Search results for: Features of Bitcoin
1305 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space
Authors: Xin Chen
Abstract:
It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency
Procedia PDF Downloads 771304 Spatial Distribution and Time Series Analysis of COVID-19 Pandemic in Italy: A Geospatial Perspective
Authors: Muhammad Farhan Ul Moazzam, Tamkeen Urooj Paracha, Ghani Rahman, Byung Gul Lee, Nasir Farid, Adnan Arshad
Abstract:
The novel coronavirus pandemic disease (COVID-19) affected the whole globe, though there is a lack of clinical studies and its epidemiological features. But as per the observation, it has been seen that most of the COVID-19 infected patients show mild to moderate symptoms, and they get better without any medical assistance due to a better immune system to generate antibodies against the novel coronavirus. In this study, the active cases, serious cases, recovered cases, deaths and total confirmed cases had been analyzed using the geospatial inverse distance weightage technique (IDW) within the time span of 2nd March to 3rd June 2020. As of 3rd June, the total number of COVID-19 cases in Italy were 231,238, total deaths 33,310, serious cases 350, recovered cases 158,951, and active cases were 39,177, which has been reported by the Ministry of Health, Italy. March 2nd-June 3rd, 2020 a sum of 231,238 cases has been reported in Italy out of which 38.68% cases reported in the Lombardia region with a death rate of 18%, which is high from its national mortality rate followed by Emilia-Romagna (14.89% deaths), Piemonte (12.68% deaths), and Vento (10% deaths). As per the total cases in the region, the highest number of recoveries has been observed in Umbria (92.52%), followed by Basilicata (87%), Valle d'Aosta (86.85%), and Trento (84.54%). The COVID-19 evolution in Italy has been particularly found in the major urban area, i.e., Rome, Milan, Naples, Bologna, and Florence. Geospatial technology played a vital role in this pandemic by tracking infected patient, active cases, and recovered cases. Geospatial techniques are very important in terms of monitoring and planning to control the pandemic spread in the country.Keywords: COVID-19, public health, geospatial analysis, IDW, Italy
Procedia PDF Downloads 1541303 Vertebral Pain Features in Women of Different Age Depending on Body Mass Index
Authors: Vladyslav Povoroznyuk, Tetiana Orlуk, Nataliia Dzerovych
Abstract:
Introduction: Back pain is an extremely common health care problem worldwide. Many studies show a link between an obesity and risk of lower back pain. The aim is to study correlation and peculiarities of vertebral pain in women of different age depending on their anthropometric indicators. Materials: 1886 women aged 25-89 years were examined. The patients were divided into groups according to age (25-44, 45-59, 60-74, 75-89 years old) and body mass index (BMI: to 18.4 kg/m2 (underweight), 18.5-24.9 kg/m2 (normal), 25-30 kg/m2 (overweight) and more than 30.1 kg/m2 (obese). Methods: The presence and intensity of pain was evaluated in the thoracic and lumbar spine using a visual analogue scale (VAS). BMI is calculated by the standard formula based on body weight and height measurements. Statistical analysis was performed using parametric and nonparametric methods. Significant changes were considered as p <0.05. Results: The intensity of pain in the thoracic spine was significantly higher in the underweight women in the age groups of 25-44 years (p = 0.04) and 60-74 years (p=0.005). The intensity of pain in the lumbar spine was significantly higher in the women of 45-59 years (p = 0.001) and 60-74 years (p = 0.0003) with obesity. In the women of 45-74 years BMI was significantly positively correlated with the level of pain in the lumbar spine. Obesity significantly increases the relative risk of pain in the lumbar region (RR=0.07 (95% CI: 1.03-1.12; p=0.002)), while underweight significantly increases the risk of pain in the thoracic region (RR=1.21 (95% CI: 1.00-1.46; p=0.05)). Conclusion: In women, vertebral pain syndrome may be related to the anthropometric characteristics (e.g., BMI). Underweight may indirectly influence the development of pain in the thoracic spine and increase the risk of pain in this part by 1.21 times. Obesity influences the development of pain in the lumbar spine increasing the risk by 1.07 times.Keywords: body mass index, age, pain in thoracic and lumbar spine, women
