Search results for: thermal capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7408

Search results for: thermal capacity

4828 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718

Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou

Abstract:

Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.

Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718

Procedia PDF Downloads 141
4827 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery

Authors: Atef Y. Shenouda, Anton A. Momchilov

Abstract:

Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.

Keywords: CdO, graphene, negative electrode, lithium battery

Procedia PDF Downloads 157
4826 Isolation and Expansion of Human Periosteum-Derived Mesenchymal Stem Cells in Defined Serum-Free Culture Medium

Authors: Ainur Mukhambetova, Miras Karzhauov, Vyacheslav Ogay

Abstract:

Introduction: Mesenchymal stem cells (MSCs) have the capacity to be differentiated into several cell lineages and are a promising source for cell therapy and tissue engineering. However, currently most MSCs culturing protocols use media supplemented with fetal bovine serum (FBS), which limits their application in clinic due to the possibility of zoonotic infections, contamination and immunological reactions. Consequently, formulating effective serum free culture medium becomes one of the important problems in contemporary cell biotechnology. Objectives: The aim of this study was to define an optimal serum-free medium for culturing of periosteum derived MSCs. Materials and methods: The MSCs were extracted from human periosteum and transferred to the culture flasks pretreated with CELLstart™. Immunophenotypic characterization, proliferation and in vitro differentiation of cells grown on STEM PRO® MSC SFM were compared to the cells cultured in the standard FBS containing media. Chromosome analysis and flow cytometry were also performed. Results: We have shown that cells were grown on STEM PRO® MSC SFM retained all the morphological, immunophenotypic (CD73, CD90, CD105, vimentin and Stro-1) and cell differentiation characteristics specific to MSCs. Chromosome analysis indicated no anomalies in the chromosome structure. Flow cytometry showed a high expression of cell adhesion molecules CD44 (98,8%), CD90 (97,4%), CD105 (99,1%). In addition, we have shown that cell is grown on STEM PRO® MSC SFM have higher proliferation capacity compared to cell expanded on standard FBS containing the medium. Conclusion: We have shown that STEM PRO® MSC SFM is optimal for culturing periosteum derived human MSCs which subsequently can be safely used in cell therapy.

Keywords: cell technologies, periosteum-derived MSCs, regenerative medicine, serum-free medium

Procedia PDF Downloads 295
4825 Adjustments of Mechanical and Hydraulic Properties of Wood Formed under Environmental Stresses

Authors: B. Niez, B. Moulia, J. Dlouha, E. Badel

Abstract:

Trees adjust their development to the environmental conditions they experience. Storms events of last decades showed that acclimation of trees to mechanical stresses due to wind is a very important process that allows the trees to sustain for long years. In the future, trees will experience new wind patterns, namely, more often strong winds and fewer daily moderate winds. Moreover, these patterns will go along with drought periods that may interact with the capacity of trees to adjust their growth to mechanical stresses due to wind. It is necessary to understand the mechanisms of wood functional acclimations to environmental conditions in order to predict their behaviour and in order to give foresters and breeders the relevant tools to adapt their forest management. This work aims to study how trees adjust the mechanical and hydraulic functions of their wood to environmental stresses and how this acclimation may be beneficial for the tree to resist to future stresses. In this work, young poplars were grown under controlled climatic conditions that include permanent environmental stress (daily mechanical stress of the stem by bending and/or hydric stress). Then, the properties of wood formed under these stressed conditions were characterized. First, hydraulic conductivity and sensibility to cavitation were measured at the tissue level in order to evaluate the changes in water transport capacity. Secondly, bending tests and Charpy impact tests were carried out at the millimetric scale to locally measure mechanical parameters such as elastic modulus, elastic limit or rupture energy. These experimental data allow evaluating the impacts of mechanical and water stress on the wood material. At the stem level, they will be merged in an integrative model in order to evaluate the beneficial aspect of wood acclimation for trees.

Keywords: acclimation, environmental stresses, hydraulics, mechanics, wood

Procedia PDF Downloads 201
4824 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 286
4823 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 60
4822 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 95
4821 Synergy Surface Modification for High Performance Li-Rich Cathode

Authors: Aipeng Zhu, Yun Zhang

Abstract:

The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability.

