Search results for: data filtering and extrapolation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25566

Search results for: data filtering and extrapolation

22956 New Technique of Estimation of Charge Carrier Density of Nanomaterials from Thermionic Emission Data

Authors: Dilip K. De, Olukunle C. Olawole, Emmanuel S. Joel, Moses Emetere

Abstract:

A good number of electronic properties such as electrical and thermal conductivities depend on charge carrier densities of nanomaterials. By controlling the charge carrier densities during the fabrication (or growth) processes, the physical properties can be tuned. In this paper, we discuss a new technique of estimating the charge carrier densities of nanomaterials from the thermionic emission data using the newly modified Richardson-Dushman equation. We find that the technique yields excellent results for graphene and carbon nanotube.

Keywords: charge carrier density, nano materials, new technique, thermionic emission

Procedia PDF Downloads 329
22955 Field Environment Sensing and Modeling for Pears towards Precision Agriculture

Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani

Abstract:

The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.

Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model

Procedia PDF Downloads 318
22954 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 35
22953 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 56
22952 Need of Trained Clinical Research Professionals Globally to Conduct Clinical Trials

Authors: Tambe Daniel Atem

Abstract:

Background: Clinical Research is an organized research on human beings intended to provide adequate information on the drug use as a therapeutic agent on its safety and efficacy. The significance of the study is to educate the global health and life science graduates in Clinical Research in depth to perform better as it involves testing drugs on human beings. Objectives: to provide an overall understanding of the scientific approach to the evaluation of new and existing medical interventions and to apply ethical and regulatory principles appropriate to any individual research. Methodology: It is based on – Primary data analysis and Secondary data analysis. Primary data analysis: means the collection of data from journals, the internet, and other online sources. Secondary data analysis: a survey was conducted with a questionnaire to interview the Clinical Research Professionals to understand the need of training to perform clinical trials globally. The questionnaire consisted details of the professionals working with the expertise. It also included the areas of clinical research which needed intense training before entering into hardcore clinical research domain. Results: The Clinical Trials market worldwide worth over USD 26 billion and the industry has employed an estimated 2,10,000 people in the US and over 70,000 in the U.K, and they form one-third of the total research and development staff. There are more than 2,50,000 vacant positions globally with salary variations in the regions for a Clinical Research Coordinator. R&D cost on new drug development is estimated at US$ 70-85 billion. The cost of doing clinical trials for a new drug is US$ 200-250 million. Due to an increase trained Clinical Research Professionals India has emerged as a global hub for clinical research. The Global Clinical Trial outsourcing opportunity in India in the pharmaceutical industry increased to more than $2 billion in 2014 due to increased outsourcing from U.S and Europe to India. Conclusion: Assessment of training need is recommended for newer Clinical Research Professionals and trial sites, especially prior the conduct of larger confirmatory clinical trials.

Keywords: clinical research, clinical trials, clinical research professionals

Procedia PDF Downloads 458
22951 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation

Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj

Abstract:

As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.

Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH

Procedia PDF Downloads 157
22950 A Study of Student Satisfaction of the University TV Station

Authors: Prapoj Na Bangchang

Abstract:

This research aimed to study the satisfaction of university students on the Suan Sunandha Rajabhat University television station. The sample were 250 undergraduate students from Year 1 to Year 4. The tool used to collect data was a questionnaire. Statistics used in data analysis were percentage, mean and standard deviation. The results showed that student satisfaction on the University's television station location received high score, followed by the number of devices, and the content presented received the lowest score. Most students want the content of the programs to be improved especially entertainment content, followed by sports content.

Keywords: student satisfaction, university TV channel, media, broadcasting

Procedia PDF Downloads 390
22949 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 158
22948 Problems of Drought and Its Management in Yobe State, Nigeria

Authors: Hassan Gana Abdullahi, Michael A. Fullen, David Oloke

Abstract:

Drought poses an enormous global threat to sustainable development and is expected to increase with global climate change. Drought and desertification are major problems in Yobe State (north-east Nigeria). This investigation aims to develop a workable framework and management tool for drought mitigation in Yobe State. Mixed methods were employed during the study and additional qualitative information was gathered through Focus Group Discussions (FGD). Data on socio-economic impacts of drought were thus collected via both questionnaire surveys and FGD. In all, 1,040 questionnaires were distributed to farmers in the State and 721 were completed, representing a return rate of 69.3%. Data analysis showed that 97.9% of respondents considered themselves to be drought victims, whilst 69.3% of the respondents were unemployed and had no other means of income, except through rain-fed farming. Developing a viable and holistic approach to drought mitigation is crucial, to arrest and hopefully reverse environment degradation. Analysed data will be used to develop an integrated framework for drought mitigation and management in Yobe State. This paper introduces the socio-economic and environmental effects of drought in Yobe State.

