Search results for: organic pollutant degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4103

Search results for: organic pollutant degradation

1493 Natural Regeneration Assessment of a Double Bunrt Mediterranean Coniferous Forest: A Pilot Study from West Peloponnisos, Greece

Authors: Dionisios Panagiotaras, Ioannis P. Kokkoris, Dionysios Koulougliotis, Dimitra Lekka, Alexandra Skalioti

Abstract:

In the summer of 2021, Greece was affected by devastating forest fires in various regions of the country, resulting in human losses, destruction or degradation of the natural environment, infrastructure, livestock and cultivations. The present study concerns a pilot assessment of natural vegetation regeneration in the second, in terms of area, fire-affected region for 2021, at Ancient Olympia area, located in West Peloponnisos (Ilia Prefecture), Greece. A standardised field sampling protocol for assessing natural regeneration was implemented at selected sites where the forest fire had occurred previously (in 2007), and the vegetation (Pinus halepensis forest) had regenerated naturally. The results of the study indicate the loss of the established natural regeneration of Pinus halepensis forest, as well as of the tree-layer in total. Post-fire succession species are recorded to the shrub and the herb layer, with a varying cover. Present findings correspond to the results of field work and analysis one year after the fire, which will form the basis for further research and conclusions on taking action for restoration schemes in areas that have been affected by fire more than once within a 20-year period.

Keywords: forest, pinus halepensis, ancient olympia, post fire vegetation

Procedia PDF Downloads 82
1492 Potato Production under Brakish Water and Compost Use

Authors: Samih Abubaker, Amjad Abuserhan, Ghandi Anfoka

Abstract:

Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation.

Keywords: brackish water, compost, potato, salt accumulation

Procedia PDF Downloads 312
1491 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma

Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar

Abstract:

Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.

Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene

Procedia PDF Downloads 179
1490 Low Dose In-Line Electron Holography for 3D Atomic Resolution Tomography of Soft Materials

Authors: F. R. Chen, C. Kisielowski, D. Van Dyck

Abstract:

In principle, the latest generation aberration-corrected transmission electron microscopes (TEMs) could achieve sub-Å resolution, but there is bottleneck that hinders the final step towards revealing 3D structure. Firstly, in order to achieve a resolution around 1 Å with single atom sensitivity, the electron dose rate needs to be sufficiently large (10⁴-10⁵eÅ⁻² s⁻¹). With such large dose rate, the electron beam can induce surfaces alterations or even bulk modifications, in particular, for electron beam sensitive (soft) materials such as nm size particles, organic materials, proteins or macro-molecules. We will demonstrate methodology of low dose electron holography for observing 3D structure for soft materials such as single Oleic acid molecules at atomic resolution. The main improvement of this new type of electron holography is based on two concepts. Firstly, the total electron dose is distributed over many images obtained at different defocus values from which the electron hologram is then reconstructed. Secondly, in contrast to the current tomographic methods that require projections from several directions, the 3D structural information of the nano-object is then extracted from this one hologram obtained from only one viewing direction.

Keywords: low dose electron microscopy, in-line electron holography, atomic resolution tomography, soft materials

Procedia PDF Downloads 182
1489 Production of Nitric Oxide by Thienopyrimidine TP053

Authors: Elena G. Salina, Laurent R. Chiarelli, Maria R. Pasca, Vadim A. Makarov

Abstract:

