Search results for: fluid model
15565 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow
Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam
Abstract:
Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.Keywords: water hammer, hydraulic transient, pipe systems, characteristics method
Procedia PDF Downloads 13615564 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 33915563 A Mathematical Model for a Two-Stage Assembly Flow-Shop Scheduling Problem with Batch Delivery System
Authors: Saeedeh Ahmadi Basir, Mohammad Mahdavi Mazdeh, Mohammad Namakshenas
Abstract:
Manufacturers often dispatch jobs in batches to reduce delivery costs. However, sending several jobs in batches can have a negative effect on other scheduling-related objective functions such as minimizing the number of tardy jobs which is often used to rate managers’ performance in many manufacturing environments. This paper aims to minimize the number of weighted tardy jobs and the sum of delivery costs of a two-stage assembly flow-shop problem in a batch delivery system. We present a mixed-integer linear programming (MILP) model to solve the problem. As this is an MILP model, the commercial solver (the CPLEX solver) is not guaranteed to find the optimal solution for large-size problems at a reasonable amount of time. We present several numerical examples to confirm the accuracy of the model.Keywords: scheduling, two-stage assembly flow-shop, tardy jobs, batched delivery system
Procedia PDF Downloads 46015562 Apricot Insurance Portfolio Risk
Authors: Kasirga Yildirak, Ismail Gur
Abstract:
We propose a model to measure hail risk of an Agricultural Insurance portfolio. Hail is one of the major catastrophic event that causes big amount of loss to an insurer. Moreover, it is very hard to predict due to its strange atmospheric characteristics. We make use of parcel based claims data on apricot damage collected by the Turkish Agricultural Insurance Pool (TARSIM). As our ultimate aim is to compute the loadings assigned to specific parcels, we build a portfolio risk model that makes use of PD and the severity of the exposures. PD is computed by Spherical-Linear and Circular –Linear regression models as the data carries coordinate information and seasonality. Severity is mapped into integer brackets so that Probability Generation Function could be employed. Individual regressions are run on each clusters estimated on different criteria. Loss distribution is constructed by Panjer Recursion technique. We also show that one risk-one crop model can easily be extended to the multi risk–multi crop model by assuming conditional independency.Keywords: hail insurance, spherical regression, circular regression, spherical clustering
Procedia PDF Downloads 25115561 Closest Possible Neighbor of a Different Class: Explaining a Model Using a Neighbor Migrating Generator
Authors: Hassan Eshkiki, Benjamin Mora
Abstract:
The Neighbor Migrating Generator is a simple and efficient approach to finding the closest potential neighbor(s) with a different label for a given instance and so without the need to calibrate any kernel settings at all. This allows determining and explaining the most important features that will influence an AI model. It can be used to either migrate a specific sample to the class decision boundary of the original model within a close neighborhood of that sample or identify global features that can help localising neighbor classes. The proposed technique works by minimizing a loss function that is divided into two components which are independently weighted according to three parameters α, β, and ω, α being self-adjusting. Results show that this approach is superior to past techniques when detecting the smallest changes in the feature space and may also point out issues in models like over-fitting.Keywords: explainable AI, EX AI, feature importance, counterfactual explanations
Procedia PDF Downloads 19215560 Seismic Performance of Reinforced Concrete Frame Structure Based on Plastic Rotation
Authors: Kahil Amar, Meziani Faroudja, Khelil Nacim
Abstract:
The principal objective of this study is the evaluation of the seismic performance of reinforced concrete frame structures, taking into account of the behavior laws, reflecting the real behavior of materials, using CASTEM2000 software. A finite element model used is based in modified Takeda model with Timoshenko elements for columns and beams. This model is validated on a Vecchio experimental reinforced concrete (RC) frame model. Then, a study focused on the behavior of a RC frame with three-level and three-story in order to visualize the positioning the plastic hinge (plastic rotation), determined from the curvature distribution along the elements. The results obtained show that the beams of the 1st and 2nd level developed a very large plastic rotations, or these rotations exceed the values corresponding to CP (Collapse prevention with cp qCP = 0.02 rad), against those developed at the 3rd level, are between IO and LS (Immediate occupancy and life Safety with qIO = 0.005 rad and rad qLS = 0.01 respectively), so the beams of first and second levels submit a very significant damage.Keywords: seismic performance, performance level, pushover analysis, plastic rotation, plastic hinge