Keywords: Li-rich materials, surface coating, lithium ion batteries, Al₂O₃

Procedia PDF Downloads 124
4820 Effect of Cooking Time, Seed-To-Water Ratio and Soaking Time on the Proximate Composition and Functional Properties of Tetracarpidium conophorum (Nigerian Walnut) Seeds

Authors: J. O. Idoko, C. N. Michael, T. O. Fasuan

Abstract:

This study investigated the effects of cooking time, seed-to-water ratio and soaking time on proximate and functional properties of African walnut seed using Box-Behnken design and Response Surface Methodology (BBD-RSM) with a view to increase its utilization in the food industry. African walnut seeds were sorted washed, soaked, cooked, dehulled, sliced, dried and milled. Proximate analysis and functional properties of the samples were evaluated using standard procedures. Data obtained were analyzed using descriptive and inferential statistics. Quadratic models were obtained to predict the proximate and functional qualities as a function of cooking time, seed-to-water ratio and soaking time. The results showed that the crude protein ranged between 11.80% and 23.50%, moisture content ranged between 1.00% and 4.66%, ash content ranged between 3.35% and 5.25%, crude fibre ranged from 0.10% to 7.25% and carbohydrate ranged from 1.22% to 29.35%. The functional properties showed that soluble protein ranged from 16.26% to 42.96%, viscosity ranged from 23.43 mPas to 57 mPas, emulsifying capacity ranged from 17.14% to 39.43% and water absorption capacity ranged from 232% to 297%. An increase in the volume of water used during cooking resulted in loss of water soluble protein through leaching, the length of soaking time and the moisture content of the dried product are inversely related, ash content is inversely related to the cooking time and amount of water used, extraction of fat is enhanced by increase in soaking time while increase in cooking and soaking times result into decrease in fibre content. The results obtained indicated that African walnut could be used in several food formulations as protein supplement and binder.

Keywords: African walnut, functional properties, proximate analysis, response surface methodology

Procedia PDF Downloads 387
4819 The Respiration Indices of the High Skilled Orienteer Athletes

Authors: Penchuk A. Vovkanych

Abstract:

The adaptive changes in the respiratory system provide the background for the increase of aerobic capacity and sport results on the middle and long distances runners. Effect of such adaptive changes in the sport orienteering remains poorly investigated. Therefore our study was undertaken to reveal the adaptive changes in the respiration indices of high skilled orienteer athletes.

Keywords: adaptation, external, functional state, respiration, running, sport orienteering

Procedia PDF Downloads 479
4818 Experimental Study on the Effectiveness of Extracurricular Football Training for Improving Primary Students Physical Fitness

Authors: Yizhi Zhang, Xiaozan Wang, Mingming Guo, Pengpeng Li

Abstract:

Introduction: The purpose of this study is to examine the effectiveness of after-school football training in improving the physical fitness of primary school students, so as to provide corresponding suggestions for carrying out after-school football training in primary schools. Methods: A total of 72 students from the experimental primary school of Mouping district, Yantai city, Shandong province, participated in this experiment. The experiment was conducted for two semesters. During the experiment period, the experimental group conducted one-hour football training after school from Monday to Thursday afternoon every week, and two hours of football training on Saturday morning every week. The control group conducted sports teaching and extracurricular activities as usual without other intervention. Before and after the experiment, both the experimental group and the control group underwent physical fitness tests according to the physical fitness test standards of Chinese students, including lung capacity, 50-meter run, one-minute skipping rope, sitting forward flexor, and one-minute sit-ups. The test results were all converted to the 100-point system according to the scoring standards. Results: (1) Before the experiment, there was no significant difference between the experimental group and the control group in various physical fitness indicators (p > 0.05). (2) After the experiment, the lung capacity score (T = 3.108, p < 0.05), the 50-meter run score (T = 6.593, p < 0.05), the skipping score (T = 9.227, p < 0.05), the sitting forward flexor score (T = 3.742, p < 0.05), and the sit-up score (T = 5.210, p < 0.05) of the experimental group were significantly higher than that of the control group. Conclusion: This study shows that the physical fitness of primary school students can be improved by football training in their spare time. It is suggested to carry out after-school football training activities in primary schools so as to effectively improve the physical fitness of pupils.