Tuberculosis is one of the most challenging threats to human health, confronted by the problem of drug resistance. Evidently, new drugs for tuberculosis are urgently needed. Thienopyrimidine TP053 is one of the most promising new antitubercular prodrugs. Mycothiol-dependent reductase Mrx2, encoded by rv2466c, is known to be a TP053 activator; however, the precise mode of action of this compound remained unclear. Being highly active against both replicating and non-replicating tuberculosis bacilli, TP053 also revealed dose-escalating activity for M. tuberculosis-infected murine macrophages. The chemical structure of TP053 is characterized by the presence of NO₂ group which was suggested to be responsible for the toxic effects of the activated compound. Reduction of a nitroaromatic moiety of TP53 by Mrx2 was hypothesized to result in NO release. Analysis of the products of enzymatic activation of TP053 by Mrx2 by the Greiss reagent clearly demonstrated production of nitric oxide in a time-dependent manner. Mass-spectra of cell lysates of TP-treated M. tuberculosis bacilli demonstrated the transformation of TP053 to its non-active metabolite with Mw=261 that corresponds NO release. The mechanism of NO toxicity for bacteria includes DNA damage and degradation of iron-sulfur centers, especially under oxygen depletion. Thus, TP-053 drug-like scaffold is prospective for further development of novel anti-TB drug. This work was financially supported by the Russian Foundation for Basic Research (Grant 17-04-00342).

Keywords: drug discovery, M. tuberculosis, nitric oxide, NO donors

Procedia PDF Downloads 141
1488 Indirect Environmental Benefits from Cloud Computing Information and Communications Technology Integration in Rural Agricultural Communities

Authors: Jeana Cadby, Kae Miyazawa

Abstract:

With rapidly expanding worldwide adoption of mobile technologies, Information and Communication Technology (ITC) is a major energy user and a contributor to global carbon emissions, due to infrastructure and operational energy consumption. The agricultural sector is also significantly responsible for contributing to global carbon emissions. However, ICT cloud computing using mobile technology can directly reduce environmental impacts in the agricultural sector through applications and mobile connectivity, such as precision fertilizer and pesticide applications, or access to weather data, for example. While direct impacts are easily calculated, indirect environmental impacts from ICT cloud computing usage have not been thoroughly investigated. For example, while women may be more poorly equipped for adaptation to environmentally sustainable agricultural practices due to resource constraints, this research concludes that indirect environmental benefits can be achieved by improving rural access to mobile technology for women. Women in advanced roles and secure land tenure are more likely to invest in long-term agricultural conservation strategies, which protect against environmental degradation. This study examines how ICT using mobile technology advances the role of women in rural agricultural systems and indirectly reduces environmental impacts from agricultural production, through literature examination from secondary sources. Increasing access for women to ICT mobile technology provides indirect environmental and social benefits in the rural agricultural sector.

Keywords: cloud computing, environmental benefits, mobile technology, women

Procedia PDF Downloads 160
1487 Investigating the Environmental Impact of Tourists Activities on Yankari Resort and Safari

Authors: Eldah Ephraim Buba, Sanusi Abubakar Sadiq

Abstract:

Habitat can be degraded by tourism leisure activities for example wildlife viewing can bring abrupt stress for animals and alter their natural behaviors when tourist come too close and wildlife watching have degradation effects on the habitats as they often are accompanied by the noise and commotion created by tourist as they chase wild animals. It is observed that Jos Wild Life Park is usually congested during on-peak periods which causes littering and contamination of the environment by tourist which may lead to changes in the soil nutrient. The issue of unauthorized feeding of animals by a tourist in which the food might be dangerous and harmful to their health and making them be so aggressive is also observed. The aim of the study is to investigate the environmental impact of tourists’ activities in Jos Wild Life Park, Nigeria. The study used survey questionnaires to both tourists and the staff of the wildlife park. One hundred questionnaires were self-administered to randomly selected tourists as the visit the park and some staff. The average mean score of the response was used to show agreement or disagreement. Major findings show the negative impact of tourist’s activities to the environment as air pollution, overcrowding, and congestion, solid littering of the environment, distress to animals and alteration of the ecosystem. Furthermore, the study found the positive impact of tourists activities on the environment to be income generation through tourists activities and infrastructural development. It is recommended that the impact of tourism should be minimized through admitting the right carrying capacity and impact assessment.

Keywords: environmental, impact, investigation, tourists, activities

Procedia PDF Downloads 349
1486 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.

