Search results for: teaching learning model
20608 Building Knowledge Partnership for Collaborative Learning in Higher Education – An On-Line ‘Eplanete’ Knowledge Mediation Platform
Authors: S. K. Ashiquer Rahman
Abstract:
This paper presents a knowledge mediation platform, “ePLANETe Blue” that addresses the challenge of building knowledge partnerships for higher education. The purpose is to present, as an institutional perception, the ‘ePLANETe' idea and functionalities as a practical and pedagogical innovation program contributing to the collaborative learning goals in higher education. In consequence, the set of functionalities now amalgamated in ‘ePLANETe’ can be seen as an investigation of the challenges of “Collaborative Learning Digital Process.” It can exploit the system to facilitate collaborative education, research and student learning in higher education. Moreover, the platform is projected to support the identification of best practices at explicit levels of action and to inspire knowledge interactions in a “virtual community” and thus to advance in deliberation and learning evaluation of higher education through the engagement of collaborative activities of different sorts.Keywords: mediation, collaboration, deliberation, evaluation
Procedia PDF Downloads 14220607 Academic Achievement in Argentinean College Students: Major Findings in Psychological Assessment
Authors: F. Uriel, M. M. Fernandez Liporace
Abstract:
In the last decade, academic achievement in higher education has become a topic of agenda in Argentina, regarding the high figures of adjustment problems, academic failure and dropout, and the low graduation rates in the context of massive classes and traditional teaching methods. Psychological variables, such as perceived social support, academic motivation and learning styles and strategies have much to offer since their measurement by tests allows a proper diagnose of their influence on academic achievement. Framed in a major research, several studies analysed multiple samples, totalizing 5135 students attending Argentinean public universities. The first goal was aimed at the identification of statistically significant differences in psychological variables -perceived social support, learning styles, learning strategies, and academic motivation- by age, gender, and degree of academic advance (freshmen versus sophomores). Thus, an inferential group differences study for each psychological dependent variable was developed by means of student’s T tests, given the features of data distribution. The second goal, aimed at examining associations between the four psychological variables on the one hand, and academic achievement on the other, was responded by correlational studies, calculating Pearson’s coefficients, employing grades as the quantitative indicator of academic achievement. The positive and significant results that were obtained led to the formulation of different predictive models of academic achievement which had to be tested in terms of adjustment and predictive power. These models took the four psychological variables above mentioned as predictors, using regression equations, examining predictors individually, in groups of two, and together, analysing indirect effects as well, and adding the degree of academic advance and gender, which had shown their importance within the first goal’s findings. The most relevant results were: first, gender showed no influence on any dependent variable. Second, only good achievers perceived high social support from teachers, and male students were prone to perceive less social support. Third, freshmen exhibited a pragmatic learning style, preferring unstructured environments, the use of examples and simultaneous-visual processing in learning, whereas sophomores manifest an assimilative learning style, choosing sequential and analytic processing modes. Despite these features, freshmen have to deal with abstract contents and sophomores, with practical learning situations due to study programs in force. Fifth, no differences in academic motivation were found between freshmen and sophomores. However, the latter employ a higher number of more efficient learning strategies. Sixth, freshmen low achievers lack intrinsic motivation. Seventh, models testing showed that social support, learning styles and academic motivation influence learning strategies, which affect academic achievement in freshmen, particularly males; only learning styles influence achievement in sophomores of both genders with direct effects. These findings led to conclude that educational psychologists, education specialists, teachers, and universities must plan urgent and major changes. These must be applied in renewed and better study programs, syllabi and classes, as well as tutoring and training systems. Such developments should be targeted to the support and empowerment of students in their academic pathways, and therefore to the upgrade of learning quality, especially in the case of freshmen, male freshmen, and low achievers.Keywords: academic achievement, academic motivation, coping, learning strategies, learning styles, perceived social support
Procedia PDF Downloads 12220606 Goal Orientation, Learning Strategies and Academic Performance in Adult Distance Learning
Authors: Ying Zhou, Jian-Hua Wang
Abstract:
Based upon the self-determination theory and self-regulated learning theory, this study examined the predictiveness of goal orientation and self-regulated learning strategies on academic achievement of adult students in distance learning. The results show a positive relation between goal orientation and the use of self-regulated strategies, and academic achievements. A significant and positive indirect relation of mastery goal orientation through self-regulated learning strategies was also found. In addition, results pointed to a positive indirect impact of performance-approach goal orientation on academic achievement. The effort regulation strategy fully mediated this relation. The theoretical and instructional implications are discussed. Interventions can be made to motivate students’ mastery or performance approach goal orientation and help them manage their time or efforts.Keywords: goal orientation, self-regulated strategies, achievement, adult distance students
Procedia PDF Downloads 27620605 Incorporating Adult Learners’ Interests into Learning Styles: Enhancing Education for Lifelong Learners
Authors: Christie DeGregorio
Abstract:
In today's rapidly evolving educational landscape, adult learners are becoming an increasingly significant demographic. These individuals often possess a wealth of life experiences and diverse interests that can greatly influence their learning styles. Recognizing and incorporating these interests into educational practices can lead to enhanced engagement, motivation, and overall learning outcomes for adult learners. This essay aims to explore the significance of incorporating adult learners' interests into learning styles and provide an overview of the methodologies used in related studies. When investigating the incorporation of adult learners' interests into learning styles, researchers have employed various methodologies to gather valuable insights. These methodologies include surveys, interviews, case studies, and classroom observations. Surveys and interviews allow researchers to collect self-reported data directly from adult learners, providing valuable insights into their interests, preferences, and learning styles. Case studies offer an in-depth exploration of individual adult learners, highlighting how their interests can be integrated into personalized learning experiences. Classroom observations provide researchers with a firsthand understanding of the dynamics between adult learners' interests and their engagement within a learning environment. The major findings from studies exploring the incorporation of adult learners' interests into learning styles reveal the transformative impact of this approach. Firstly, aligning educational content with adult learners' interests increases their motivation and engagement in the learning process. By connecting new knowledge and skills to topics they are passionate about, adult learners become active participants in their own education. Secondly, integrating interests into learning styles fosters a sense of relevance and applicability. Adult learners can see the direct connection between the knowledge they acquire and its real-world applications, which enhances their ability to transfer learning to various contexts. Lastly, personalized learning experiences tailored to individual interests enable adult learners to take ownership of their educational journey, promoting lifelong learning habits and self-directedness.Keywords: integration, personalization, transferability, learning style
Procedia PDF Downloads 7520604 Impacts of E-Learning on Educational Policy: Policy of Sensitization and Training in E-Learning in Saudi Arabia
Authors: Layla Albdr
Abstract:
Saudi Arabia instituted the policy of Sensitizing and Training Stakeholders for E-learning and witnessed wide adoption in many institutions. However, it is at the infancy stage and needs time to develop to mirror the US and UK. The majority of the higher education institutions in Saudi Arabia have adopted E-learning as an alternative to traditional methods to advance education. Conversely, effective implementation of the policy of sensitization and training of stakeholders for E-learning implementation has not been attained because of various challenges. The objectives included determining the challenges and opportunities of the E-learning policy of sensitization and training of stakeholders in Saudi Arabia's higher education and examining if sensitization and training of stakeholder's policy will help promote the implementation of E-learning in institutions. The study employed a descriptive research design based on qualitative analysis. The researcher recruited 295 students and 60 academic staff from four Saudi Arabian universities to participate in the study. An online questionnaire was used to collect the data. The data was then analyzed and reported both quantitatively and qualitatively. The analysis provided an in-depth understanding of the opportunities and challenges of E-learning policy in Saudi Arabian universities. The main challenges identified as internal challenges were the lack of educators’ interest in adopting the policy, and external challenges entailed lack of ICT infrastructure and Internet connectivity. The study recommends encouraging, sensitizing, and training all stakeholders to address these challenges and adopt the policy.Keywords: e-learning, educational policy, Saudi Arabia, policy of sensitization and training
Procedia PDF Downloads 15720603 Investigating the Effect of the Pedagogical Agent on Visual Attention in Attention Deficit Hyperactivity Disorder Students
Authors: Nasrin Mohammadhasani, Rosa Angela Fabio
Abstract:
The attention to relevance information is the key element for learning. Otherwise, Attention Deficit Hyperactivity Disorder (ADHD) students have a fuzzy visual pattern that prevents them to attention and remember learning subject. The present study aimed to test the hypothesis that the presence of a pedagogical agent can effectively support ADHD learner's attention and learning outcomes in a multimedia learning environment. The learning environment was integrated with a pedagogical agent, named Koosha as a social peer. This study employed a pretest and posttest experimental design with control group. The statistical population was 30 boys students, age 10-11 with ADHD that randomly assigned to learn with/without an agent in well designed environment for mathematic. The results suggested that experimental and control groups show a significant difference in time when they participated and mathematics achievement. According to this research, using the pedagogical agent can enhance learning of ADHD students by gaining and guiding their attention to relevance information part on display, so it can be considered as asocial cue that provides theme cognitive supports.Keywords: attention, computer assisted instruction, multimedia learning environment, pedagogical agent
Procedia PDF Downloads 31420602 Mathematical Model to Quantify the Phenomenon of Democracy
Authors: Mechlouch Ridha Fethi
Abstract:
This paper presents a recent mathematical model in political sciences concerning democracy. The model is represented by a logarithmic equation linking the Relative Index of Democracy (RID) to Participation Ratio (PR). Firstly the meanings of the different parameters of the model were presented; and the variation curve of the RID according to PR with different critical areas was discussed. Secondly, the model was applied to a virtual group where we show that the model can be applied depending on the gender. Thirdly, it was observed that the model can be extended to different language models of democracy and that little use to assess the state of democracy for some International organizations like UNO.Keywords: democracy, mathematic, modelization, quantification
Procedia PDF Downloads 36920601 A Qualitative Study on Metacognitive Patterns among High and Low Performance Problem Based on Learning Groups
Authors: Zuhairah Abdul Hadi, Mohd Nazir bin Md. Zabit, Zuriadah Ismail
Abstract:
Metacognitive has been empirically evidenced to be one important element influencing learning outcomes. Expert learners engage in metacognition by monitoring and controlling their thinking, and listing, considering and selecting the best strategies to achieve desired goals. Studies also found that good critical thinkers engage in more metacognition and people tend to activate more metacognition when solving complex problems. This study extends past studies by performing a qualitative analysis to understand metacognitive patterns among two high and two low performing groups by carefully examining video and audio records taken during Problem-based learning activities. High performing groups are groups with majority members scored well in Watson Glaser II Critical Thinking Appraisal (WGCTA II) and academic achievement tests. Low performing groups are groups with majority members fail to perform in the two tests. Audio records are transcribed and analyzed using schemas adopted from past studies. Metacognitive statements are analyzed using three stages model and patterns of metacognitive are described by contexts, components, and levels for each high and low performing groups.Keywords: academic achievement, critical thinking, metacognitive, problem-based learning
Procedia PDF Downloads 28520600 'Marching into the Classroom' a Second Career in Education for Ex-Military Personnel
Authors: Mira Karnieli, Shosh Veitzman
Abstract:
In recent years, due to transitions in teacher education, professional identities are changing. In many countries, the education system is absorbing ex-military personnel. The aim of this research is to investigate the phenomenon of retired officers in Israel who choose education as a second career and the training provided. The phenomenon of retired military permanent-service officers pursuing a career in education is not unique to Israel. In the United States and the United Kingdom, for example, government-supported accelerated programs (Troops to Teachers) are run for ex-military personnel (soldiers and officers) with a view to their entry into the education system. These programs direct the ex-military personnel to teacher education and training courses to obtain teaching certification. The present study, however, focused specifically on senior officers who have a full academic education, most of the participants hold second degrees in a variety of fields. They all retired from a rich military career, including roles in command, counseling, training, guidance, and management. The research included 80 participants' men and women. Data was drowning from in-depth interviews and questioner. The conceptual framework which guided this study was mixed methods. The qualitative-phenomenological methodology, using in-depth interviews, and a questioner. The study attempted to understand the motives and personal perceptions behind the choice of teaching. Were they able to identify prior skills that they had accumulated throughout their years of service? What were these skills? In addition, which (if any) would stand them in good stead for a career in teaching? In addition, they were asked how they perceived the training program’s contribution to their professionalization and integration in the education system. The data was independently coded by the researchers. Subsequently, the data was discussed by both researchers, codes were developed, and conceptual categories were formed. Analysis of the data shows this population to be characterized by the high motivation