Keywords: after-school football training, physical fitness, primary school students, school sports

Procedia PDF Downloads 134
4817 Time's Arrow and Entropy: Violations to the Second Law of Thermodynamics Disrupt Time Perception

Authors: Jason Clarke, Michaela Porubanova, Angela Mazzoli, Gulsah Kut

Abstract:

What accounts for our perception that time inexorably passes in one direction, from the past to the future, the so-called arrow of time, given that the laws of physics permit motion in one temporal direction to also happen in the reverse temporal direction? Modern physics says that the reason for time’s unidirectional physical arrow is the relationship between time and entropy, the degree of disorder in the universe, which is evolving from low entropy (high order; thermal disequilibrium) toward high entropy (high disorder; thermal equilibrium), the second law of thermodynamics. Accordingly, our perception of the direction of time, from past to future, is believed to emanate as a result of the natural evolution of entropy from low to high, with low entropy defining our notion of ‘before’ and high entropy defining our notion of ‘after’. Here we explored this proposed relationship between entropy and the perception of time’s arrow. We predicted that if the brain has some mechanism for detecting entropy, whose output feeds into processes involved in constructing our perception of the direction of time, presentation of violations to the expectation that low entropy defines ‘before’ and high entropy defines ‘after’ would alert this mechanism, leading to measurable behavioral effects, namely a disruption in duration perception. To test this hypothesis, participants were shown briefly-presented (1000 ms or 500 ms) computer-generated visual dynamic events: novel 3D shapes that were seen either to evolve from whole figures into parts (low to high entropy condition) or were seen in the reverse direction: parts that coalesced into whole figures (high to low entropy condition). On each trial, participants were instructed to reproduce the duration of their visual experience of the stimulus by pressing and releasing the space bar. To ensure that attention was being deployed to the stimuli, a secondary task was to report the direction of the visual event (forward or reverse motion). Participants completed 60 trials. As predicted, we found that duration reproduction was significantly longer for the high to low entropy condition compared to the low to high entropy condition (p=.03). This preliminary data suggests the presence of a neural mechanism that detects entropy, which is used by other processes to construct our perception of the direction of time or time’s arrow.

Keywords: time perception, entropy, temporal illusions, duration perception

Procedia PDF Downloads 163
4816 Model Tests on Geogrid-Reinforced Sand-Filled Embankments with a Cover Layer under Cyclic Loading

Authors: Ma Yuan, Zhang Mengxi, Akbar Javadi, Chen Longqing

Abstract:

The structure of sand-filled embankment with cover layer is treated with tipping clay modified with lime on the outside of the packing, and the geotextile is placed between the stuffing and the clay. The packing is usually river sand, and the improved clay protects the sand core against rainwater erosion. The sand-filled embankment with cover layer has practical problems such as high filling embankment, construction restriction, and steep slope. The reinforcement can be applied to the sand-filled embankment with cover layer to solve the complicated problems such as irregular settlement caused by poor stability of the embankment. At present, the research on the sand-filled embankment with cover layer mainly focuses on the sand properties, construction technology, and slope stability, and there are few studies in the experimental field, the deformation characteristics and stability of reinforced sand-filled embankment need further study. In addition, experimental research is relatively rare when the cyclic load is considered in tests. A subgrade structure of geogrid-reinforced sand-filled embankment with cover layer was proposed. The mechanical characteristics, the deformation properties, reinforced behavior and the ultimate bearing capacity of the embankment structure under cyclic loading were studied. For this structure, the geogrids in the sand and the tipping soil are through the geotextile which is arranged in sections continuously so that the geogrids can cross horizontally. Then, the Unsaturated/saturated Soil Triaxial Test System of Geotechnical Consulting and Testing Systems (GCTS), USA was modified to form the loading device of this test, and strain collector was used to measuring deformation and earth pressure of the embankment. A series of cyclic loading model tests were conducted on the geogrid-reinforced sand-filled embankment with a cover layer under a different number of reinforcement layers, the length of reinforcement and thickness of the cover layer. The settlement of the embankment, the normal cumulative deformation of the slope and the earth pressure were studied under different conditions. Besides cyclic loading model tests, model experiments of embankment subjected cyclic-static loading was carried out to analyze ultimate bearing capacity with different loading. The experiment results showed that the vertical cumulative settlement under long-term cyclic loading increases with the decrease of the number of reinforcement layers, length of the reinforcement arrangement and thickness of the tipping soil. Meanwhile, these three factors also have an influence on the decrease of the normal deformation of the embankment slope. The earth pressure around the loading point is significantly affected by putting geogrid in a model embankment. After cyclic loading, the decline of ultimate bearing capacity of the reinforced embankment can be effectively reduced, which is contrary to the unreinforced embankment.

