Search results for: irradiation assisted stress corrosion cracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5930

Search results for: irradiation assisted stress corrosion cracking

3320 Direct and Moderating Effect of Religious Activities, Sustainability and Peer Support on Job Performance

Authors: Fahad Alam

Abstract:

Work stress directly affects job performance, specifically in a worse environment. Consequently, a social provision plays a crucial part for enhancement. Therefore, the current research investigates the direct and moderating effect between religious activities, sustainability and peer support on job performance at hospitals in Khyber PakhtunKhwa (KPK), Pakistan. Both primary and secondary data are collected through 261 questionnaires of medical employees from four district hospitals in Khyber PakhtunKhwa, Pakistan, in 2018. The analysis was carried out by SPSS16 and SMART PLS3, to test the direct effect of religious activities, sustainability and social support on job performance and the effect of moderating variable 'work environment' on job performance. The finding confirmed that direct and moderating variables play a significant positive effect among religious activities, sustainability and peer support on job performance, the variables help to diminish the strain level or the stress level, consequently helps in the job completed. Affirmative social approaches produce desirable effects on job performance. The research revealed that social provisions are significant triggers for superior practices. Moreover, the results are stimulating because some of the past literature revealed an insignificant correlation between social provision and performance. This study found that there is a significant relationship which persuades health care organizations.

Keywords: job performance, peer’s support, religious activities, sustainability, work environment

Procedia PDF Downloads 104
3319 Examination of Porcine Gastric Biomechanics in the Antrum Region

Authors: Sif J. Friis, Mette Poulsen, Torben Strom Hansen, Peter Herskind, Jens V. Nygaard

Abstract:

Gastric biomechanics governs a large range of scientific and engineering fields, from gastric health issues to interaction mechanisms between external devices and the tissue. Determination of mechanical properties of the stomach is, thus, crucial, both for understanding gastric pathologies as well as for the development of medical concepts and device designs. Although the field of gastric biomechanics is emerging, advances within medical devices interacting with the gastric tissue could greatly benefit from an increased understanding of tissue anisotropy and heterogeneity. Thus, in this study, uniaxial tensile tests of gastric tissue were executed in order to study biomechanical properties within the same individual as well as across individuals. With biomechanical tests in the strain domain, tissue from the antrum region of six porcine stomachs was tested using eight samples from each stomach (n = 48). The samples were cut so that they followed dominant fiber orientations. Accordingly, from each stomach, four samples were longitudinally oriented, and four samples were circumferentially oriented. A step-wise stress relaxation test with five incremental steps up to 25 % strain with 200 s rest periods for each step was performed, followed by a 25 % strain ramp test with three different strain rates. Theoretical analysis of the data provided stress-strain/time curves as well as 20 material parameters (e.g., stiffness coefficients, dissipative energy densities, and relaxation time coefficients) used for statistical comparisons between samples from the same stomach as well as in between stomachs. Results showed that, for the 20 material parameters, heterogeneity across individuals, when extracting samples from the same area, was in the same order of variation as the samples within the same stomach. For samples from the same stomach, the mean deviation percentage for all 20 parameters was 21 % and 18 % for longitudinal and circumferential orientations, compared to 25 % and 19 %, respectively, for samples across individuals. This observation was also supported by a nonparametric one-way ANOVA analysis, where results showed that the 20 material parameters from each of the six stomachs came from the same distribution with a level of statistical significance of P > 0.05. Direction-dependency was also examined, and it was found that the maximum stress for longitudinal samples was significantly higher than for circumferential samples. However, there were no significant differences in the 20 material parameters, with the exception of the equilibrium stiffness coefficient (P = 0.0039) and two other stiffness coefficients found from the relaxation tests (P = 0.0065, 0.0374). Nor did the stomach tissue show any significant differences between the three strain-rates used in the ramp test. Heterogeneity within the same region has not been examined earlier, yet, the importance of the sampling area has been demonstrated in this study. All material parameters found are essential to understand the passive mechanics of the stomach and may be used for mathematical and computational modeling. Additionally, an extension of the protocol used may be relevant for compiling a comparative study between the human stomach and the pig stomach.

Keywords: antrum region, gastric biomechanics, loading-unloading, stress relaxation, uniaxial tensile testing

Procedia PDF Downloads 409
3318 Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes

Authors: Mohamed M. El-heweity, Ahmed Shamel Fahmy, Mostafa Shawky, Ahmed Sherif

Abstract:

Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings.