Keywords: adsorption, dyes, fiber, valorization, wastewater

Procedia PDF Downloads 280
1485 Motivations and Obstacles in the Implementation of Public Policies Encouraging the Sorting of Organic Waste: The Case of a Metropolis of 400,000 Citizens

Authors: Enola Lamy, Jean Paul Mereaux, Jean Claude Lopez

Abstract:

In the face of new regulations related to waste management, it has become essential to understand the organizational process that accompanies this change. Through an experiment on the sorting of food waste in the community of Grand Reims, this research explores the acceptability, behavior, and tools needed to manage the change. Our position within a private company, SUEZ, a key player in the waste management sector, has allowed us to set up a driven team with concerned public organizations. The research was conducted through a theoretical study combined with semi-structured interviews. This qualitative method allowed us to conduct exchanges with users to assess the motivations and obstacles linked to the sorting of bio-waste. The results revealed the action levers necessary for the project's sustainability. Making the sorting gestures accessible and simplified makes it possible to target all populations. Playful communication adapted to each type of persona allows the user and stakeholders to be placed at the heart of the strategy. These recommendations are spotlighted thanks to the combination of theoretical and operational contributions, with the aim of facilitating the new public management and inducing the notion of performance while providing an example of added value.

Keywords: bio-waste, CSR approach, stakeholders, users, perception

Procedia PDF Downloads 71
1484 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant

Authors: Azad Khalid, Ime Akanyeti

Abstract:

About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.

Keywords: aeration, sewage sludge, food waste, sawdust, composting

Procedia PDF Downloads 78
1483 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 68
1482 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules

Authors: T. H. Huang, C. L. Fern, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.

Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement

Procedia PDF Downloads 99
1481 Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain

Authors: T. N. M. El Sebai, A. A. Khattab, Wafaa M. Abd-El Rahim, H. Moawad

Abstract:

Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process.

Keywords: rice straw, composting, UV mutants, Penicillium

Procedia PDF Downloads 276
1480 Redefining Urban Landfills – Transformation of a Sanitary Landfill in Indian Cities

Authors: N. L. Divya Gayatri

Abstract:

In India, over 377 million urban people generate 62 million tons of municipal solid waste per annum. Forty-three million tons are collected, 11.9 million are treated and 31 million tons is dumped in landfill sites. The study aims to have an overall understanding of the working and functioning of a sanitary landfill from the siting to the closure stage and identifying various landscape design techniques that can be implemented in a landfill site and come up with a set of guidelines by analyzing the existing policies and guidelines pertaining to landfills. Constituents of municipal solid waste, methods of landfilling, issues, impacts, Mitigation strategies, Landscape design strategies, design approaches towards a landfill, infrastructure requirements, end-use opportunities have been discussed. The objective is to study the ecological and environmental degradation prevention methods, compare various techniques in remediation, study issues in landfill sites in India, analyze scope and opportunities and explore various landscape design strategies. The understanding of the function of landfills with respect to Municipal solid waste and landscaping is conveyed through this study. The study is limited to Landscape design factors in landfill design guidelines and policies mentioned with regard to the issues and impacts specific to the Indian context.

Keywords: sanitary landfill landscaping, environmental impact, municipal solid waste, guidelines, landscape design strategies, landscape design approaches

Procedia PDF Downloads 149
1479 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 79
1478 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine

Procedia PDF Downloads 202
1477 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel

Authors: Behzad Panahirad, UğUr Atikol

Abstract:

The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.

Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility

Procedia PDF Downloads 164
1476 Reversibility of Photosynthetic Activity and Pigment-protein Complexes Expression During Seed Development of Soybean and Black Soybean

Authors: Tzan-Chain Lee

Abstract:

Seeds are non-leaves green tissues. Photosynthesis begins with light absorption by chlorophyll and then the energy transfer between two pigment-protein complexes (PPC). Most studies of photosynthesis and PPC expression were focused on leaves; however, during seeds’ development were rare. Developed seeds from beginning pod (stage R3) to dried seed (stage R8), and the dried seed after sowing for 1-4 day, were analyzed for their chlorophyll contents. Thornber and MARS gel systems analysis compositions of PPC. Chlorophyll fluorescence was used to detect maximal photosynthetic efficiency (Fv/Fm). During soybean and black soybean seeds development (stages R3-R6), Fv/Fm up to 0.8, and then down-regulated after full seed (stage R7). In dried seed (stage R8), the two plant seeds lost photosynthetic activity (Fv/Fm=0), but chlorophyll degradation only occurred in soybean after full seed. After seeds sowing for 4 days, chlorophyll drastically increased in soybean seeds, and Fv/Fm recovered to 0.8 in the two seeds. In PPC, the two soybean seeds contained all PPC during seeds development (stages R3-R6), including CPI, CPII, A1, AB1, AB2, and AB3. However, many proteins A1, AB1, AB2, and CPI were totally missing in the two dried seeds (stage R8). The deficiency of these proteins in dried seeds might be caused by the incomplete photosynthetic activity. After seeds germination and seedling exposed to light for 4 days, all PPC were recovered, suggesting that completed PPC took place in the two soybean seeds. This study showed the reversibility of photosynthetic activity and pigment-protein complexes during soybean and black soybean seeds development.

Keywords: light-harvesting complex, pigment–protein complexes, soybean cotyledon, grana development

Procedia PDF Downloads 139
1475 Effect of Vermicompost and Vermitea on the Growth and Yield of Selected Vegetable Crops

Authors: Josephine R. Migalbin, Jurhamid C. Imlan, Evelyn P. Esteban

Abstract:

A study was conducted to determine the effect of vermicompost and vermitea as organic fertilizers on the growth and yield of selected vegetable crops specifically eggplant, tomatoes and sweet pepper. The study was laid-out in Randomized Complete Block Design with 4 treatments replicated 4 times. The treatments were as follows: Treatment I (control), Treatment II (vermitea), Treatment III (vermicompost with buffalo manure), and Treatment IV (vermicompost with goat and sheep manure). In all the vegetable crops, almost all parameters significantly increased compared with the control except for number of fruits in eggplant and plant height in tomatoes where no significant difference was observed among treatments. The highest marketable fruit yield (tons/ha) was obtained from plants applied with vermicompost with goat and sheep manure but comparable with plants applied with vermicompost with buffalo manure and vermitea while the control plots received the lowest yield. The 28 spotted beetle (Epilachna philippinensis), and shoot and fruit borer (Leucinodes orbonalis) were the serious pests observed in the study on eggplant.

Keywords: marketable fruit yield, vermicompost, vermitea, vegetable crops

Procedia PDF Downloads 566
1474 Enhancing the CO2 Photoreduction of SnFe2O4 by Surface Modification Through Acid Treatment and Au Deposition

Authors: Najmul Hasan, Shiping Li, Chunli Liu

Abstract:

The synergy effect of surface modifications using the acid treatment and noble metal (Au) deposition on the efficiency of SnFe2O4 (SFO) nano-octahedron photocatalyst has been investigated. Inorganic acids (H2SO4 and HNO3) were employed to compare the effects of different acids. It has been found that after corrosion treatment using H2SO4 and deposition of Au nanoparticles, SnFe2O4 nano-octahedron (Au-S-SFO) showed significantly enhanced photocatalytic activity under simulated light irradiation. Au-S-SFO was characterized by XRD, XPS, EDS, FTIR, Uv-vis-DRS, SEM, PL, and EIS analysis. The mechanism for CO2 reduction was investigated by scavenger tests. The stability of Au-S-SFO was confirmed by continuously repeated tests followed by XRD analysis. The surface corrosion treatment of SFO octahedron with H2SO4 could produce hydroxyl group (-OH) and sulfonic acid group (-SO3H) as reaction sites. These active sites not only enhanced the Au nanoparticles deposition to the acid treated SFO surface but also acted as the Brønsted acid sites that enhance the water adsorption and provide protons for CTC degradation and CO2 reduction. These effects improved the carrier separation and transfer efficiency. In addition, the photocatalytic efficiency was further enhanced by the surface plasmon resonance (SPR) effect of Au nanoparticles deposited on the surface of acid-treated SFO. As a result of the synergy of both acid treatment and SPR effect from the Au NPs, Au-S-SFO exhibited the highest CO2 reduction activity with 2.81, 1.92, and 2.69 times higher evolution rates for CO, CH4, and H2, respectively than that of pure SFO.