Procedia PDF Downloads 13015559 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco
Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad
Abstract:
The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility
Procedia PDF Downloads 17715558 The Organizational Structure of the Special Purpose Vehicle in Public-Private Partnership Projects
Authors: Samuel Capintero
Abstract:
Public-private partnerships (PPP) arrangements have emerged all around the world as a response to infrastructure deficits and the need to refurbish existing infrastructure. During the last decade, the Spanish companies have dominated the international market of PPP projects in Latin America, Western Europe and North America, particularly in the transportation sector. Arguably, one of the most influential factors has been the organizational structure of the concessionaire implemented by the Spanish consortiums. The model followed by most Spanish groups has been a bundled model, where the concessionaire integrates the functions of concessionaire, construction and operator companies. This paper examines this model and explores how it has provided the Spanish companies with a comparative advantage in the international PPP market.Keywords: PPP, project management, concessionaire, concession, infrastructure, construction
Procedia PDF Downloads 38515557 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 42815556 Effect on Occupational Health Safety and Environment at Work from Metal Handicraft Using Rattanakosin Local Wisdom
Authors: Witthaya Mekhum, Waleerak Sittisom
Abstract:
This research investigated the effect on occupational health safety and environment at work from metal handicraft using Rattanakosin local wisdom focusing on pollution, accidents, and injuries from work. The sample group in this study included 48 metal handicraft workers in 5 communities by using questionnaires and interview to collect data. The evaluation form TISI 18001 was used to analyze job safety analysis (JSA). The results showed that risk at work reduced after applying the developed model. Banbu Community produces alloy bowl rubbed with stone. The high risk process is melting and hitting process. Before the application, the work risk was 82.71%. After the application of the developed model, the work risk was reduced to 50.61%. Banbart Community produces monk’s food bowl. The high risk process is blow pipe welding. Before the application, the work risk was 93.59%. After the application of the developed model, the work risk was reduced to 48.14%. Bannoen Community produces circle gong. The high risk process is milling process. Before the application, the work risk was 85.18%. After the application of the developed model, the work risk was reduced to 46.91%. Teethong Community produces gold leaf. The high risk process is hitting and spreading process. Before the application, the work risk was 86.42%. After the application of the developed model, the work risk was reduced to 64.19%. Ban Changthong Community produces gold ornament. The high risk process is gold melting process. Before the application, the work risk was 67.90%. After the application of the developed model, the work risk was reduced to 37.03%. It can be concluded that with the application of the developed model, the work risk of 5 communities was reduced in the 3 main groups: (1) Work illness reduced by 16.77%; (2) Pollution from work reduced by 10.31%; (3) Accidents and injuries from work reduced by 15.62%.Keywords: occupational health, safety, local wisdom, Rattanakosin
Procedia PDF Downloads 44015555 Facial Emotion Recognition Using Deep Learning
Authors: Ashutosh Mishra, Nikhil Goyal
Abstract:
A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.Keywords: facial recognition, computational intelligence, convolutional neural network, depth map
Procedia PDF Downloads 23115554 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model
Authors: Sujay Kotwale, Ramasubba Reddy M.
Abstract:
Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost
Procedia PDF Downloads 11915553 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran
Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour
Abstract:
Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.Keywords: wellbore stability, movement, stress, instability
Procedia PDF Downloads 20315552 Model Development for Real-Time Human Sitting Posture Detection Using a Camera
Authors: Jheanel E. Estrada, Larry A. Vea
Abstract:
This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.Keywords: posture, spinal points, gyroscope, image processing, ergonomics
Procedia PDF Downloads 32915551 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.Keywords: solar system, agricultural greenhouse, heating, storage
Procedia PDF Downloads 7715550 GUI Design of Mathematical Model of Cardiovascular-Respiratory System
Authors: Ntaganda J.M., Maniraguha J.D., Mukeshimana S., Harelimana D, Bizimungu T., Ruataganda E.
