Search results for: exergetic efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6608

Search results for: exergetic efficiency

3998 Using Augmented Reality to Enhance Doctor Patient Communication

Authors: Rutusha Bhutada, Gaurav Chavan, Sarvesh Kasat, Varsha Mujumdar

Abstract:

This software system will be an Augmented Reality application designed to maximize the doctor’s productivity by providing tools to assist in automating the patient recognition and updating patient’s records using face and voice recognition features, which would otherwise have to be performed manually. By maximizing the doctor’s work efficiency and production, the application will meet the doctor’s needs while remaining easy to understand and use. More specifically, this application is designed to allow a doctor to manage his productive time in handling the patient without losing eye-contact with him and communicate with a group of other doctors for consultation, for in-place treatments through video streaming, as a video study. The system also contains a relational database containing a list of doctor, patient and display techniques.

Keywords: augmented reality, hand-held devices, head-mounted devices, marker based systems, speech recognition, face detection

Procedia PDF Downloads 436
3997 Adopting Collaborative Business Processes to Prevent the Loss of Information in Public Administration Organisations

Authors: A. Capodieci, G. Del Fiore, L. Mainetti

Abstract:

Recently, the use of web 2.0 tools has increased in companies and public administration organizations. This phenomenon, known as "Enterprise 2.0", has, de facto, modified common organizational and operative practices. This has led “knowledge workers” to change their working practices through the use of Web 2.0 communication tools. Unfortunately, these tools have not been integrated with existing enterprise information systems, a situation that could potentially lead to a loss of information. This is an important problem in an organizational context, because knowledge of information exchanged within the organization is needed to increase the efficiency and competitiveness of the organization. In this article we demonstrate that it is possible to capture this knowledge using collaboration processes, which are processes of abstraction created in accordance with design patterns and applied to new organizational operative practices.

Keywords: business practices, business process patterns, collaboration tools, enterprise 2.0, knowledge workers

Procedia PDF Downloads 359
3996 Analysis and Measurement on Indoor Environment of University Dormitories

Authors: Xuechen Gui, Senmiao Li, Qi Kan

Abstract:

Dormitory is a place for college students to study and live their daily life. The indoor environment quality of the dormitory is closely related to the physical health, mood status and work efficiency of the dormitory students. In this paper, the temperature, humidity and carbon dioxide concentration of the dormitory in Zijingang campus of Zhejiang University have been tested for three days. The experimental results show that the concentration of carbon dioxide is related to the size of the window opens and the number of dormitory staff, and presents a high concentration of carbon dioxide at nighttime while a low concentration at daytime. In terms of temperature and humidity, there is no significant difference between different orientation and time and presents a small humidity at daytime while a high humidity at nighttime.

Keywords: dormitory, indoor environment, temperature, relative humidity, carbon dioxide concentration

Procedia PDF Downloads 176
3995 Delivery of Positively Charged Proteins Using Hyaluronic Acid Microgels

Authors: Elaheh Jooybar, Mohammad J. Abdekhodaie, Marcel Karperien, Pieter J. Dijkstra

Abstract:

In this study, hyaluronic acid (HA) microgels were developed for the goal of protein delivery. First, a hyaluronic acid-tyramine conjugate (HA-TA) was synthesized with a degree of substitution of 13 TA moieties per 100 disaccharide units. Then, HA-TA microdroplets were produced using a water in oil emulsion method and crosslinked in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). Loading capacity and the release kinetics of lysozyme and BSA, as model proteins, were investigated. It was shown that lysozyme, a cationic protein, can be incorporated efficiently in the HA microgels, while the loading efficiency for BSA, as a negatively charged protein, is low. The release profile of lysozyme showed a sustained release over a period of one month. The results demonstrated that the HA-TA microgels are a good carrier for spatial delivery of cationic proteins for biomedical applications.

Keywords: microgel, inverse emulsion, protein delivery, hyaluronic acid, crosslinking

Procedia PDF Downloads 169
3994 Influence of La on Increasing the ORR Activity of LaNi Supported with N and S Co-doped Carbon Black Electrocatalyst for Fuel Cells and Batteries

Authors: Maryam Kiani

Abstract:

Non-precious electrocatalysts play a crucial role in the oxygen reduction reaction (ORR) for regenerative fuel cells and rechargeable metal-air batteries. To enhance ORR activity, La (a less active element) is added to modify the activity of Ni. This addition increases the surface contents of Ni2+, N, and S species in LaNi/N-S-C, while still maintaining a substantial specific surface area and hierarchical porosity. Therefore, the additional La is essential for the successful ORR process.In addition, the presence of extra La in the LaNi/N-S-C electrocatalyst enhances the efficiency of charge transfer and improves the surface acid-base characteristics, facilitating the adsorption of oxygen molecules during the ORR process. As a result, this superior and desirable electrocatalyst exhibits significantly enhanced ORR bifunctional activity. In fact, its ORR activity is comparable to that of the 20 wt% Pt/C.