Keywords: cyclic load; geogrid; reinforcement behavior; cumulative deformation; earth pressure

Procedia PDF Downloads 114
4815 Ecotourism Development as an Alternative Livelihood for Guassa Community, Ethiopia

Authors: Abraham Kidane

Abstract:

The study aims at assessing the prospects and challenges of community-based ecotourism development in and around the Guassa Community Conservation Area (GCCA) for the establishment of alternative sources of livelihood for local people and the conservation of natural resources. The Guassa area and its surrounding area are endowed with natural, cultural, and religious tourism resources. The study is descriptive in its design and uses both qualitative and quantitative research methods. Interviews and questionnaires were used as an instrument for data gathering. The interview was undertaken with government officials, NGO officials, and experts, with three local community representatives. The three Kebeles of Guassa were chosen using purposive sampling because of the fact that they are immediate neighbors to GCCA, and hence, 150 questionnaires were administered proportionally to the household numbers in each kebeles. The perspectives of the MoCT, EWCA, and some Tour Operation agencies were uncovered through questionnaires; for each of them, five questionnaires were administered, and all the returns were used in the analysis. Frequency, percentage, average mean, One Way-ANOVA, and independent t-test are used to analyze quantitative data. The findings revealed that food insecurity is commonplace in the study area. The local people's reliance on the conservation area’s resources has been increasing, and the area size is also dwindling from time to time. On the other hand, the local people's levels of awareness about Community-Based Ecotourism (CBET) are low. In addition, the local capacity in relation to conservation and CBET development is also low, even though there is inadequate training offered by the government and NGOs. In general, tourism is not yet considered an alternative source of income and a means of conserving natural resources. In addition, the challenges for CBET development apart from low awareness level about CBET and low capacity, poor infrastructure, and poor tourism facilities were also identified as challenges in the study area.

Keywords: ecotourism, CBET, alternative livelihood, conservation

Procedia PDF Downloads 94
4814 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior

Authors: Mohamed dammak

Abstract:

Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.

Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis

Procedia PDF Downloads 84
4813 A Discrete Event Simulation Model For Airport Runway Operations Optimization (Case Study)

Authors: Awad Khireldin, Colin Law

Abstract:

Runways are the major infrastructure of airports around the world. Efficient operations of runways are key to ensure that airports are running smoothly with minimal delays. There are many factors that affect the efficiency of runway operations, such as the aircraft wake separation, runways system configuration, the fleet mix, and the runways separation distance. This paper aims to address how to maximize runway operations using a Discrete Event Simulation model. A case study of Cairo International Airport (CIA) is developed to maximize the utilizing of three parallel runways using a simulation model. Different scenarios have been designed where every runway could be assigned for arrival, departure, or mixed operations. A benchmarking study was also included to compare the actual to the proposed results to spot the potential improvements. The simulation model shows that there is a significant difference in utilization and delays between the actual and the proposed ones, there are several recommendations that can be provided to airport management, in the short and long term, to increase the efficiency and to reduce the delays. By including the recommendation with different operations scenarios, such as upgrading the airport slot Coordination from Level 1 to Level 2 in the short term. In the long run, discuss the possibilities to increase the International Air Transport association (IATA) slot coordination to Level 3 as more flights are expected to be handled by the airport. Technological advancements such as radar in the approach full airside simulation model could improve the airport performance where the airport is recommended to review the standard operations procedures with the appropriate authorities. Also, the airport can adopt a future operational plan to accommodate the forecasted additional traffic density in case of adding a fourth terminal building to increase the airport capacity.

Keywords: airport performance, runway, discrete event simulation, capacity, airside

Procedia PDF Downloads 119
4812 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact

Authors: Martin Adlington, Boris Ceranic, Sally Shazhad

Abstract:

In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.

Keywords: overheating, climate change, thermal comfort, health

Procedia PDF Downloads 348
4811 Duration of the Disease in Systemic Sclerosis and Efficiency of Rituximab Therapy

Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva

Abstract:

Objectives: The duration of the disease could be one of the leading factors in the effectiveness of therapy in systemic sclerosis (SSc). The aim of the study was to assess how the duration of the disease affects the changes of lung function in patients(pts) with interstitial lung disease (ILD) associated with SSc during long-term RTX therapy. Methods: We prospectively included 113pts with SSc in this study. 85% of pts were female. Mean age was 48.1±13years. The diffuse cutaneous subset of the disease had 62pts, limited–40, overlap–11. The mean disease duration was 6.1±5.4years. Pts were divided into 2 groups depending on the disease duration - group 1 (less than 5 years-63pts) and group 2 (more than 5 years-50 pts). All pts received prednisolone at mean dose of 11.5±4.6 mg/day and 53 of them - immunosuppressants at inclusion. The parameters were evaluated over the periods: at baseline (point 0), 13±2.3mo (point 1), 42±14mo (point 2) and 79±6.5mo (point 3) after initiation of RTX therapy. Cumulative mean dose of RTX in group 1 at point 1 was 1.7±0.6 g, at point 2 = 3.3±1.5g, at point 3 = 3.9±2.3g; in group 2 at point 1 = 1.6±0.6g, at point 2 = 2.7±1.5 g, at point 3 = 3.7±2.6 g. The results are presented in the form of mean values, delta(Δ), median(me), upper and lower quartile. Results. There was a significant increase of forced vital capacity % predicted (FVC) in both groups, but at points 1 and 2 the improvement was more significant in group 1. In group 2, an improvement of FVC was noted with a longer follow-up. Diffusion capacity for carbon monoxide % predicted (DLCO) remained stable at point 1, and then significantly improved by the 3rd year of RTX therapy in both groups. In group 1 at point 1: ΔFVC was 4.7 (me=4; [-1.8;12.3])%, ΔDLCO = -1.2 (me=-0.3; [-5.3;3.6])%, at point 2: ΔFVC = 9.4 (me=7.1; [1;16])%, ΔDLCO =3.7 (me=4.6; [-4.8;10])%, at point 3: ΔFVC = 13 (me=13.4; [2.3;25.8])%, ΔDLCO = 2.3 (me=1.6; [-5.6;11.5])%. In group 2 at point 1: ΔFVC = 3.4 (me=2.3; [-0.8;7.9])%, ΔDLCO = 1.5 (me=1.5; [-1.9;4.9])%; at point 2: ΔFVC = 7.6 (me=8.2; [0;12.6])%, ΔDLCO = 3.5 (me=0.7; [-1.6;10.7]) %; at point 3: ΔFVC = 13.2 (me=10.4; [2.8;15.4])%, ΔDLCO = 3.6 (me=1.7; [-2.4;9.2])%. Conclusion: Patients with an early SSc have more quick response to RTX therapy already in 1 year of follow-up. Patients with a disease duration more than 5 years also have response to therapy, but with longer treatment. RTX is effective option for the treatment of ILD-SSc, regardless of the duration of the disease.

Keywords: interstitial lung disease, systemic sclerosis, rituximab, disease duration

Procedia PDF Downloads 17
4810 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 69
4809 Impact of National Institutions on Corporate Social Performance

Authors: Debdatta Mukherjee, Abhiman Das, Amit Garg

Abstract:

In recent years, there is a growing interest about corporate social responsibility of firms in both academic literature and business world. Since business forms a part of society incorporating socio-environment concerns into its value chain, activities are vital for ensuring mutual sustainability and prosperity. But, until now most of the works have been either descriptive or normative rather than positivist in tone. Even the few ones with a positivist approach have mostly studied the link between corporate financial performance and corporate social performance. However, these studies have been severely criticized by many eminent authors on grounds that they lack a theoretical basis for their findings. They have also argued that apart from corporate financial performance, there must be certain other crucial influences that are likely to determine corporate social performance of firms. In fact, several studies have indicated that firms operating in distinct national institutions show significant variations in the corporate social responsibility practices that they undertake. This clearly suggests that the institutional context of a country in which the firms operate is a key determinant of corporate social performance of firms. Therefore, this paper uses an institutional framework to understand why corporate social performance of firms vary across countries. It examines the impact of country level institutions on corporate social performance using a sample of 3240 global publicly-held firms across 33 countries covering the period 2010-2015. The country level institutions include public institutions, private institutions, markets and capacity to innovate. Econometric Analysis has been mainly used to assess this impact. A three way panel data analysis using fixed effects has been used to test and validate appropriate hypotheses. Most of the empirical findings confirm our hypotheses and the economic significance indicates the specific impact of each variable and their importance relative to others. The results suggest that institutional determinants like ethical behavior of private institutions, goods market, labor market and innovation capacity of a country are significantly related to the corporate social performance of firms. Based on our findings, few implications for policy makers from across the world have also been suggested. The institutions in a country should promote competition. The government should use policy levers for upgrading home demands, like setting challenging yet flexible safety, quality and environment standards, and framing policies governing buyer information, providing innovative recourses to low quality goods and services and promoting early adoption of new and technologically advanced products. Moreover, the institution building in a country should be such that they facilitate and improve the capacity of firms to innovate. Therefore, the proposed study argues that country level institutions impact corporate social performance of firms, empirically validates the same, suggest policy implications and attempts to contribute to an extended understanding of corporate social responsibility and corporate social performance in a multinational context.