Abstract:
This paper presents the design of Graphic User Interface (GUI) in Matlab as interaction tool between human and machine. The designed GUI can be used by medical doctors and other experts particularly the physiologists. Matlab packages and estimated parameters of the mathematical model of cardiovascular-respiratory system developed in Rwandan context are used in GUI. The ordinary differential equations (ODE’s) govern a mathematical model in designing GUI in Matlab and a window that sets model estimated parameters and the measured parameters by any user. For healthy subject, these measured parameters include heart rate, systolic blood and diastolic blood pressure, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide in arterial blood, concentration of bound and dissolved oxygen in the mixed venous blood entering the lungs, and concentration of bound and dissolved carbon dioxide in the mixed venous blood entering the lungs. The results of numerical test give a consistent appearance as empirically known results.Keywords: Graphic User Interface, mathematical model, cardiovascur-respiratory system, walking physical activity, blood pressure, oxygen
Procedia PDF Downloads 11815549 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 13615548 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 24315547 Computation of Induction Currents in a Set of Dendrites
Authors: R. B. Mishra, Sudhakar Tripathi
Abstract:
In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.Keywords: currents, dendrites, induction, simulation
Procedia PDF Downloads 39415546 Biophotovoltaics in 3D: Simplifying Concepts
Authors: Mary Booth
Abstract:
Biophotovoltaics is a method of green energy generation derived from exposing plants to lights. Its vast potential is hampered by the public’s relative ignorance of its existence. This work aims to formalize the principles of the physical processes of biophotovoltaics into a comprehensible visual software model, thus amplifying the human thought process. The methods used involve initially crafting a scale model of a working biophotovoltaic system from household materials inspired by the work of Paolo Bombelli. The scale model is then programmed into a system-level simulation, wherein a 3D animation dissects the system and its general energy generation process. The completed 3D system-level simulation ultimately creates a simplified visual understanding of the complex principles of the biophotovoltaic system.Keywords: 3D, biophotovoltaics, render
Procedia PDF Downloads 8115545 Modeling of Bed Level Changes in Larak Island
Authors: Saeed Zeinali, Nasser Talebbeydokhti, Mehdi Saeidian, Shahrad Vosough
Abstract:
In this article, bathymetry changes have been studied as a case study for Larak Island, located in The South of Iran. The advanced 2D model of Mike21 has been used for this purpose. A simple procedure has been utilized in this model. First, the hydrodynamic (HD) module of Mike21 has been used to obtain the required output for sediment transport model (ST module). The ST module modeled the area for tidal currents only. Bed level changes are resulted by series of modeling for both HD and ST module in 3 months time step. The final bathymetry in each time step is used as the primary bathymetry for next time step. This consecutive procedure been continued until bathymetry for the year 2020 is obtained.Keywords: bed level changes, Larak Island, hydrodynamic, sediment transport
Procedia PDF Downloads 26715544 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor
Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan
Abstract:
The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management
Procedia PDF Downloads 24415543 Nonlinear Pollution Modelling for Polymeric Outdoor Insulator
Authors: Rahisham Abd Rahman
Abstract:
In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions.Keywords: electric field distributions, pollution layer, dynamic model, polymeric outdoor insulators, finite element method (FEM)
Procedia PDF Downloads 40015542 Enhancing Heavy Oil Recovery: Experimental Insights into Low Salinity Polymer in Sandstone Reservoirs
Authors: Intisar, Khalifa, Salim, Al Busaidi
Abstract:
Recently, the synergic combination of low salinity water flooding with polymer flooding has been a subject of paramount interest for the oil industry. Numerous studies have investigated the efficiency of enhanced oil recovery using low salinity polymer flooding (LSPF). However, there is no clear conclusion that can explain the incremental oil recovery, determine the main factors controlling the oil recovery process, and define the relative contribution of rock/fluids or fluid/fluid interactions to extra oil recovery. Therefore, this study aims to perform a systematic investigation of the interactions between oil, polymer, low salinity and sandstone rock surface from pore to core scale during LSPF. Partially hydrolyzed polyacrylamide (HPAM) polymer, Boise outcrop, a crude oil sample and reservoir cores from an Omani oil field, and brine at two different salinities were used in the study. Several experimental measurements including static bulk measurements of polymer solutions prepared with brines of high and low salinities, single phase displacement experiments, along with rheological, total organic carbon and ion chromatography measurements to analyze ion exchange reactions, polymer adsorption, and viscosity loss were used. In addition, two-phase experiments were performed to demonstrate the oil recovery efficiency of LSPF. The results revealed that the incremental oil recovery from LSPF was attributed to the combination of the reduction in the water-oil mobility ratio, an increase in the repulsion forces between crude oil/brine/rock interfaces and an increase in pH of the aqueous solution. In addition, lowering the salinity of the make-up brine resulted in a larger conformation (expansion) of the polymer molecules, which in turn resulted in less adsorption and a greater in-situ viscosity without any negative impact on injectivity. This plays a positive role in the oil displacement process. Moreover, the loss of viscosity in the effluent of polymer solutions was lower in low-salinity than in high-salinity brine, indicating that an increase in cations concentration (mainly driven by Ca2+ ions) has stronger effect on the viscosity of high-salinity polymer solution compared with low-salinity polymer.Keywords: polymer, heavy oil, low salinity, COBR interactions
Procedia PDF Downloads 9315541 Aerodynamic Investigation of Rear Vehicle by Geometry Variations on the Backlight Angle