Keywords: drought, climate change, mitigation, management, Yobe State

Procedia PDF Downloads 372
22947 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis

Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone

Abstract:

Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.

Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning

Procedia PDF Downloads 22
22946 Observations on the Eastern Red Sea Elasmobranchs: Data on Their Distribution and Ecology

Authors: Frappi Sofia, Nicolas Pilcher, Sander DenHaring, Royale Hardenstine, Luis Silva, Collin Williams, Mattie Rodrigue, Vincent Pieriborne, Mohammed Qurban, Carlos M. Duarte

Abstract:

Nowadays, elasmobranch populations are disappearing at a dangerous rate, mainly due to overexploitation, extensive fisheries, as well as climate change. The decline of these species can trigger a cascade effect, which may eventually lead to detrimental impacts on local ecosystems. The Elasmobranch in the Red Sea is facing one of the highest risks of extinction, mainly due to unregulated fisheries activities. Thus, it is of paramount importance to assess their current distribution and unveil their environmental preferences in order to improve conservation measures. Important data have been collected throughout the whole red Sea during the Red Sea Decade Expedition (RSDE) to achieve this goal. Elasmobranch sightings were gathered through the use of submarines, remotely operated underwater vehicles (ROV), scuba diving operations, and helicopter surveys. Over a period of 5 months, we collected 891 sightings, 52 with submarines, 138 with the ROV, 67 with the scuba diving teams, and 634 from helicopters. In total, we observed 657 and 234 individuals from the superorder Batoidea and Selachimorpha, respectively. The most common shark encountered was Iago omanensis, a deep-water shark of the order Carcharhiniformes. To each sighting, data on temperature, salinity density, and dissolved oxygen were integrated to reveal favorable conditions for each species. Additionally, an extensive literature review on elasmobranch research in the Eastern Red Sea has been carried out in order to obtain more data on local populations and to be able to highlight patterns of their distribution.

Keywords: distribution, elasmobranchs, habitat, rays, red sea, sharks

Procedia PDF Downloads 92
22945 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks

Authors: Khelifa Benahmed, Tarek Benahmed

Abstract:

There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.

Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks

Procedia PDF Downloads 357
22944 Development of an NIR Sorting Machine, an Experimental Study in Detecting Internal Disorder and Quality of Apple Fruitpple Fruit

Authors: Eid Alharbi, Yaser Miaji

Abstract:

The quality level for fresh fruits is very important for the fruit industries. In presents study, an automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.

Keywords: mechatronics, NIR, fruit quality, spectroscopic technology, mechatronic design

Procedia PDF Downloads 395
22943 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics

Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah

Abstract:

A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.

Keywords: WSN, routing, energy, heuristic

Procedia PDF Downloads 347
22942 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 216
22941 Exploring Teacher Verbal Feedback on Postgraduate Students' Performances in Presentations in English

Authors: Nattawadee Sinpattanawong, Yaowaret Tharawoot

Abstract:

This is an analytic and descriptive classroom-centered research, the purpose of which is to explore teacher verbal feedback on postgraduate students’ performances in presentations in English in an English for Specific Purposes (ESP) postgraduate classroom. The participants are a Thai female teacher, two Thai female postgraduate students, and two foreign male postgraduate students. The current study draws on both classroom observation and interview data. The class focused on the students’ presentations and the teacher’s providing verbal feedback on them was observed nine times with audio recording and taking notes. For the interviews, the teacher was interviewed about linkages between her verbal feedback and each student’s presentation skills in English. For the data analysis, the audio files from the observations were transcribed and analyzed both quantitatively and qualitatively. The quantitative approach addressed the frequencies and percentages of content of the teacher’s verbal feedback for each student’s performances based on eight presentation factors (content, structure, grammar, coherence, vocabulary, speaking skills, involving the audience, and self-presentation). Based on the quantitative data including the interview data, a qualitative analysis of the transcripts was made to describe the occurrences of several content of verbal feedback for each student’s presentation performances. The study’s findings may help teachers to reflect on their providing verbal feedback based on various students’ performances in presentation in English. They also help students who have similar characteristics to the students in the present study when giving a presentation in English improve their presentation performances by applying the teacher’s verbal feedback content.

Keywords: teacher verbal feedback, presentation factors, presentation in English, presentation performances

Procedia PDF Downloads 153
22940 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala

Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.

Abstract:

During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.

Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture

Procedia PDF Downloads 198
22939 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 256
22938 Geodesign Application for Bio-Swale Design: A Data-Driven Design Approach for a Case Site in Ottawa Street North in Hamilton, Ontario, Canada

Authors: Adele Pierre, Nadia Amoroso

Abstract:

Changing climate patterns are resulting in increased in storm severity, challenging traditional methods of managing stormwater runoff. This research compares a system of bioswales to existing curb and gutter infrastructure in a post-industrial streetscape of Hamilton, Ontario. Using the geodesign process, including rule-based set parameters and an integrated approach combining geospatial information with stakeholder input, a section of Ottawa St. North was modelled to show how green infrastructure can ease the burden on aging, combined sewer systems. Qualitative data was gathered from residents of the neighbourhood through field notes, and quantitative geospatial data through GIS and site analysis. Parametric modelling was used to generate multiple design scenarios, each visualizing resulting impacts on stormwater runoff along with their calculations. The selected design scenarios offered both an aesthetically pleasing urban bioswale street-scape system while minimizing and controlling stormwater runoff. Interactive maps, videos and the 3D model were presented for stakeholder comment via ESRI’s (Environmental System Research Institute) web-scene. The results of the study demonstrate powerful tools that can assist landscape architects in designing, collaborating and communicating stormwater strategies.

Keywords: bioswale, geodesign, data-driven and rule-based design, geodesign, GIS, stormwater management

Procedia PDF Downloads 185
22937 Aeromagnetic Data Interpretation and Source Body Evaluation Using Standard Euler Deconvolution Technique in Obudu Area, Southeastern Nigeria

Authors: Chidiebere C. Agoha, Chukwuebuka N. Onwubuariri, Collins U.amasike, Tochukwu I. Mgbeojedo, Joy O. Njoku, Lawson J. Osaki, Ifeyinwa J. Ofoh, Francis B. Akiang, Dominic N. Anuforo

Abstract:

In order to interpret the airborne magnetic data and evaluate the approximate location, depth, and geometry of the magnetic sources within Obudu area using the standard Euler deconvolution method, very high-resolution aeromagnetic data over the area was acquired, processed digitally and analyzed using Oasis Montaj 8.5 software. Data analysis and enhancement techniques, including reduction to the equator, horizontal derivative, first and second vertical derivatives, upward continuation and regional-residual separation, were carried out for the purpose of detailed data Interpretation. Standard Euler deconvolution for structural indices of 0, 1, 2, and 3 was also carried out and respective maps were obtained using the Euler deconvolution algorithm. Results show that the total magnetic intensity ranges from -122.9nT to 147.0nT, regional intensity varies between -106.9nT to 137.0nT, while residual intensity ranges between -51.5nT to 44.9nT clearly indicating the masking effect of deep-seated structures over surface and shallow subsurface magnetic materials. Results also indicated that the positive residual anomalies have an NE-SW orientation, which coincides with the trend of major geologic structures in the area. Euler deconvolution for all the considered structural indices has depth to magnetic sources ranging from the surface to more than 2000m. Interpretation of the various structural indices revealed the locations and depths of the source bodies and the existence of geologic models, including sills, dykes, pipes, and spherical structures. This area is characterized by intrusive and very shallow basement materials and represents an excellent prospect for solid mineral exploration and development.

Keywords: Euler deconvolution, horizontal derivative, Obudu, structural indices

Procedia PDF Downloads 87
22936 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum

Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi

Abstract:

Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.

Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites

Procedia PDF Downloads 97
22935 The Influence of Students’ Learning Factor and Parents’ Involvement in Their Learning and Suspension: The Application of Big Data Analysis of Internet of Things Technology

Authors: Chih Ming Kung

Abstract:

This study is an empirical study examining the enrollment rate and dropout rate of students from the perspectives of students’ learning, parents’ involvement and the learning process. Methods: Using the data collected from the entry website of Internet of Things (IoT), parents’ participation and the installation pattern of exit poll website, an investigation was conducted. Results: This study discovered that in the aspect of the degree of involvement, the attractiveness of courses, self-performance and departmental loyalty exerts significant influences on the four aspects: psychological benefits, physical benefits, social benefits and educational benefits of learning benefits. Parents’ participation also exerts a significant influence on the learning benefits. A suitable tool on the cloud was designed to collect the dynamic big data of students’ learning process. Conclusion: This research’s results can be valuable references for the government when making and promoting related policies, with more macro view and consideration. It is also expected to be contributory to schools for the practical study of promotion for enrollment.