Keywords: corporate social performance, corporate social responsibility, institutions, markets

Procedia PDF Downloads 163
4808 Interaction between the Rio Conventions on Climate and Biodiversity: Analysis of the Integration of Ecosystem-Based Approaches and Nature-Based Solutions into the UNFCCC

Authors: Dieudonne Mevono Mvogo

Abstract:

The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)-Intergovernmental Panel on Climate Change (IPCC) co-sponsored workshop report suggests that climate change and biodiversity loss are two of the most pressing issues of the Anthropocene. Research establishes the interconnection between climate change and biodiversity. On the one hand, the impact of climate change on biodiversity loss – 14 % over the past century – is projected to surpass other threats – land and sea use 34 % and direct exploitation of species 23 % – during the 21st century. Response measures to climate change also affect biodiversity negatively or positively. On the other hand, actions to halt or reverse biodiversity loss can enhance land and ocean capacity for carbon sequestration. These actions can also promote adaptation by ensuring adaptive capacity. This systemic interaction between climate change and biodiversity affects the human quality of life. The United Nations Secretariat's report entitled 'Gaps in international environmental law and environment-related instruments: towards a global pact for the environment,' released in 2018, states that cooperation and mutual support among agreements dealing with climate change, the protection of the marine environment, freshwater resources and hazardous waste are indispensable for the effective implementation of the Convention on the Biological Diversity (CBD). Since biodiversity is being lost at an alarming rate, this study aims to evaluate the cooperative framework for the coherence and coordination between climate change and biodiversity regimes to provide co-benefits for climate and biodiversity crises. It questions the potential improvement regarding integrating ecosystem-based approaches and nature-based solutions – promoted by the CBD – into the United Nations Framework Convention on Climate Change (UNFCCC).

Keywords: rio conventions, climate change, biodiversity, cooperative framework, ecosystem-based approaches, nature-based solutions

Procedia PDF Downloads 115
4807 Managing Climate Change: Vulnerability Reduction or Resilience Building

Authors: Md Kamrul Hassan

Abstract:

Adaptation interventions are the common response to manage the vulnerabilities of climate change. The nature of adaptation intervention depends on the degree of vulnerability and the capacity of a society. The coping interventions can take the form of hard adaptation – utilising technologies and capital goods like dykes, embankments, seawalls, and/or soft adaptation – engaging knowledge and information sharing, capacity building, policy and strategy development, and innovation. Hard adaptation is quite capital intensive but provides immediate relief from climate change vulnerabilities. This type of adaptation is not real development, as the investment for the adaptation cannot improve the performance – just maintain the status quo of a social or ecological system, and often lead to maladaptation in the long-term. Maladaptation creates a two-way loss for a society – interventions bring further vulnerability on top of the existing vulnerability and investment for getting rid of the consequence of interventions. Hard adaptation is popular to the vulnerable groups, but it focuses so much on the immediate solution and often ignores the environmental issues and future risks of climate change. On the other hand, soft adaptation is education oriented where vulnerable groups learn how to live with climate change impacts. Soft adaptation interventions build the capacity of vulnerable groups through training, innovation, and support, which might enhance the resilience of a system. In consideration of long-term sustainability, soft adaptation can contribute more to resilience than hard adaptation. Taking a developing society as the study context, this study aims to investigate and understand the effectiveness of the adaptation interventions of the coastal community of Sundarbans mangrove forest in Bangladesh. Applying semi-structured interviews with a range of Sundarbans stakeholders including community residents, tourism demand-supply side stakeholders, and conservation and management agencies (e.g., Government, NGOs and international agencies) and document analysis, this paper reports several key insights regarding climate change adaptation. Firstly, while adaptation interventions may offer a short-term to medium-term solution to climate change vulnerabilities, interventions need to be revised for long-term sustainability. Secondly, soft adaptation offers advantages in terms of resilience in a rapidly changing environment, as it is flexible and dynamic. Thirdly, there is a challenge to communicate to educate vulnerable groups to understand more about the future effects of hard adaptation interventions (and the potential for maladaptation). Fourthly, hard adaptation can be used if the interventions do not degrade the environmental balance and if the investment of interventions does not exceed the economic benefit of the interventions. Overall, the goal of an adaptation intervention should be to enhance the resilience of a social or ecological system so that the system can with stand present vulnerabilities and future risks. In order to be sustainable, adaptation interventions should be designed in such way that those can address vulnerabilities and risks of climate change in a long-term timeframe.