Authors: Saud Hassan
Abstract:
This paper shows simulation for the prediction of the flow around the backlight angle of the passenger vehicle. The CFD simulations are carried out on different car models. The Ahmed model “bluff body” used as the stander model to study aerodynamics of the backlight angle. This paper described the airflow over the different car models with different backlight angles and also on the Ahmed model to determine the trailing vortices with the varying backlight angle of a passenger vehicle body. The CFD simulation is carried out with the Ahmed body which has simplified car model mainly used in automotive industry to investigate the flow over the car body surface. The main goal of the simulation is to study the behavior of trailing vortices of these models. In this paper the air flow over the slant angle of 0,5o, 12.5o, 20o, 30o, 40o are considered. As investigating on the rear backlight angle two dimensional flows occurred at the rear slant, on the other hand when the slant angle is 30o the flow become three dimensional. Above this angle sudden drop occurred in drag.Keywords: aerodynamics, Ahemd vehicle , backlight angle, finite element method
Procedia PDF Downloads 78115540 RBF Modelling and Optimization Control for Semi-Batch Reactors
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors
Procedia PDF Downloads 46815539 Multiphase Coexistence for Aqueous System with Hydrophilic Agent
Authors: G. B. Hong
Abstract:
Liquid-Liquid Equilibrium (LLE) data are measured for the ternary mixtures of water + 1-butanol + butyl acetate and quaternary mixtures of water + 1-butanol + butyl acetate + glycerol at atmospheric pressure at 313.15 K. In addition, isothermal Vapor–Liquid–Liquid Equilibrium (VLLE) data are determined experimentally at 333.15 K. The region of heterogeneity is found to increase as the hydrophilic agent (glycerol) is introduced into the aqueous mixtures. The experimental data are correlated with the NRTL model. The predicted results from the solution model with the model parameters determined from the constituent binaries are also compared with the experimental values.Keywords: LLE, VLLE, hydrophilic agent, NRTL
Procedia PDF Downloads 24315538 A Rapid Prototyping Tool for Suspended Biofilm Growth Media
Authors: Erifyli Tsagkari, Stephanie Connelly, Zhaowei Liu, Andrew McBride, William Sloan
Abstract:
Biofilms play an essential role in treating water in biofiltration systems. The biofilm morphology and function are inextricably linked to the hydrodynamics of flow through a filter, and yet engineers rarely explicitly engineer this interaction. We develop a system that links computer simulation and 3-D printing to optimize and rapidly prototype filter media to optimize biofilm function with the hypothesis that biofilm function is intimately linked to the flow passing through the filter. A computational model that numerically solves the incompressible time-dependent Navier Stokes equations coupled to a model for biofilm growth and function is developed. The model is imbedded in an optimization algorithm that allows the model domain to adapt until criteria on biofilm functioning are met. This is applied to optimize the shape of filter media in a simple flow channel to promote biofilm formation. The computer code links directly to a 3-D printer, and this allows us to prototype the design rapidly. Its validity is tested in flow visualization experiments and by microscopy. As proof of concept, the code was constrained to explore a small range of potential filter media, where the medium acts as an obstacle in the flow that sheds a von Karman vortex street that was found to enhance the deposition of bacteria on surfaces downstream. The flow visualization and microscopy in the 3-D printed realization of the flow channel validated the predictions of the model and hence its potential as a design tool. Overall, it is shown that the combination of our computational model and the 3-D printing can be effectively used as a design tool to prototype filter media to optimize biofilm formation.Keywords: biofilm, biofilter, computational model, von karman vortices, 3-D printing.
Procedia PDF Downloads 14215537 The Role of ICT for Income Inequality: The Model and the Simulations
Authors: Shoji Katagiri
Abstract:
This paper is to clarify the relationship between ICT and income inequality. To do so, we develop the general equilibrium model with ICT investment, obtain the equilibrium solutions, and then simulate the model with these solutions for some OECD countries. As a result, generally, during the corresponding periods we confirm that the relationship between ICT investment and income inequality is positive. In this mode, the increment of the ratio of ICT investment to the aggregated investment in stock enhances the capital’s share of income, and finally leads to income inequality such as the increase of the share of the top decile income. Although we confirm the positive relationship between ICT investment and income inequality, the upward trend for that relationship depends on the values of parameters for the making use of the simulations and these parameters are not deterministic in the magnitudes on the calculated results for the simulations.Keywords: ICT, inequality, capital accumulation, technology
Procedia PDF Downloads 22115536 Performance Evaluation of Sand Casting Manufacturing Plant with WITNESS
Authors: Aniruddha Joshi
Abstract:
This paper discusses a simulation study of automated sand casting production system. Therefore, the first aims of this study is development of automated sand casting process model and analyze this model with a simulation software Witness. Production methodology aims to improve overall productivity through elimination of wastes and that leads to improve quality. Integration of automation with Simulation is beneficial to identify the obstacles in implementation and to take appropriate options to implement successfully. For this integration, there are different Simulation Software’s. To study this integration, with the help of “WITNESS” Simulation Software the model is created. This model is based on literature review. The input parameters are Setup Time, Number of machines, cycle time and output parameter is number of castings, avg, and time and percentage usage of machines. Obtained results are used for Statistical Analysis. This analysis concludes the optimal solution to get maximum output.Keywords: automated sand casting production system, simulation, WITNESS software, performance evaluation
Procedia PDF Downloads 789