Keywords: cold-formed steel, nominal capacity, finite element, lipped channel beam, numerical study, web opening

Procedia PDF Downloads 83
3317 Modelling Railway Noise Over Large Areas, Assisted by GIS

Authors: Conrad Weber

Abstract:

The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.

Keywords: noise, modeling, GIS, rail

Procedia PDF Downloads 105
3316 Entropically Favoured Through Space Charge Transfer ‘Lighted’ Photosensitizing Assemblies for ‘Metal Free’ Regulated Photooxidation of Alcohols and Aldehydes

Authors: Gurpreet Kaur, Manoj Kumar, Vandana Bhalla

Abstract:

Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies. The as prepared entropically favoured assemblies of FN-TPy exhibit excellent photostability and photosensitizing properties in the assembled state to activate aerial oxygen for efficient generation of reactive oxygen species (ROS) through Type-I and Type-II pathways. The FN-TPy assemblies exhibit excellent potential for regulated oxidation of alcohols and aldehydes under mild reaction conditions (visible light irradiation, aqueous media, room temperature) using aerial oxygen as the ‘oxidant’. The present study demonstrates the potential of FN-TPy assemblies to catalyze controlled oxidation of benzyl alcohol to benzaldehyde and to corresponding benzoic acid.

Keywords: oxidations, photosensitizer, reactive oxygen species, supramolecular assemblies, through space charge transfer.

Procedia PDF Downloads 103
3315 A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography

Authors: Wei-Hsuan Hsu, Yi-Xuan Huang

Abstract:

Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL.

Keywords: electrowetting, mold filling, nano-imprint, surface modification

Procedia PDF Downloads 153
3314 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks

Authors: Farnia Nayar Parshi, Mohammad Shariful Islam

Abstract:

Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.

Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength

Procedia PDF Downloads 108
3313 Antioxidant Effects of Regular Aerobic Exercise in Postmenopausal Women with Type 2 Diabetes Mellitus

Authors: Parvin Farzanegi

Abstract:

Background: Diabetes is a metabolic disorder associated with increased free radicals and oxidative stress. The evidence indicates that physical inactivity is a modifiable behavioral risk factor for a wide range of chronic disorders such as diabetes mellitus. We investigated the effects of eight-week aerobic exercise on some antioxidant enzyme activities in postmenopausal women with type 2 diabetes mellitus (T2DM). Methods: sixteen sedentary postmenopausal women with T2DM were randomly assigned to the control (n=8; CG) and exercise group (n=8; EG). The exercise consisted of progressive aerobic training at a moderate intensity (50-70% of the maximum heart rate), for 25-60 min/day, and 3 days/week for 8 weeks. Age, sex, and body mass index were similar in the two groups. Antioxidant status was evaluated by measuring the superoxide dismutase (SOD) and catalase (CAT) activity. Also levels of malondialdehyde (MDA) as an index of lipid peroxidation and glucose in the plasma were measured before and after the intervention. Results: Following the 8 weeks of exercise training, the plasma MDA and glucose levels were significantly reduced in EG compared to CG (P=0.001 and P=0.011 respectively). However, SOD (P=0.017) and CAT (P=0.011) activities were increased in EG compared to CG. Conclusion: The present study suggests regular aerobic exercise appears can exert protective effects against oxidative stress due to its ability to increase antioxidant defense and glucose control in postmenopausal women with T2DM.

Keywords: aerobic exercise, antioxidant, diabetes mellitus, type 2

Procedia PDF Downloads 156
3312 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates

Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott

Abstract:

Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.

Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation

Procedia PDF Downloads 263
3311 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio

Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park

Abstract:

Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.

Keywords: concrete, mixing ratio, textile, TRC

Procedia PDF Downloads 389
3310 Testing of Small Local Zones by Means of Small Punch Test at Room and Creep Temperatures

Authors: Vaclav Mentl, Josef Volak

Abstract:

In many industrial applications, materials are subjected to degradation of mechanical properties as a result of real service conditions, temperature, cyclic loading, humidity or other corrosive media, irradiation, their combination etc. The assessment of the remaining lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonably precise assessment of the current damage extent of materials in question and the remaining lifetime evaluation of the component under consideration. The answers to demands of customers to extend the lifetime of existing components beyond their original design life must be based on detailed assessment of the current degradation extent, what can be rarely realised by means of traditional mechanical (standardised) tests that need relatively large volumes of representative material for the test specimen manufacturing. This fact accelerated the research of miniaturised test specimen that can be sampled non-invasively from the component.