Keywords: students’ learning factor, parents’ involvement, involvement, technology

Procedia PDF Downloads 150
22934 Navigating Complex Communication Dynamics in Qualitative Research

Authors: Kimberly M. Cacciato, Steven J. Singer, Allison R. Shapiro, Julianna F. Kamenakis

Abstract:

This study examines the dynamics of communication among researchers and participants who have various levels of hearing, use multiple languages, have various disabilities, and who come from different social strata. This qualitative methodological study focuses on the strategies employed in an ethnographic research study examining the communication choices of six sets of parents who have Deaf-Disabled children. The participating families varied in their communication strategies and preferences including the use of American Sign Language (ASL), visual-gestural communication, multiple spoken languages, and pidgin forms of each of these. The research team consisted of two undergraduate students proficient in ASL and a Deaf principal investigator (PI) who uses ASL and speech as his main modes of communication. A third Hard-of-Hearing undergraduate student fluent in ASL served as an objective facilitator of the data analysis. The team created reflexive journals by audio recording, free writing, and responding to team-generated prompts. They discussed interactions between the members of the research team, their evolving relationships, and various social and linguistic power differentials. The researchers reflected on communication during data collection, their experiences with one another, and their experiences with the participating families. Reflexive journals totaled over 150 pages. The outside research assistant reviewed the journals and developed follow up open-ended questions and prods to further enrich the data. The PI and outside research assistant used NVivo qualitative research software to conduct open inductive coding of the data. They chunked the data individually into broad categories through multiple readings and recognized recurring concepts. They compared their categories, discussed them, and decided which they would develop. The researchers continued to read, reduce, and define the categories until they were able to develop themes from the data. The research team found that the various communication backgrounds and skills present greatly influenced the dynamics between the members of the research team and with the participants of the study. Specifically, the following themes emerged: (1) students as communication facilitators and interpreters as barriers to natural interaction, (2) varied language use simultaneously complicated and enriched data collection, and (3) ASL proficiency and professional position resulted in a social hierarchy among researchers and participants. In the discussion, the researchers reflected on their backgrounds and internal biases of analyzing the data found and how social norms or expectations affected the perceptions of the researchers in writing their journals. Through this study, the research team found that communication and language skills require significant consideration when working with multiple and complex communication modes. The researchers had to continually assess and adjust their data collection methods to meet the communication needs of the team members and participants. In doing so, the researchers aimed to create an accessible research setting that yielded rich data but learned that this often required compromises from one or more of the research constituents.

Keywords: American Sign Language, complex communication, deaf-disabled, methodology

Procedia PDF Downloads 122
22933 Using Discriminant Analysis to Forecast Crime Rate in Nigeria

Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele

Abstract:

This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.

Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda

Procedia PDF Downloads 474
22932 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators

Authors: Nur Aziza Luxfiati

Abstract:

Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.

Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development

Procedia PDF Downloads 161
22931 A Study of Behavioral Phenomena Using an Artificial Neural Network

Authors: Yudhajit Datta

Abstract:

Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.

Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story

Procedia PDF Downloads 382
22930 The Effect of Fetal Movement Counting on Maternal Antenatal Attachment

Authors: Esra Güney, Tuba Uçar

Abstract:

Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments.

Keywords: antenatal maternal attachment, fetal movement counting, pregnancy, midwifery

Procedia PDF Downloads 276
22929 Implementation of Invisible Digital Watermarking

Authors: V. Monisha, D. Sindhuja, M. Sowmiya

Abstract:

Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.

Keywords: digital watermarking, DWT, robustness, FPGA

Procedia PDF Downloads 416
22928 Semi-Supervised Learning Using Pseudo F Measure

Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian

Abstract:

Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.

Keywords: PU learning, semi-supervised learning, pseudo f measure, classification

Procedia PDF Downloads 241
22927 Islamic Banking and Finance in Nigeria: Challenges and Opportunities

Authors: Ya'u Saidu

Abstract:

The introduction of the non-interest banking system in Nigeria was part of the regulators efforts to increase the inclusion of other stakeholders into the financial sector who have stayed out of the sector for some reasons. However, the concept has been misunderstood by various stakeholders within the country where some view it as a Muslim affair which exclude the non-Muslims from gaining despite its existence in advance countries of the world. This paper attempts to fill-in the gap created by the literature especially with regards to the proper education and enlightenment of the Nigerian citizens. Survey research method was employed where primary data was collected using questionnaire and convenience sampling was used to select 100 respondents. The data was analysed using Chi-square. It was found that lack of knowledge on Islamic banking has significant effect on its prospects.

Keywords: finance, non-interest, sustainability, enlightenment

Procedia PDF Downloads 453