Keywords: fuel cells, batteries, dual-doped carbon black, ORR

Procedia PDF Downloads 103
3993 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel

Abstract:

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)

Procedia PDF Downloads 217
3992 Improved Photo-Active Layer Properties for Efficient Organic Solar Cells

Authors: Chahrazed Bendenia, Souhila Bendenia, Samia Moulebhar, Hanaa Merad-Dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

In recent years, organic solar cells (OSCs) have become the fundamental concern of researchers thanks to their advantages in terms of flexibility, manufacturing processes and low cost. The performance of these devices is influenced by various factors, such as the layers introduced in the stacking of the solar cell realized. In our work, the modeling of a reverse OSC under AM1.5G illumination will be determined. The photo-active polymer/fullerene layer will be analyzed from the polymer variation of this layer using the SCAPS simulator to extract the J-V characteristics: open circuit voltage (Voc), short circuit current (Jsc), filling factor (FF) and power conversion efficiency (η). The results obtained indicated that the materials used have a significant impact on improving the photovoltaic parameters of the devices studied.

Keywords: solar, polymer, simulator, characteristics

Procedia PDF Downloads 78
3991 On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)

Authors: A. M. Sagir

Abstract:

The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software.

Keywords: block method, first order ordinary differential equations, linear multistep, self-starting

Procedia PDF Downloads 306
3990 Simulation and Experimentation Investigation of Infrared Non-Destructive Testing on Thermal Insulation Material

Authors: Bi Yan-Qiang, Shang Yonghong, Lin Boying, Ji Xinyan, Li Xiyuan

Abstract:

The heat-resistant material has important application in the aerospace field. The reliability of the connection between the heat-resisting material and the body determines the success or failure of the project. In this paper, lock-in infrared thermography non-destructive testing technology is used to detect the stability of the thermal-resistant structure. The phase relationship between the temperature and the heat flow is calculated by the numerical method, and the influence of the heating frequency and power is obtained. The correctness of the analysis is verified by the experimental method. Through the research, it can provide the basis for the parameter setting of heat flux including frequency and power, improve the efficiency of detection and the reliability of connection between the heat-resisting material and the body.

Keywords: infrared non-destructive, thermal insulation material, reliability, connection

Procedia PDF Downloads 385
3989 Adsorption of Toluene from Aqueous Solutions by Porous Clay Hetero-Structures

Authors: F. Asadi, M. M. Zerafat, S. Sabbaghi

Abstract:

Among water pollutants, volatile organic compounds can cause severe long lasting effects not only on biotic organism but also on human health. As a result, this material group has attracted more attention in recent years. Adsorption is one of the common processes for remediation of aromatic compounds. In this study, porous clay hetrostructers (PCHs) are synthesized through gallery template approach and cetyltrimethylammonium bromide and dodecylamine used as template and co-template, respectively. Porous clay is characterized by XRD and FTIR. Batch adsorption experiments were carried out to investigate the effect of various adsorption parameters like adsorbent dosage, pH, initial concentration and contact time. It was found that by increasing adsorbent dosage from 0.5gr/lit to 4gr/lit, toluene removal is increased from 34% to 88.1%. Increasing contact time and decreasing the pH of aqueous solution increases toluene removal efficiency.

Keywords: adsorption, clay, nano-porous, toluene

Procedia PDF Downloads 338
3988 Synergy Surface Modification for High Performance Li-Rich Cathode

Authors: Aipeng Zhu, Yun Zhang

Abstract:

The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability.

Keywords: Li-rich materials, surface coating, lithium ion batteries, Al₂O₃

Procedia PDF Downloads 133
3987 Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell

Authors: Pratthana Ammaraphitak, Piyachon Ketsuwan, Rattapoom Prommana

Abstract:

Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste.

Keywords: vermicompost liquid, microbial fuel cell, nutrient, electricity production

Procedia PDF Downloads 178
3986 Improvement of Activity of β-galactosidase from Kluyveromyces lactis via Immobilization on Polyethylenimine-Chitosan

Authors: Carlos A. C. G. Neto, Natan C. G. e Silva , Thaís de O. Costa, Luciana R. B. Gonçalves, Maria V. P. Rocha

Abstract:

β-galactosidases (E.C. 3.2.1.23) are enzymes that have attracted by catalyzing the hydrolysis of lactose and in producing galacto-oligosaccharides by favoring transgalactosylation reactions. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers is a promising alternative to enhance the stability of the biocatalysts, among which polyethylenimine (PEI) stands out. PEI has certain properties, such as being a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases. Besides that, protects them from environmental variations. The use of chitosan support coated with PEI could improve the catalytic efficiency of β-galactosidase from Kluyveromyces lactis in the transgalactosylation reaction for the production of prebiotics, such as lactulose since this strain is more effective in the hydrolysis reaction. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from K. lactis immobilized on chitosan-coated with PEI, determining the immobilization parameters, its operational and thermal stability, and then to apply it in hydrolysis and transgalactolisation reactions to produce lactulose using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% (v/v) glutaraldehyde and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg protein per gram support. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey supplemented with fructose at a ratio of 1:2 lactose/fructose, totaling 200 g/L. Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6 with 0.1 mM MnCl2. The biocatalyst whose support was coated was named CHI_GLU_PEI_GAL, and the one that was not coated was named CHI_GLU_GAL. The coating of the support with PEI considerably improved the parameters of immobilization. The immobilization yield increased from 56.53% to 97.45%, biocatalyst activity from 38.93 U/g to 95.26 U/g and the efficiency from 3.51% to 6.0% for uncoated and coated support, respectively. The biocatalyst CHI_GLU_PEI_GAL was better than CHI_GLU_GAL in the hydrolysis of lactose and production of lactulose, converting 97.05% of lactose at 5 min of reaction and producing 7.60 g/L lactulose in the same time interval. QUI_GLU_PEI_GAL biocatalyst was stable in the hydrolysis reactions of lactose during the 10 cycles evaluated, converting 73.45% lactose even after the tenth cycle, and in the lactulose production was stable until the fifth cycle evaluated, producing 10.95 g/L lactulose. However, the thermal stability of CHI_GLU_GAL biocatalyst was superior, with a half-life time 6 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (CHI_GLU_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as, the catalytic action of the enzyme. Besides that, this process can be economically viable due to the use of an industrial residue as a substrate.

Keywords: β-galactosidase, immobilization, kluyveromyces lactis, lactulose, polyethylenimine, transgalactosylation reaction, whey

Procedia PDF Downloads 111
3985 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 144
3984 An Enhanced Harmony Search (ENHS) Algorithm for Solving Optimization Problems

Authors: Talha A. Taj, Talha A. Khan, M. Imran Khalid

Abstract:

Optimization techniques attract researchers to formulate a problem and determine its optimum solution. This paper presents an Enhanced Harmony Search (ENHS) algorithm for solving optimization problems. The proposed algorithm increases the convergence and is more efficient than the standard Harmony Search (HS) algorithm. The paper discusses the novel techniques in detail and also provides the strategy for tuning the decisive parameters that affects the efficiency of the ENHS algorithm. The algorithm is tested on various benchmark functions, a real world optimization problem and a constrained objective function. Also, the results of ENHS are compared to standard HS, and various other optimization algorithms. The ENHS algorithms prove to be significantly better and more efficient than other algorithms. The simulation and testing of the algorithms is performed in MATLAB.

Keywords: optimization, harmony search algorithm, MATLAB, electronic

Procedia PDF Downloads 463
3983 Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable.

Keywords: participating media, LBM, CVFEM- radiation coupled with convection

Procedia PDF Downloads 407
3982 Detecting Major Misconceptions about Employment in ICT: A Study of the Myths about ICT Work among Females

Authors: Eneli Kindsiko, Kulno Türk

Abstract:

The purpose of the current article is to reveal misconceptions about ICT occupations that keep females away from the field. The study focuses on the three phases in one’s career life cycle: pre-university, university and workplace with the aim of investigating how to attract more females into an ICT-related career. By studying nearly 300 secondary school graduates, 102 university students and 18 female ICT specialists, the study revealed six myths that influence the decision-making process of young girls in pursuing an ICT-related education and career. Furthermore, discriminating conception of ICT as a primarily man’s world is developed before the university period. Stereotypical barriers should be brought out to the public debate, so that a remarkable proportion of possible employees (women) would not stay away from the tech-related fields. Countries could make a remarkable leap in efficiency, when turning their attention to the gender-related issues in the labour market structure.