Keywords: small punch test, correlation, creep, mechanical properties

Procedia PDF Downloads 263
3309 Prediction of Boundary Shear Stress with Flood Plains Enlargements

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

The river is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that need to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between the main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of the main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel, and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution

Procedia PDF Downloads 158
3308 Re-Examining the Distinction between Odour Nuisance and Health Impact: A Community’s Campaign against Landfill Gas Exposure in Shongweni, South Africa

Authors: Colin David La Grange, Lisa Frost Ramsay

Abstract:

Hydrogen sulphide (H2S) is a minor component of landfill gas, but significant in its distinct odorous quality and its association with landfill-related community complaints. The World Health Organisation (WHO) provides two guidelines for H2S: a health guideline at 150 µg/m3 on a 24-hour average, and a nuisance guideline at 7 µg/m3 on a 30-minute average. Albeit a practical distinction for impact assessment, this paper highlights the danger of the apparent dualism between nuisance and health impact, particularly when it is used to dismiss community concerns of perceived health impacts at low concentrations of H2S, as in the case of a community battle against the impacts of a landfill in Shongweni, KwaZulu-Natal, South Africa. Here community members reported, using a community developed mobile phone application, a range of health symptoms that coincided with, or occurred subsequent to, odour events and localised H2S peaks. Local doctors also documented increased visits for symptoms of respiratory distress, eye and skin irritation, and stress after such odour events. Objectively measured H2S and other pollutant concentrations during these events, however, remained below WHO health guidelines. This case study highlights the importance of the physiological link between the experience of environmental nuisance and overall health and wellbeing, showing these to be less distinct than the WHO guidelines would suggest. The potential mechanisms of impact of an odorous plume, with key constituents at concentrations below traditional health thresholds, on psychologically and/or physiologically sensitised individuals are described. In the case of psychological sensitisation, previously documented mechanisms such as aversive conditioning and odour-triggered panic are relevant. Physiological sensitisation to environmental pollutants, evident as a seemingly disproportionate physical (allergy-type) response to either low concentrations or a short duration exposure of a toxin or toxins, remains extensively examined but still not well understood. The links between a heightened sensitivity to toxic compounds, accumulation of some compounds in the body, and a pre-existing or associated immunological stress disorder are presented as a possible explanation.

Keywords: immunological stress disorder, landfill odour, odour nuisance, odour sensitisation, toxin accumulation

Procedia PDF Downloads 109
3307 Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties

Authors: Issam Derkaoui, Mohammed Khenfouch, Bakang M. Mothudi, Malik Maaza, Izeddine Zorkani, Anouar Jorio

Abstract:

Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices.

Keywords: Vanadium oxide, Microwave, Electrical conductivity, Optoelectronic properties

Procedia PDF Downloads 180
3306 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic

Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman

Abstract:

To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.

Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective

Procedia PDF Downloads 62
3305 An Investigation about the Health-Promoting Lifestyle of 1389 Emergency Nurses in China

Authors: Lei Ye, Min Liu, Yong-Li Gao, Jun Zhang

Abstract:

Purpose: The aims of the study are to investigate the status of health-promoting lifestyle and to compare the healthy lifestyle of emergency nurses in different levels of hospitals in Sichuan province, China. The investigation is mainly about the health-promoting lifestyle, including spiritual growth, health responsibility, physical activity, nutrition, interpersonal relations, stress management. Then the factors were analyzed influencing the health-promoting lifestyle of emergency nurses in hospitals of Sichuan province in order to find the relevant models to provide reference evidence for intervention. Study Design: A cross-sectional research method was adopted. Stratified cluster sampling, based on geographical location, was used to select the health facilities of 1389 emergency nurses in 54 hospitals from Sichuan province in China. Method: The 52-item, six-factor structure Health-Promoting Lifestyle Profile II (HPLP- II) instrument was used to explore participants’ self-reported health-promoting behaviors and measure the dimensions of health responsibility, physical activity, nutrition, interpersonal relations, spiritual growth, and stress management. Demographic characteristics, education, work duration, emergency nursing work duration and self-rated health status were documented. Analysis: Data were analyzed through SPSS software ver. 17.0. Frequency, percentage, mean ± standard deviation were used to describe the general information, while the Nonparametric Test was used to compare the constituent ratio of general data of different hospitals. One-way ANOVA was used to compare the scores of health-promoting lifestyle in different levels hospital. A multiple linear regression model was established. P values which were less than 0.05 determined statistical significance in all analyses. Result: The survey showed that the total score of health-promoting lifestyle of nurses at emergency departments in Sichuan Province was 120.49 ± 21.280. The relevant dimensions are ranked by scores in descending order: interpersonal relations, nutrition, health responsibility, physical activity, stress management, spiritual growth. The total scores of the three-A hospital were the highest (121.63 ± 0.724), followed by the senior class hospital (119.7 ± 1.362) and three-B hospital (117.80 ± 1.255). The difference was statistically significant (P=0.024). The general data of nurses was used as the independent variable which includes age, gender, marital status, living conditions, nursing income, hospital level, Length of Service in nursing, Length of Service in emergency, Professional Title, education background, and the average number of night shifts. The total score of health-promoting lifestyle was used as dependent variable; Multiple linear regression analysis method was adopted to establish the regression model. The regression equation F = 20.728, R2 = 0.061, P < 0.05, the age, gender, nursing income, turnover intention and status of coping stress affect the health-promoting lifestyle of nurses in emergency department, the result was statistically significant (P < 0.05 ). Conclusion: The results of the investigation indicate that it will help to develop health promoting interventions for emergency nurses in all levels of hospital in Sichuan Province through further research. Managers need to pay more attention to emergency nurses’ exercise, stress management, self-realization, and conduct intervention in nurse training programs.

Keywords: emergency nurse, health-promoting lifestyle profile II, health behaviors, lifestyle

Procedia PDF Downloads 269
3304 The Effect of Temperature and Salinity on the Growth and Carotenogenesis of Three Dunaliella Species (Dunaliella sp. Lake Isolate, D. salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions

Authors: Imen Hamed, Burcu Ak, Oya Işık, Leyla Uslu, Kubilay Kazım Vursavuş

Abstract:

In this study, 3 species of Dunaliella (Dunaliella sp. Salt Lake isoalte (Tuz Gölü), Dunaliella salina CCAP19/18, and Dunaliella bardawil LB 2538) and their optical density, dry matter, chlorophyll a, total carotenoids, and β-carotene production were investigated in a batch system. The aim of this research was to compare carotenoids, and β-carotene production were investigated in a batch those 3 species. Therefore 2 stress factors were used: 2 different temperatures (20°C and 30°C) and 2 different salinities (30‰, and 60‰) were tested over a 17-day study. The highest growth and chlorophyll a was reported for Dunaliella sp. under 20°C/30‰ and 20°C/60‰ conditions respectively followed by D. bardawil and D. salina. Significant differences were noticed (p<0.05) for the other 3 species. The growth decreased as temperature and salinity increased since the lowest growth was noticed for the 30°C/60‰ group. The chlorophyll a content decreased also as temperature increased however when the NaCl concentration increased an augmentation of the content was noticed . In the 17th day of experiment the highest carotenoids concentration was reported for D. bardawil 20°C/30‰ (65,639±0,400 μg.mL1) and the most important β carotene concentration was for D. salina 20°C/60‰ (8,98E-07±0,013 mol/L).

Keywords: Dunaliella sp., Dunaliella salina, Dunaliella bardawil, growth, pigments, stress factors

Procedia PDF Downloads 298
3303 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 158
3302 Determination of Critical Organ Doses for Liver Scintigraphy Using Cr-51

Authors: O. Maranci, A. B. Tugrul

Abstract:

Scintigraphy is an imaging method of nuclear events provoked by collisions or charged current interactions with radiation. It is used for diagnostic test used in nuclear medicine via radiopharmaceuticals emitting radiation which is captured by gamma cameras to form two-dimensional images. Liver scintigraphy is widely used in nuclear medicine.Tc-99m and Cr-51 gamma radioisotopes can be used for this purpose. Cr-51 usage is more important for patients’ organ dose that has higher energy and longer half-life as compared to Tc-99m. In this study, it is aimed to determine the required dose for critical organs of patient through liver scintigraphy via Cr-51 gamma radioisotope. Experimental studies were conducted on patients even though conducting experimental studies on patients is extremely difficult for determination of critical organ doses. Torso phantom was utilized to simulate the liver scintigraphy by using 20 mini packages of Cr-51 that were placed on the organ. The radioisotope was produced by irradiation in central thimble of TRIGA MARK II Reactor at 250 KW power. As the results of the study, critical organ doses were determined and evaluated with different critic organs.