for studying, professionalization, contribution to society and a deep sense of commitment to education. All of them had a profession which they acquired in the past which is not related to education. However, their motives for choosing to teach are related to their wish to give expression to their leadership experience and ability, the desire to have an influence and to bring about change. This is derived from personal commitment, as well as from a worldview and value system that are supportive of education. In other words, they feel committed and act out of a sense of vocation. In conclusion, it will emphasize that all the research participants began working in education immediately upon completing the training program. They perceived this path as a way of realizing a mission despite the low status of the teaching profession in Israel and low teacher salaries.Keywords: cross-boundary skills, lifelong learning, professional identities, teaching as a second career, training program
Procedia PDF Downloads 19820599 Concept-Based Assessment in Curriculum
Authors: Nandu C. Nair, Kamal Bijlani
Abstract:
This paper proposes a concept-based assessment to track the performance of the students. The idea behind this approach is to map the exam questions with the concepts learned in the course. So at the end of the course, each student will know how well he learned each concept. This system will give a self assessment for the students as well as instructor. By analyzing the score of all students, instructor can decide some concepts need to be teaching again or not. The system’s efficiency is proved using three courses from M-tech program in E-Learning technologies and results show that the concept-wise assessment improved the score in final exam of majority students on various courses.Keywords: assessment, concept, examination, question, score
Procedia PDF Downloads 47020598 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 14020597 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations
Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal
Abstract:
As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting
Procedia PDF Downloads 10720596 The Moderating Role of Perceived University Environment in the Formation of Entrepreneurial Intention among Creative Industries Students
Authors: Patrick Ebong Ebewo
Abstract:
The trend of high unemployment levels globally is a growing concern, which suggests that university students especially those studying the creative industries are most likely to face unemployment upon completion of their studies. Therefore the effort of university in fostering entrepreneurial knowledge is equally important to the development of student’s soft skill. The purpose of this paper is to assess the significance of perceived university environment and perceived educational support that influencing University students’ intention in starting their own business in the future. Thus, attempting to answer the question 'How does perceived university environment affect students’ attitude towards entrepreneurship as a career option, perceived entrepreneurial abilities, subjective norm and entrepreneurial intentions?' The study is based on the Theory of Planned Behaviour model adapted from previous studies and empirically tested on graduates at the Tshwane University of Technology. A sample of 150 graduates from the Arts and Design graduates took part in the study and data collected were analysed using structural equation modelling (SEM). Our findings seem to suggest the indirect impact of perceived university environment on entrepreneurial intention through perceived environment support and perceived entrepreneurial abilities. Thus, any increase in perceived university environment might influence students to become entrepreneurs. Based on these results, it is recommended that: (a) Tshwane University of Technology and other universities of technology should establish an ‘Entrepreneurship Internship Programme’ as a tool for stimulated work integrated learning. Post-graduation intervention could be implemented by the development of a ‘Graduate Entrepreneurship Program’ which should be embedded in the Bachelor of Technology (B-Tech now Advance Diploma) and Postgraduate courses; (b) Policymakers should consider the development of a coherent national policy framework that addresses entrepreneurship for the Arts/creative industries sector. This would create the enabling environment for the evolution of Higher Education Institutions from merely Teaching, Learning & Research to becoming drivers for creative entrepreneurship.Keywords: business venture, entrepreneurship education, entrepreneurial intent, university environment
Procedia PDF Downloads 33720595 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 12520594 Exploring Factors Affecting the Implementation of Flexible Curriculum in Information Systems Higher Education
Authors: Clement C. Aladi, Zhaoxia Yi
Abstract:
This study investigates factors influencing the implementation of flexible curricula in e-learning in Information Systems (IS) higher education. Drawing from curriculum theorists and contemporary literature, and using the Technology, Pedagogy, and Content Knowledge (TPACK) framework, it explores teacher-related challenges and their impact on curriculum flexibility implementation. By using the PLS-SEM, the study uncovers these factors and hopes to contribute to enhancing curriculum flexibility in delivering online and blended learning in IS higher education.Keywords: flexible curriculum, online learning, e-learning, technology