Keywords: adaptation, climate change, maladaptation, resilience, Sundarbans, sustainability, vulnerability

Procedia PDF Downloads 189
4806 Seismic Reinforcement of Existing Japanese Wooden Houses Using Folded Exterior Thin Steel Plates

Authors: Jiro Takagi

Abstract:

Approximately 90 percent of the casualties in the near-fault-type Kobe earthquake in 1995 resulted from the collapse of wooden houses, although a limited number of collapses of this type of building were reported in the more recent off-shore-type Tohoku Earthquake in 2011 (excluding direct damage by the Tsunami). Kumamoto earthquake in 2016 also revealed the vulnerability of old wooden houses in Japan. There are approximately 24.5 million wooden houses in Japan and roughly 40 percent of them are considered to have the inadequate seismic-resisting capacity. Therefore, seismic strengthening of these wooden houses is an urgent task. However, it has not been quickly done for various reasons, including cost and inconvenience during the reinforcing work. Residents typically spend their money on improvements that more directly affect their daily housing environment (such as interior renovation, equipment renewal, and placement of thermal insulation) rather than on strengthening against extremely rare events such as large earthquakes. Considering this tendency of residents, a new approach to developing a seismic strengthening method for wooden houses is needed. The seismic reinforcement method developed in this research uses folded galvanized thin steel plates as both shear walls and the new exterior architectural finish. The existing finish is not removed. Because galvanized steel plates are aesthetic and durable, they are commonly used in modern Japanese buildings on roofs and walls. Residents could feel a physical change through the reinforcement, covering existing exterior walls with steel plates. Also, this exterior reinforcement can be installed with only outdoor work, thereby reducing inconvenience for residents since they would not be required to move out temporarily during construction. The Durability of the exterior is enhanced, and the reinforcing work can be done efficiently since perfect water protection is not required for the new finish. In this method, the entire exterior surface would function as shear walls and thus the pull-out force induced by seismic lateral load would be significantly reduced as compared with a typical reinforcement scheme of adding braces in selected frames. Consequently, reinforcing details of anchors to the foundations would be less difficult. In order to attach the exterior galvanized thin steel plates to the houses, new wooden beams are placed next to the existing beams. In this research, steel connections between the existing and new beams are developed, which contain a gap for the existing finish between the two beams. The thin steel plates are screwed to the new beams and the connecting vertical members. The seismic-resisting performance of the shear walls with thin steel plates is experimentally verified both for the frames and connections. It is confirmed that the performance is high enough for bracing general wooden houses.

Keywords: experiment, seismic reinforcement, thin steel plates, wooden houses

Procedia PDF Downloads 224
4805 Real Energy Performance Study of Large-Scale Solar Water Heater by Using Remote Monitoring

Authors: F. Sahnoune, M. Belhamel, M. Zelmat

Abstract:

Solar thermal systems available today provide reliability, efficiency and significant environmental benefits. In housing, they can satisfy the hot water demand and reduce energy bills by 60 % or more. Additionally, collective systems or large scale solar thermal systems are increasingly used in different conditions for hot water applications and space heating in hotels and multi-family homes, hospitals, nursing homes and sport halls as well as in commercial and industrial building. However, in situ real performance data for collective solar water heating systems has not been extensively outlined. This paper focuses on the study of real energy performances of a collective solar water heating system using the remote monitoring technique in Algerian climatic conditions. This is to ensure proper operation of the system at any time, determine the system performance and to check to what extent solar performance guarantee can be achieved. The measurements are performed on an active indirect heating system of 12 m2 flat plate collector’s surface installed in Algiers and equipped with a various sensors. The sensors transmit measurements to a local station which controls the pumps, valves, electrical auxiliaries, etc. The simulation of the installation was developed using the software SOLO 2000. The system provides a yearly solar yield of 6277.5 KWh for an estimated annual need of 7896 kWh; the yearly average solar cover rate amounted to 79.5%. The productivity is in the order of 523.13 kWh / m²/year. Simulation results are compared to measured results and to guaranteed solar performances. The remote monitoring shows that 90% of the expected solar results can be easy guaranteed on a long period. Furthermore, the installed remote monitoring unit was able to detect some dysfunctions. It follows that remote monitoring is an important tool in energy management of some building equipment.