Keywords: critical organ doses, liver, scintigraphy, TRIGA Mark-II

Procedia PDF Downloads 541
3301 Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms

Authors: Ali Ashjaran

Abstract:

Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications.

Keywords: graphene, carbon, anti corrosion, optical and electrical properties, sensors

Procedia PDF Downloads 266
3300 Theoretical Lens Driven Strategies for Emotional Wellbeing of Parents and Children in COVID-19 Era

Authors: Anamika Devi

Abstract:

Based on Vygotsky’s cultural, historical theory and Hedegaard’s concept of transition, this study aims to investigate to propose strategies to maintain digital wellbeing of children and parents during and post COVID pandemic. Due COVID 19 pandemic, children and families have been facing new challenges and sudden changes in their everyday life. While children are juggling to adjust themselves in new circumstance of onsite and online learning settings, parents are juggling with their work-life balance. A number of papers have identified that the COVID-19 pandemic has affected the lives of many families around the world in many ways, for example, the stress level of many parents increased, families faced financial difficulties, uncertainty impacted on long term effects on their emotional and social wellbeing. After searching and doing an intensive literature review from 2020 and 2021, this study has found some scholarly articles provided solution or strategies of reducing stress levels of parents and children in this unprecedented time. However, most of them are not underpinned by proper theoretical lens to ensure they validity and success. Therefore, this study has proposed strategies that are underpinned by theoretical lens to ensure their impact on children’s and parents' emotional wellbeing during and post COVID-19 era. The strategies will highlight on activities for positive coping strategies to the best use of family values and digital technologies.

Keywords: onsite and online learning, strategies, emotional wellbeing, tips, and strategies, COVID19

Procedia PDF Downloads 154
3299 Analysis of Gas Transport and Sorption Processes in Coal under Confining Pressure Conditions

Authors: Anna Pajdak, Mateusz Kudasik, Norbert Skoczylas, Leticia Teixeira Palla Braga

Abstract:

A substantial majority of gas transport and sorption researches into coal are carried out on samples that are free of stress. In natural conditions, coal occurs at considerable depths, which often exceed 1000 meters. In such conditions, coal is subjected to geostatic pressure. Thus, in natural conditions, the sorption capacity of coal subjected to geostatic pressure can differ considerably from the sorption capacity of coal, determined in laboratory conditions, which is free of stress. The work presents the results of filtration and sorption tests of gases in coal under confining pressure conditions. The tests were carried out on the author's device, which ensures: confining pressure regulation in the range of 0-30 MPa, isobaric gas pressure conditions, and registration of changes in sample volume during its gas saturation. Based on the conducted research it was found, among others, that the sorption capacity of coal relative to CO₂ was reduced by about 15% as a result of the change in the confining pressure from 1.5 MPa to 30 MPa exerted on the sample. The same change in sample load caused a significant, more than tenfold reduction in carbon permeability to CO₂. The results confirmed that a load of coal corresponding to a hydrostatic pressure of 1000 meters underground reduces its permeability and sorption properties. These results are so important that the effect of load on the sorption properties of coal should be taken into account in laboratory studies on the applicability of CO₂ Enhanced Coal Bed Methane Recovery (CO₂-ECBM) technology.

Keywords: coal, confining pressure, gas transport, sorption

Procedia PDF Downloads 104
3298 The TiO2 Refraction Film for CsI Scintillator

Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang

Abstract:

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light after through CsI and TiO2 film refractions arrive to the CsI second surface. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.

Keywords: cesium iodide, anodic aluminum oxide (AAO), TiO2, refraction, X-ray

Procedia PDF Downloads 410
3297 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell

Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan

Abstract:

Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.

Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation

Procedia PDF Downloads 268
3296 Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Navjotinder Singh, Gurjinder Singh, Amardeep Singh

Abstract:

Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined.