Procedia PDF Downloads 5620593 Efficacy of Social-emotional Learning Programs Amongst First-generation Immigrant Children in Canada and The United States- A Scoping Review
Authors: Maria Gabrielle "Abby" Dalmacio
Abstract:
Social-emotional learning is a concept that is garnering more importance when considering the development of young children. The aim of this scoping literature review is to explore the implementation of social-emotional learning programs conducted with first-generation immigrant young children ages 3-12 years in North America. This review of literature focuses on social-emotional learning programs taking place in early childhood education centres and elementary school settings that include the first-generation immigrant children population to determine if and how their understanding of social-emotional learning skills may be impacted by the curriculum being taught through North American educational pedagogy. Research on early childhood education and social-emotional learning reveals the lack of inter-cultural adaptability in social emotional learning programs and the potential for immigrant children as being assessed as developmentally delayed due to programs being conducted through standardized North American curricula. The results of this review point to a need for more research to be conducted with first-generation immigrant children to help reform social-emotional learning programs to be conducive for each child’s individual development. There remains to be a gap of knowledge in the current literature on social-emotional learning programs and how educators can effectively incorporate the intercultural perspectives of first-generation immigrant children in early childhood education.Keywords: early childhood education, social-emotional learning, first-generation immigrant children, north america, inter-cultural perspectives, cultural diversity, early educational frameworks
Procedia PDF Downloads 10120592 Choral Singers' Preference for Expressive Priming Techniques
Authors: Shawn Michael Condon
Abstract:
Current research on teaching expressivity mainly involves instrumentalists. This study focuses on choral singers’ preference of priming techniques based on four methods for teaching expressivity. 112 choral singers answered the survey about their preferred methods for priming expressivity (vocal modelling, using metaphor, tapping into felt emotions, and drawing on past experiences) in three conditions (active, passive, and instructor). Analysis revealed higher preference for drawing on past experience among more experienced singers. The most preferred technique in the passive and instructor roles was vocal modelling, with metaphors and tapping into felt emotions favoured in an active role. Priming techniques are often used in combination with other methods to enhance singing technique or expressivity and are dependent upon the situation, repertoire, and the preferences of the instructor and performer.Keywords: emotion, expressivity, performance, singing, teaching
Procedia PDF Downloads 15520591 Teachers' Views on Mother Tongue Language Curriculum Development
Authors: Wai Ha Leung
Abstract:
Mother tongue language (MTL) curriculum is core to school education in most countries/regions' school curriculum. Through mother tongue language learning, students are expected to enhance their understanding of the nation's culture and foster the sense of cultural and ethnic identity. However, MTL education in Hong Kong is complicated by the colonial history. This study examines Hong Kong Chinese language teachers' perceptions of MTL education, and the implication on MTL curriculum development. The questionnaire was administrated to 97 teachers, and interviews were carried out on 17 teachers. Usually, MTL is both the tool with which knowledge and skills are taught and learned and the vehicle for students to learn about the traditions of the countries' literature and culture. In Hong Kong, 95% of the population is of Chinese descent. Traditionally, education in China was a mixture of philosophy, history, politics and literacy. Chinese as an MTL subject in pre-colonial Hong Kong has always been assigned the mission of developing students' cultural identity in addition to the development of linguistic proficiency. During the colonial period, the Chinese Language curriculum shifted to be more language skills based with less emphasis on Chinese culture and moral education. After the sovereignty of Hong Kong was returned to China in 1997, although a new curriculum was implemented in 2002, teaching and learning in school as well as public examinations seem to be remaining language skills oriented instead of culturally based. This deviation from the trend of both Chinese traditional education and global mother tongue language education makes some Chinese language teachers feel confused. In addition, there is comment that in general Hong Kong students' Chinese language proficiency is becoming weaker and weaker in recent years. Thus, effectiveness of the skills oriented language curriculum has come under question. How a language teacher views the aims and objectives of the language subject he or she is teaching has a direct effect on the curriculum delivery and pedagogies used. It is, therefore, important to investigate what is the language teachers' perception of MTL education, and whether the current school curriculum can meet the teachers' expectation as well as achieve the aims of MTL education. Given this context, this study explored the views of Hong Kong Chinese language teachers on MTL education. The data indicate that teachers showed a strong resentment towards the current curriculum. Results may have implications on mother tongue language curriculum development.Keywords: Chinese language education, curriculum development, mother tongue language education, teachers' perception