Keywords: surface modification, CO2 reduction, Au deposition, Gas-liquid interfacial plasma

Procedia PDF Downloads 81
1473 The Use of Fertilizers in the Context of Agricultural Extension

Authors: Ahmed Altalb

Abstract:

Fertilizers are natural materials, or industrial contain nutrients, which help to improve soil fertility and is considered (nitrogen, phosphorus, and potassium) is important elements for the growth of crops properly. Fertilization is necessary in order to improve the quality of agricultural products and the recovery in agricultural activities. The use of organic fertilizers and chemical lead to reduce the loss of nutrients in agricultural soils, and this leads to an increase in the production of agricultural crops. Fertilizers are one of the key factors in the increase of agricultural production as well as other factors such as irrigation and improved seeds and Prevention and others; the fertilizers will continue to be a cornerstone of the agriculture in order to produce the food to feed of world population. The use of fertilizers has become commonplace today, especially the chemical fertilizers for the development of agricultural production, due to the provision of nutrients for plants and in high concentrations and easily dissolves in water and ease of use. The choose the right type of fertilizer depends on the soil type and the type of crop. In this subject, find the relationship between the agricultural extension and the optimal use of fertilizers. The extension plays the important role in the advise and educate of farmers in how they optimal use the fertilizers in a scientific way. This article aims to identify the concept the fertilizers. Identify the role of fertilizers in increasing the agricultural production, identify the role of agricultural extension in the optimal use of fertilizers and rural development.

Keywords: agricultural, extension, fertilizers, production

Procedia PDF Downloads 431
1472 Optimization of Topology-Aware Job Allocation on a High-Performance Computing Cluster by Neural Simulated Annealing

Authors: Zekang Lan, Yan Xu, Yingkun Huang, Dian Huang, Shengzhong Feng

Abstract:

Jobs on high-performance computing (HPC) clusters can suffer significant performance degradation due to inter-job network interference. Topology-aware job allocation problem (TJAP) is such a problem that decides how to dedicate nodes to specific applications to mitigate inter-job network interference. In this paper, we study the window-based TJAP on a fat-tree network aiming at minimizing the cost of communication hop, a defined inter-job interference metric. The window-based approach for scheduling repeats periodically, taking the jobs in the queue and solving an assignment problem that maps jobs to the available nodes. Two special allocation strategies are considered, i.e., static continuity assignment strategy (SCAS) and dynamic continuity assignment strategy (DCAS). For the SCAS, a 0-1 integer programming is developed. For the DCAS, an approach called neural simulated algorithm (NSA), which is an extension to simulated algorithm (SA) that learns a repair operator and employs them in a guided heuristic search, is proposed. The efficacy of NSA is demonstrated with a computational study against SA and SCIP. The results of numerical experiments indicate that both the model and algorithm proposed in this paper are effective.