Keywords: aluminium alloys, TIG welding, post weld heat treatment

Procedia PDF Downloads 551
3295 X-Ray Photoelectron Spectroscopy Characterization of the Surface Layer on Inconel 625 after Exposition in Molten Salt

Authors: Marie Kudrnova, Jana Petru

Abstract:

This study is part of the international research - Materials for Molten Salt Reactors (MSR) and addresses the part of the project dealing with the corrosion behavior of candidate construction materials. Inconel 625 was characterized by x-ray photoelectron spectroscopy (XPS) before and after high–temperature experiment in molten salt. The experiment was performed in a horizontal tube furnace molten salt reactor, at 450 °C in argon, at atmospheric pressure, for 150 hours. Industrially produced HITEC salt was used (NaNO3, KNO3, NaNO2). The XPS study was carried out using the ESCAProbe P apparatus (Omicron Nanotechnology Ltd.) equipped with a monochromatic Al Kα (1486.6 eV) X-ray source. The surface layer on alloy 625 after exposure contains only Na, C, O, and Ni (as NiOx) and Nb (as NbOx BE 206.8 eV). Ni was detected in the metallic state (Ni0 – Ni 2p BE-852.7 eV, NiOx - Ni 2p BE-854.7 eV) after a short Ar sputtering because the oxide layer on the surface was very thin. Nickel oxides can form a protective layer in the molten salt, but only future long-term exposures can determine the suitability of Inconel 625 for MSR.

Keywords: Inconel 625, molten salt, oxide layer, XPS

Procedia PDF Downloads 127
3294 High-Speed Cutting of Inconel 625 Using Carbide Ball End Mill

Authors: Kazumasa Kawasaki, Katsuya Fukazawa

Abstract:

Nickel-based superalloys are an important class of engineering material within the aerospace and power generation, due to their excellent combination of corrosion resistance and mechanical properties, including high-temperature applications Inconel 625 is one of such superalloys and difficult-to-machine material. In cutting of Inconel 625 superalloy with a ball end mill, the problem of adhesive wear often occurs. However, the proper cutting conditions are not known so much because of lack of study examples. In this study, the experiments using ball end mills made of carbide tools were tried to find the best cutting conditions out following qualifications. Using Inconel 625 superalloy as a work material, three kinds of experiment, with the revolution speed of 5000 rpm, 8000 rpm, and 10000 rpm, were performed under dry cutting conditions in feed speed per tooth of 0.045 mm/ tooth, depth of cut of 0.1 mm. As a result, in the case of 8000 rpm, it was successful to cut longest with the least wear.

Keywords: Inconel 625, ball end mill, carbide tool, high speed cutting, tool wear

Procedia PDF Downloads 191
3293 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 122
3292 The Comparison of Emotional Regulation Strategies and Psychological Symptoms in Patients with Multiple Sclerosis and Normal Individuals

Authors: Amir Salamatzade, Marhamet HematPour

Abstract:

Due to the increasing importance of psychological factors in the incidence and exacerbation of chronic diseases such as multiple sclerosis, the aim of this study was to determine the difference between emotional regulation strategies and psychological symptoms in patients with multiple sclerosis and normal people. The research method was causal-comparative (post-event). The statistical population of this research included all patients with multiple sclerosis referred to the MS Association of Rasht in the first quarter of 2021, approximately 350 people. The study sample also included 120 people (60 patients with multiple sclerosis and 60 normal people) who were selected by the available sampling method and completed the emotional regulation and anxiety, depression, and stress Lavibund and Lavibund (1995) questionnaires. Data were analyzed using an independent t-test and multivariate variance analysis. The results showed that there was a significant difference between the mean of emotional regulation strategies and the components of emotional reassessment and emotional inhibition between the two groups of patients with multiple sclerosis and normal individuals (p < 0.01). There is a significant difference between the mean of psychological symptoms and the components of depression, anxiety, and stress in the two groups of patients with multiple sclerosis and normal individuals. (p < 0.01). Based on this, it can be concluded that patients with multiple sclerosis have lower levels of emotional regulation strategies and higher levels of psychological symptoms than normal individuals.

Keywords: emotional regulation strategies, psychological symptoms, multiple sclerosis, normal Individuals

Procedia PDF Downloads 197
3291 Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties

Authors: Abdulrahman Sumayli

Abstract:

Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys.

Keywords: Zn-based alloys, biodegradable and biocompatible materials, cytotoxicity test, neutron synchrotron imaging

Procedia PDF Downloads 124