Liao, Christian Coddet

Abstract:

In this study, the almost dense eutectic Al-12Si alloys were fabricated by selective laser melting (SLM) from the powder mixture of pure Aluminum and pure Silicon, which show the mean particle sizes of 30 μm and 5μm respectively, under the argon environment. The image analysis shows that the highest value of relative density (95 %) was measured for the part obtained at the laser power of 280 W. X ray diffraction (XRD), Optical microscope (OM) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectroscopy (EDS) were employed to determine the microstructures of the SLM-processed Al-Si alloy, which illustrate that the SLM samples present the ultra-fine microstructure. The XRD results indicate that no clearly phase transformation happened during the SLM process. Additionally, the vaporization behavior of Aluminum was detected for the parts obtained at high laser power. Besides, the maximum microhardness value, about 95 Hv, was measured for the samples obtained at laser power of 280 W, and which shows the highest wear resistance.

Keywords: al-Si alloy, selective laser melting, wear behavior, microstructure

Procedia PDF Downloads 402
2522 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 394
2521 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells

Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon

Abstract:

By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.

Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique

Procedia PDF Downloads 340
2520 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes

Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana

Abstract:

The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis

Procedia PDF Downloads 53
2519 African Mesquite Exerts Neuroprotective Activity Against Quaternary Metal Mixture -Induced Olfactory Bulb-Hippocampal Oxido-Inflammatory Stress via NRF2-HMOX-1-TNF-Alpha Pathway Pathway

Authors: Orish E. Orisakwe, Chinna N. Orish, Anthonet N. Ezejiofor

Abstract:

African mesquite has been recognized for its antimicrobial, anti-inflammatory, and potential anticarcinogenic activities. However, its neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. Therefore, the objective of this study was to investigate the neuroprotective properties of African mesquite in the hippocampus and olfactory bulb against common environmental pollutants, including Cd, As, Hg, and Pb. Thirty-five albino Sprague Dawley rats were divided into five groups for the experiment. Group 1 served as the control and did not receive either the heavy metal mixture (HMM) or African mesquite. Group 2 was orally administered HMM, consisting of PbCl2 (20 mg/kg), CdCl2 (1.61 mg/kg), HgCl2 (0.40 mg/kg), and NaAsO3 (10 mg/kg), for 960 days. Meanwhile, groups 3, 4, and 5 were treated with HMM along with African mesquite at doses of 500 mg/kg, 1000 mg/kg, and 1500 mg/kg, respectively. African mesquite reduced heavy metal accumulation in the hippocampus and olfactory bulb. Additionally, Sprague Dawley rats exhibited improved performance in the Passive avoidance and Cincinnati Maze tests. Furthermore, treatment with African mesquite significantly alleviated inflammation macromolecules peroxidation. It also restored the concentrations of SOD, CAT, GSH, GPx, Hmox-1, and reduced the activity of AChE, NRF2 and NFkB and improved histopathological findings. African mesquite exhibits a multifaceted neuroprotective effect with the potential to mitigate various aspects of heavy metal-induced neurotoxicity.

Keywords: African mesquite, heavy metal mixture;, neurotoxicity;, chemoprevention

Procedia PDF Downloads 74
2518 Learning Traffic Anomalies from Generative Models on Real-Time Observations

Authors: Fotis I. Giasemis, Alexandros Sopasakis

Abstract:

This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.

Keywords: traffic, anomaly detection, GNN, GAN

Procedia PDF Downloads 13
2517 Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit

Authors: M. Tsebia, H. Bentarzi

Abstract:

In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.

Keywords: PMU, inter-area oscillation, Maghrebian power system, Simulink

Procedia PDF Downloads 363
2516 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 62
2515 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: air cooling system, refrigeration, thermal ejector, thermal compression

Procedia PDF Downloads 161
2514 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 171
2513 Psychological Skills Training for Severely Injured Athletes to Enhance Recovery and Return to Sport

Authors: John E Coumbe-Lilley

Abstract:

This IRB-approved study explored athletes' emotional recovery experiences following a severe sports injury keeping them out of their sport for six months or longer. A realistic thematic analytical approach was used to interpret the findings of 44 semi-structured interviews of athletes who competed at high school, college, and professional levels of competition. Thematic analysis validated by a self-rating scale demonstrated athletes cross a series of emotional thresholds during their injury rehabilitation process. Results showed athletes crossed two to six emotional thresholds before positive emotion and coping were consistently experienced following their injury. Athletes reported being unequipped to cope with negative emotional intensity, the longevity of recovery, and enduring depression during long-term rehabilitation. Positive emotional recovery was expected no sooner than nine months and up to 2.5 years following a sports injury. In addition, 100% of athletes received no psychological skills training (PST) for coping and recovery, and 93% of athletes indicated passive psychological coping strategies in the first month following injury, which extended their time to recover. Athletes recommended immediate, realistic, and evidence-based strategies benefitting the emotional recovery of severely injured athletes emotional recovery to improve athletes' emotional well-being during long-term rehabilitation and enhance their return to sport. Future experimental research might compare the post-PST program that emerged from this study to determine its efficacy in improving the recovery of severely injured athletes.

Keywords: sports, injury, rehabilitation, psychological skills training, coping

Procedia PDF Downloads 137
2512 Prediction for DC-AC PWM Inverters DC Pulsed Current Sharing from Passive Parallel Battery-Supercapacitor Energy Storage Systems

Authors: Andreas Helwig, John Bell, Wangmo

Abstract:

Hybrid energy storage systems (HESS) are gaining popularity for grid energy storage (ESS) driven by the increasingly dynamic nature of energy demands, requiring both high energy and high power density. Particularly the ability of energy storage systems via inverters to respond to increasing fluctuation in energy demands, the combination of lithium Iron Phosphate (LFP) battery and supercapacitor (SC) is a particular example of complex electro-chemical devices that may provide benefit to each other for pulse width modulated DC to AC inverter application. This is due to SC’s ability to respond to instantaneous, high-current demands and batteries' long-term energy delivery. However, there is a knowledge gap on the current sharing mechanism within a HESS supplying a load powered by high-frequency pulse-width modulation (PWM) switching to understand the mechanism of aging in such HESS. This paper investigates the prediction of current utilizing various equivalent circuits for SC to investigate sharing between battery and SC in MATLAB/Simulink simulation environment. The findings predict a significant reduction of battery current when the battery is used in a hybrid combination with a supercapacitor as compared to a battery-only model. The impact of PWM inverter carrier switching frequency on current requirements was analyzed between 500Hz and 31kHz. While no clear trend emerged, models predicted optimal frequencies for minimized current needs.

Keywords: hybrid energy storage, carrier frequency, PWM switching, equivalent circuit models

Procedia PDF Downloads 29
2511 A Contemplation of Iranian Islamic Architecture in the Age of Globalization

Authors: Maziar Asefi, Safa Salkhi Khasraghi

Abstract:

Despite the great development of Islamic Architecture in its conquered lands, its active performance in a vast geographical area, faded by the advent of industrial age. Now in the Information Age with great advances in technologies and increased interconnection among many societies, every aspect of life is affected by rapid spreading phenomenon called globalization which resulted in the world with less regional and cultural boundaries. So being proudly globalized in the past and becoming inactive in today's globalized world puts Islamic Architecture in a great challenge. Indeed, its important role has changed from transmitting cultural values to the world to importing dominated values even defectively. This study aimed to determine the factors influenced this controversial situation of Islamic Architecture, especially in current age. The paper focuses on performance of Islamic architecture in relation with Globalization as an ancient process. So qualitative method in terms of logic analysis was chosen to evaluate how Islamic architecture of Iran has contributed in Globalization subject in different time periods. Several works were analyzed as case studies in three categories: religious, monumental, commercial utilities and climate element. Theoretical and practical findings indicate that there is a mutual relationship between Islamic Architecture and Globalization which is transformed from the active mode to passive mode gradually in three periods of Globalization: proto, modern and communication Globalization. The proposed solution in the response to this challenge is finding a solution that makes an equilibrium between science, art, and technology, as well as taking the global performance of architecture.

Keywords: Islamic architecture, globalisation, the relationship among art, science and technology, Iranian architecture

Procedia PDF Downloads 301
2510 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process

Authors: A. Assad, T. Zayed

Abstract:

Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.

Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process

Procedia PDF Downloads 148