Keywords: high-performance computing, job allocation, neural simulated annealing, topology-aware

Procedia PDF Downloads 101
1471 Green Synthesis of Silver Nanoparticles, Their Toxicity and Biomedical Applications

Authors: Kiran Shehzadi, Yasmeen Akhtar, Mujahid Ameen, Tabinda Ijaz, Shoukat Siddique

Abstract:

Nanoparticles, due to their different sizes and morphologies, are employed in various fields such as the medical field, cosmetics, pharmaceutical, textile industry as well as in paints, adhesives, and electronics. Metal nanoparticles exhibit excellent antimicrobial activity, dye degradation and can be used as anti-cancerous drug loading agents. In this study, sZilver nanoparticles (Ag-NPs) were synthesized employing doxycycline (antibiotic) as a reducing and capping agent (biological/green synthesis). Produced Ag-NPS were characterized using UV/VIS spectrophotometry, XRD, SEM, and FTIR. Surface plasmon resonance (SPR) of silver nanoparticles was observed at 411nm with 90nm size with homogenized spherical shape. These particles revealed good inhibition zones for Fungi such as Candida albicans and Candida tropicalis. In this study, toxic properties of Ag-NPs were monitored by allowing them to penetrate in the cell, causing an abrupt increase in oxidative stress, which resulted ultimately in cell death. Histopathological analysis of mice organs was performed by administering definite concentrations of silver nanoparticles orally to mice for 14 days. Toxic properties were determined, and it was revealed that the toxicity of silver nanoparticles mainly depends on the size. Silver nanoparticles of this work presented mild toxicity for different organs (liver, kidney, spleen, heart, and stomach) of mice.

Keywords: metal nanoparticles, green/biological methods, toxicity, Candida albicans, Candida tropicalis

Procedia PDF Downloads 122
1470 Aggregation of Butanediyl-1,4-Bis(Tetradecyldimethylammonium Bromide) (14–4–14) Gemini Surfactants in Presence of Ethylene Glycol and Propylene Glycol

Authors: P. Ajmal Koya, Tariq Ahmad Wagay, K. Ismail

Abstract:

One of the fundamental property of surfactant molecules are their ability to aggregate in water or binary mixtures of water and organic solvents as an effort to minimize their unfavourable interaction with the medium. In this work, influence two co-solvents (ethylene glycol (EG) and propylene glycol (PG)) on the aggregation properties of a cationic gemini surfactant, butanediyl-1,4-bis(tetradecyldimethylammonium bromide) (14–4–14), has been studied by conductance and steady state fluorescence at 298 K. The weight percentage of two co-solvents varied in between 0 and 50 % at an interval of 5 % up to 20 % and then 10 % up to 50 %. It was found that micellization process is delayed by the inclusion of both the co-solvents; consequently, a progressive increase was observed in critical micelle concentration (cmc) and Gibbs free energy of micellization (∆G0m), whereas a rough increase was observed in the values of degree of counter ion dissociation (α) and a decrease was obtained in values of average aggregation number (Nagg) and Stern-Volmer constant (KSV). At low weight percentage (up to 15 %) of co-solvents, 14–4–14 geminis were found to be almost equally prone to micellization both in EG–water (EG–WR) and in PG–water (PG–WR) mixed media while at high weight percentages they are more prone to micellization in EG–WR than in PG–WR mixed media.

Keywords: aggregation number, gemini surfactant, micellization, non aqueous solvent

Procedia PDF Downloads 318
1469 Informing Lighting Designs Through a Comprehensive Review of Light Pollution Impacts

Authors: Stephen M. Simmons, Stuart W. Baur, William L. Gillis

Abstract:

In recent years, increasing concern has been shown towards the issue of light pollution, especially with the spread of brighter, more blue-rich LED bulbs. Much research has been conducted in order to study the effects of artificial light at night, and many adverse impacts have been discovered, such as circadian disruption, degradation of the night sky, and interference oftheprocesses and behaviors of plants and animals. Despite a plethora of informationin the literature regarding the numerous illeffects of this type of pollution, there does not appear to be a complete summary of these impacts, including their magnitudes, which would facilitate the balancing of risks and benefits in the design of an exterior lighting system. This paperprovides a comprehensive review of the known impacts of light pollution, divided into four categories - human health, night sky, plants, and animals; additionally, it includes a synopsis of what likely remains unknown at this point in time. This review will attempt to showcase the relative significance of differentimpacts within each category, as well as their sensitivity to changes in lighting specifications (brightness, color temperature, shielding, and mounting height). Methods to be employed in this research include an extensive literature review and the gathering of expert knowledge and opinions. The findings of this review will be used to inform the creation of an optimized lighting design for the Missouri University of Science and Technology campus. It is hoped that future research willexplore the known impacts of light pollution further, as well as search for what still remains to be found regarding the consequencesof artificial light at night.