Keywords: large-scale solar water heater, real energy performance, remote monitoring, solar performance guarantee, tool to promote solar water heater

Procedia PDF Downloads 234
4804 Pd(II) Complex with 4-Bromo-2,6-Bis-Hydroxymethyl-Phenol and Nikotinamid: Synthesis and Spectral Analysis

Authors: Özlen Altun, Zeliha Yoruç

Abstract:

In the present study, the reactions involving 4-Bromo-2,6-bis-hydroxymethyl-phenol (BBHMP) and nikotinamide (NA) in the presence Pd (II) ion were investigated. Optimum conditions for the reactions were established as pH 7 and λ = 450 nm. According to absorbance measurements, the mole ratio of BBHMP : NA : Pd2+ was found as 1 : 2 : 2. As a result of physico-chemical, spectrophotometric and thermal analysis results, the reactions of BBHMP and NA with Pd (II) is complexation reactions and one molecule BBHMP and two molecules of NA react with two molecules of metal (II) ion.

Keywords: 4-Bromo-2, 6-bis-hydroxymethyl-phenol, nicotinamide, Pd(II), spectral analysis, synthesis

Procedia PDF Downloads 160
4803 Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa.

Keywords: HVOF, residual stress, thermal spray, WC-Co

Procedia PDF Downloads 307
4802 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment

Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby

Abstract:

Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.

Keywords: optical fiber, polarization mode dispersion, harsh environment, aging

Procedia PDF Downloads 378
4801 The Effect of Aerobics and Yogic Exercise on Selected Physiological and Psychological Variables of Middle-Aged Women

Authors: A. Pallavi, N. Vijay Mohan

Abstract:

A nation can be economically progressive only when the citizens have sufficient capacity to work efficiently to increase the productivity. So, good health must be regarded as a primary need of the community. This helps the growth and development of the body and the mind, which in turn leads to progress and prosperity of the nation. An optimum growth is a necessity for an efficient existence in a biologically adverse and economically competitive world. It is also necessary for the execution of daily routine work. Yoga is a method or a system for the complete development of the personality in a human being. It can be further elaborated as an all-around and complete development of the body, mind, morality, intellect and soul of a being. Sri Aurobindo defines yoga as 'a methodical effort towards self-perfection by the development of the potentialities in the individual.' Aerobic exercise as any activity that uses large muscle groups, can be maintained continuously, and is rhythmic I nature. It is a type of exercise that overloads the heart and lungs and causes them to work harder than at rest. The important idea behind aerobic exercise today, is to get up and get moving. There are more activities that ever to choose from, whether it is a new activity or an old one. Find something you enjoy doing that keeps our heart rate elevated for a continuous time period and get moving to a healthier life. Middle aged selected and served as the subjects for the purpose of this study. The selected subjects were in the age group of 30 to 40 years. By going through the literature and after consulting the experts in yoga and aerobic training, the investigator had chosen the variables which are specifically related to the middle-aged men. The selected physiological variables are pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity. The selected psychological variables are job anxiety, occupational stress. The study was formulated as a random group design consisting of aerobic exercise and yogic exercises groups. The subjects (N=60) were at random divided into three equal groups of twenty middle-aged men each. The groups were assigned the names as follows: 1. Experimental group I- aerobic exercises group, 2. Experimental group II- yogic exercises, 3. Control group. All the groups were subjected to pre-test prior to the experimental treatment. The experimental groups participated in their respective duration of twenty-four weeks, six days in a week throughout the study. The various tests administered were: prior to training (pre-test), after twelfth week (second test) and twenty-fourth weeks (post-test) of the training schedule.

Keywords: pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity, psychological variables, job anxiety, occupational stress, aerobic exercise, yogic exercise

Procedia PDF Downloads 442
4800 Insight into the Physical Ageing of Poly(Butylene Succinate)

Authors: I. Georgousopoulou, S. Vouyiouka, C. Papaspyrides

Abstract:

The hydrolytic degradation of poly(butylene succinate) (PBS) was investigated when exposed to different humidity-temperature environments. To this direction different PBS grades were submitted to hydrolysis runs. Results indicated that the increment of hydrolysis temperature and relative humidity induced significant decrease in the molecular weight and thermal properties of the bioplastic. Τhe derived data can be considered to construct degradation kinetics based on carboxyl content variation versus time.

Keywords: hydrolytic degradation, physical ageing, poly(butylene succinate), polyester

Procedia PDF Downloads 281
4799 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO

Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li

Abstract:

ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.

Keywords: ceramics, conductivity, defects, TCO, ZnO

Procedia PDF Downloads 187