Procedia PDF Downloads 48920590 The Achievement Model of University Social Responsibility
Authors: Le Kang
Abstract:
On the research question of 'how to achieve USR', this contribution reflects the concept of university social responsibility, identify three achievement models of USR as the society - diversified model, the university-cooperation model, the government - compound model, also conduct a case study to explore characteristics of Chinese achievement model of USR. The contribution concludes with discussion of how the university, government and society balance demands and roles, make necessarily strategic adjustment and innovative approach to repair the shortcomings of each achievement model.Keywords: modern university, USR, achievement model, compound model
Procedia PDF Downloads 75820589 The Development of Learning Outcomes and Learning Management Process of Basic Education along Thailand, Laos, and Cambodia Common Border for the ASEAN Community Preparation
Authors: Ladda Silanoi
Abstract:
One of the main purposes in establishment of ASEAN Community is educational development. All countries in ASEAN shall then prepare for plans and strategies for country development. Therefore, Thailand set up the policy concerning educational management for all educational institutions to understand about ASEAN Community. However, some educational institutions lack of precision in determining the curriculums of ASEAN Community, especially schools in rural areas, for example, schools along the common border with Laos, and Cambodia. One of the effective methods to promote the precision in ASEAN Community is to design additional learning courses. The important process of additional learning courses design is to provide learning outcomes of ASEAN Community for course syllabus determination. Therefore, the researcher is interested in developing teachers in the schools of common border with Laos, and Cambodia to provide learning outcomes and learning process. This research has the objective of developing the learning outcomes and learning process management of basic education along Thailand, Laos, and Cambodia Common Border for the ASEAN Community Preparation. Research methodology consists of 2 steps. Step 1: Delphi Technique was used to provide guidelines in development of learning outcomes and learning process. Step 2: Action Research procedures was employed to study the result of additional learning courses design. Result of the study: By using Delphi technique, consensus is expected to be achieved, from 50 experts in the study within 3 times of the survey. The last survey found that experts’ opinions were compatible on every item (inter-quartile range = 0) leading to the arrangement of training courses in step of Action Research. The result from the workshop found that teachers in schools of Srisaket and Bueng Kan provinces could be able to provide learning outcomes of all courses.Keywords: learning outcome and learning process, basic education, ASEAN Community preparation, Thailand Laos and Cambodia common border
Procedia PDF Downloads 43020588 Applying Multiplicative Weight Update to Skin Cancer Classifiers
Authors: Animish Jain
Abstract:
This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer
Procedia PDF Downloads 7920587 A Comparison of the First Language Vocabulary Used by Indonesian Year 4 Students and the Vocabulary Taught to Them in English Language Textbooks
Authors: Fitria Ningsih
Abstract:
This study concerns on the process of making corpus obtained from Indonesian year 4 students’ free writing compared to the vocabulary taught in English language textbooks. 369 students’ sample writings from 19 public elementary schools in Malang, East Java, Indonesia and 5 selected English textbooks were analyzed through corpus in linguistics method using AdTAT -the Adelaide Text Analysis Tool- program. The findings produced wordlists of the top 100 words most frequently used by students and the top 100 words given in English textbooks. There was a 45% match between the two lists. Furthermore, the classifications of the top 100 most frequent words from the two corpora based on part of speech found that both the Indonesian and English languages employed a similar use of nouns, verbs, adjectives, and prepositions. Moreover, to see the contextualizing the vocabulary of learning materials towards the students’ need, a depth-analysis dealing with the content and the cultural views from the vocabulary taught in the textbooks was discussed through the criteria developed from the checklist. Lastly, further suggestions are addressed to language teachers to understand the students’ background such as recognizing the basic words students acquire before teaching them new vocabulary in order to achieve successful learning of the target language.Keywords: corpus, frequency, English, Indonesian, linguistics, textbooks, vocabulary, wordlists, writing
Procedia PDF Downloads 18720586 Date Palm Fruits from Oman Attenuates Cognitive and Behavioral Defects and Reduces Inflammation in a Transgenic Mice Model of Alzheimer's Disease
Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein
Abstract:
Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioral deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Date palm fruits contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani date palm fruits on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% Date palm fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analyzed. APPsw/Tg2576 mice that were fed a standard chow diet without dates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, PPsw/Tg2576 mice that were fed a diet containing 2% and 4% dates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Our results suggest that dietary supplementation with dates may slow the progression of cognitive and behavioral impairments in AD. The exact mechanism is still unclear and further extensive research needed.Keywords: Alzheimer's disease, date palm fruits, Oman, cognitive decline, memory loss, anxiety, inflammation
Procedia PDF Downloads 42320585 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation
Procedia PDF Downloads 19120584 2016 Taiwan's 'Health and Physical Education Field of 12-Year Basic Education Curriculum Outline (Draft)' Reform and Its Implications
Authors: Hai Zeng, Yisheng Li, Jincheng Huang, Chenghui Huang, Ying Zhang
Abstract:
Children are strong; the country strong, the development of children Basketball is a strategic advantage. Common forms of basketball equipment has been difficult to meet the needs of young children teaching the game of basketball, basketball development for 3-6 years old children in the form of appropriate teaching aids is a breakthrough basketball game teaching children bottlenecks, improve teaching critical path pleasure, but also the development of early childhood basketball a necessary requirement. In this study, literature, questionnaires, focus group interviews, comparative analysis, for domestic and foreign use of 12 kinds of basketball teaching aids (cloud computing MINI basketball, adjustable basketball MINI, MINI basketball court, shooting assist paw print ball, dribble goggles, dribbling machine, machine cartoon shooting, rebounding machine, against the mat, elastic belt, ladder, fitness ball), from fun and improve early childhood shooting technique, dribbling technology, as well as offensive and defensive rebounding against technology conduct research on conversion technology. The results show that by using appropriate forms of teaching children basketball aids, can effectively improve children's fun basketball game, targeted to improve a technology, different types of aids from different perspectives enrich the connotation of children basketball game. Recommended for children of color psychology, cartoon and environmentally friendly material production aids, and increase research efforts basketball aids children, encourage children to sports teachers aids applications.Keywords: health and physical education field of curriculum outline, health fitness, sports and health curriculum reform, Taiwan, twelve years basic education
Procedia PDF Downloads 39320583 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 4220582 From Mathematics Project-Based Learning to Commercial Product Using Geometer’s Sketchpad (GSP)
Authors: Krongthong Khairiree
Abstract:
The purpose of this research study is to explore mathematics project-based learning approach and the use of technology in the context of school mathematics in Thailand. Data of the study were collected from 6 sample secondary schools and the students were 6-14 years old. Research findings show that through mathematics project-based learning approach and the use of GSP, students were able to make mathematics learning fun and challenging. Based on the students’ interviews they revealed that, with GSP, they were able to visualize and create graphical representations, which will enable them to develop their mathematical thinking skills, concepts and understanding. The students had fun in creating variety of graphs of functions which they can not do by drawing on graph paper. In addition, there are evidences to show the students’ abilities in connecting mathematics to real life outside the classroom and commercial products, such as weaving, patterning of broomstick, and ceramics design.Keywords: mathematics, project-based learning, Geometer’s Sketchpad (GSP), commercial products
Procedia PDF Downloads 33620581 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction
Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage
Abstract:
Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention
Procedia PDF Downloads 7220580 Methodological Support for Teacher Training in English Language
Authors: Comfort Aina
Abstract:
Modern English, as we all know it to be a foreign language to many, will require training and re-training on the path of the teacher and learners alike. As a teacher, you cannot give that which you do not have. Teachers, many of whom are non-native speakers, are required to be competent in solving problems occurring in the teaching and learning processes. They should be conscious of up to date information about new approaches, methods, techniques as well as they should be capable in the use of information and communication technology (ICT) and, of course, should work on the improvement of their language components and competence. For teachers to be successful in these goals, they need to be encouraged and motivated. So, for EFL teachers to be successful, they are enrolled to in-service teacher training, ICT training, some of the training they undergo and the benefits accrued to it will be the focus of the paper.Keywords: training, management, method, english language, EFL teachers
Procedia PDF Downloads 11520579 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models
Authors: Rodrigo Aguiar, Adelino Ferreira
Abstract:
Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.Keywords: machine learning, artificial intelligence, frequency of accidents, road safety
Procedia PDF Downloads 89