Keywords: ICT, women, stereotypes, computer

Procedia PDF Downloads 208
3981 X-Ray Detector Technology Optimization in Computed Tomography

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 194
3980 Efficiency of Virtual Reality Exercises with Nintendo Wii System on Balance and Independence in Motor Functions in Hemiparetic Patients: A Randomized Controlled Study

Authors: Ayça Utkan Karasu, Elif Balevi Batur, Gülçin Kaymak Karataş

Abstract:

The aim of this study was to examine the efficiency of virtual reality exercises with Nintendo Wii system on balance and independence in motor functions. This randomized controlled assessor-blinded study included 23 stroke inpatients with hemiparesis all within 12 months poststroke. Patients were randomly assigned to control group (n=11) or experimental group (n=12) via block randomization method. Control group participated in a conventional balance rehabilitation programme. Study group received a four-week balance training programme five times per week with a session duration of 20 minutes in addition to the conventional balance rehabilitation programme. Balance was assessed by the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index. Also, displacement of centre of pressure sway and centre of pressure displacement during weight shifting was calculated by Emed-SX system. Independence in motor functions was assessed by The Functional Independence Measure (FIM) ambulation and FIM transfer subscales. The outcome measures were evaluated at baseline, 4th week (posttreatment), 8th week (follow-up). Repeated measures analysis of variance was performed for each of the outcome measure. Significant group time interaction was detected in the scores of the Berg’s balance scale, the functional reach test, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed anteroposterior center of pressure sway distance, center of pressure displacement during weight shifting to effected side, unaffected side and total centre of pressure displacement during weight shifting (p < 0.05). Time effect was statistically significant in the scores of the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed mediolateral center of pressure sway distance, the center of pressure displacement during weight shifting to effected side, the functional independence measure ambulation and transfer scores (p < 0.05). Virtual reality exercises with Nintendo Wii system combined with a conventional balance rehabilitation programme enhances balance performance and independence in motor functions in stroke patients.

Keywords: balance, hemiplegia, stroke rehabilitation, virtual reality

Procedia PDF Downloads 221
3979 Inspection of Railway Track Fastening Elements Using Artificial Vision

Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux

Abstract:

In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.

Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network

Procedia PDF Downloads 455
3978 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 623
3977 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

Authors: N. Yogal, C. Lehrmann

Abstract:

The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally.

Keywords: permanent magnet (PM), NdFeB, corrosion behavior, temperature effect, Permanent magnet synchronous machine (PMSM)

Procedia PDF Downloads 395
3976 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 168
3975 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit

Abstract:

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Keywords: photocatalytic oxidation process, formaldehyde (HCHO), silk fibroin (SF), titanium dioxide (TiO2)

Procedia PDF Downloads 469
3974 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter

Authors: Azam Salimi, Majid Delshad

Abstract:

This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.

Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior

Procedia PDF Downloads 539
3973 Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor

Authors: Nader Zirak, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor.

Keywords: additive manufacturing, impeller, centrifugal compressor, performance

Procedia PDF Downloads 147
3972 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages

Authors: Y. Galerkin, A. Rekstin, K. Soldatova

Abstract:

Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study.

Keywords: centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser

Procedia PDF Downloads 467
3971 The Influence of Meteorological Properties on the Power of Night Radiation Cooling

Authors: Othmane Fahim, Naoual Belouaggadia. Charifa David, Mohamed Ezzine

Abstract:

To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping. Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel “PVT” made of aluminum. The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 °C, 2.5 °C on the first day respectively in Marrakech and Casablanca, and 0.2 °C and 3.2 °C on the second night. Power varied between 110.16 and 32.01 W/m² marked in Marrakech, to be the most suitable area to practice night cooling by night radiation.

Keywords: smart buildings, energy efficiency, Morocco, radiative cooling

Procedia PDF Downloads 153
3970 A Conceptual Framework of Digital Twin for Homecare

Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg

Abstract:

This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.

Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence

Procedia PDF Downloads 71
3969 Study the Performance of Metal-Organic Framework in Adsorptive Desulfurization for Gas Oil

Authors: Hoda A. Mohammed, Esraa M. El-Fawal, Howaida M. Abd El-Salam

Abstract:

Organic sulfurs in fuel oil cause serious environmental pollution and health problems. The important future direction for liquid fuel desulfurization is adsorptive desulfurization technology due to its simplicity, mild operating condition, and low cost. In this work, the well-prepared Nickel NPs were incorporated in a highly porous metal-organic framework MIL-101(Cr)) to produce Ni/Cr-MOF composite. Besides, the synthesis of Ni/Cr-MOF in the presence of Bi₂MoO₆/AC to prepare Bi₂MoO₆/AC@Ni/Cr-MOF. All the prepared composites were synthesized via a facile technique under ambient conditions to remove organosulfur compounds. The XRD, FT-IR, SEM, and BET techniques were used to characterize the prepared composites. The desulfurization performance of real gas oil by Bi₂MoO₆/AC, Ni/Cr-MOF, and Bi₂MoO₆/AC@Ni/Cr-MOF was investigated at different adsorbent doses and contact times. Bi₂MoO₆/AC@Ni/Cr-MOF shows the highest desulfurization performance, with removal efficiency reached to 80% at optimum conditions for a contact time of 4 hours.

Keywords: desulfurization, gas oil, metal-organic framework, sorption characteristics

Procedia PDF Downloads 80