Keywords: comprehensive review, impacts, light pollution, lighting design, literature review

Procedia PDF Downloads 126
1468 Smelling Our Way through Names: Understanding the Potential of Floral Volatiles as Taxonomic Traits in the Fragrant Ginger Genus Hedychium

Authors: Anupama Sekhar, Preeti Saryan, Vinita Gowda

Abstract:

Plants, due to their sedentary lifestyle, have evolved mechanisms to synthesize a huge diversity of complex, specialized chemical metabolites, a majority of them being volatile organic compounds (VOCs). These VOCs are heavily involved in their biotic and abiotic interactions. Since chemical composition could be under the same selection processes as other morphological characters, we test if VOCs can be used to taxonomically distinguish species in the well-studied, fragrant ginger genus -Hedychium (Zingiberaceae). We propose that variations in the volatile profiles are suggestive of adaptation to divergent environments, and their presence could be explained by either phylogenetic conservatism or ecological factors. In this study, we investigate the volatile chemistry within Hedychium, which is endemic to Asian palaeotropics. We used an unsupervised clustering approach which clearly distinguished most taxa, and we used ancestral state reconstruction to estimate phylogenetic signals and chemical trait evolution in the genus. We propose that taxonomically, the chemical composition could aid in species identification, especially in species complexes where taxa are not morphologically distinguishable, and extensive, targeted chemical libraries will help in this effort.

Keywords: chemotaxonomy, dynamic headspace sampling, floral fragrance, floral volatile evolution, gingers, Hedychium

Procedia PDF Downloads 87
1467 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid

Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola

Abstract:

The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.

Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel

Procedia PDF Downloads 308
1466 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa

Authors: Elkington Sibusiso Mnguni

Abstract:

In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.

Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge

Procedia PDF Downloads 182
1465 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 72
1464 Micropollutant Carbamazepine: Its Occurrences, Toxicological Effects, and Possible Degradation Methods (Review)

Authors: Azad Khalid, Sifa Dogan

Abstract:

Because of its persistence in conventional treatment plants and broad prevalence in water bodies, the pharmaceutical chemical carbamazepine (CBZ) has been suggested as an anthropogenic marker to evaluate water quality. This study provides a thorough examination of the origins and occurrences of CBZ in water bodies, as well as the drug's toxicological effects and laws. Given CBZ's well-documented negative consequences on the human body when used medicinally, cautious monitoring in water is advised. CBZ residues in drinking water may enter embryos and newborns via intrauterine exposure or breast-feeding, causing congenital abnormalities and/or neurodevelopmental issues over time. The insufficiency of solo solutions was shown after an in-depth technical study of traditional and sophisticated treatment technologies. Nanofiltration and reverse osmosis membranes are more successful at removing CBZ than traditional activated sludge and membrane bioreactor techniques. Recent research has shown that severe chemical cleaning, which is essential to prevent membrane fouling, may lower long-term removal efficiency. Furthermore, despite the efficacy of activated carbon adsorption and advanced oxidation processes, a few issues such as chemical cost and activated carbon renewal must be carefully examined. Individual technology constraints lead to the benefits of combined and hybrid systems, namely the heterogeneous advanced oxidation process.

Keywords: carbamazepine, occurrence, toxicity, conventical treatment, advanced oxidation process (AOPs)

Procedia PDF Downloads 90