Procedia PDF Downloads 3651302 Assessment of Isatin as Surface Recognition Group: Design, Synthesis and Anticancer Evaluation of Hydroxamates as Novel Histone Deacetylase Inhibitors
Authors: Harish Rajak, Kamlesh Raghuwanshi
Abstract:
Histone deacetylase (HDAC) are promising target for cancer treatment. The panobinostat (Farydak; Novartis; approved by USFDA in 2015) and chidamide (Epidaza; Chipscreen Biosciences; approved by China FDA in 2014) are the novel HDAC inhibitors ratified for the treatment of patients with multiple myeloma and peripheral T cell lymphoma, respectively. On the other hand, two other HDAC inhibitors, Vorinostat (SAHA; approved by USFDA in 2006) and Romidepsin (FK228; approved by USFDA in 2009) are already in market for the treatment of cutaneous T-cell lymphoma. Several hydroxamic acid based HDAC inhibitors i.e., belinostat, givinostat, PCI24781 and JNJ26481585 are in clinical trials. HDAC inhibitors consist of three pharmacophoric features - an aromatic cap group, zinc binding group (ZBG) and a linker chain connecting cap group to ZBG. Herein, we report synthesis, characterization and biological evaluation of HDAC inhibitors possessing substituted isatin moiety as cap group which recognize the surface of active enzyme pocket and thiosemicarbazide moiety incorporated as linker group responsible for connecting cap group to ZBG (hydroxamic acid). Several analogues were found to inhibit HDAC and cellular proliferation of Hela cervical cancer cells with GI50 values in the micro molar range. Some of the compounds exhibited promising results in vitro antiproliferative studies. Attempts were also made to establish the structure activity relationship among synthesized HDAC inhibitors.Keywords: HDAC inhibitors, hydroxamic acid derivatives, isatin derivatives, antiproliferative activity, docking
Procedia PDF Downloads 3091301 Investigations of Heavy Metals Pollution in Sediments of Small Urban Lakes in Karelia Republic
Authors: Aleksandr Medvedev, Zakhar Slukovsii
Abstract:
Waterbodies, which are located either within urban areas or nearby towns, permanently undergo anthropogenic load. The extent of the load can be determined via investigations of chemical composition of both water and sediments. Lakes, as a rule, are considered as a landscape depressions, hence they are capable of natural material accumulating, which has been delivered from the catchment area through rivers as well as temporary flows. As a result, lacustrine sediments (especially closed-basin lakes sediments) are considered as perfect archives, which are served for reconstructing past sedimentation process, assessment of the modern contamination level, and prognostication of possible ways of changing in the future. The purposes of the survey are to define a heavy metals content in lake sediments cores, which were retrieved from four urban lakes located in the southern part of Karelia Republic, and to ascertain the main sources of heavy metals input to these waterbodies. It is really crucial to be aware of heavy metals content in environment, because chemical composition of a landscape may have a significant effect on living organisms and people’s health. Sediment columns were sampled in a field with 2-cm intervals by a gravitational corer called «Limnos». The sediment samples were analyzed by inductively coupled plasma spectrometry (ICP MS) for 8 chemical elements (Pb, Cd, Zn, Cr, Ni, Cu, Mn, V). The highest concentrations of trace elements were established in the upper and middle layers of the cores. It has also been ascertained that the extent of contamination mostly depends on a remoteness of a lake from various pollution sources and features of the sources.Keywords: bottom sediments, environmental pollution, heavy metals, lakes
Procedia PDF Downloads 1431300 Electronic Device Robustness against Electrostatic Discharges
Authors: Clara Oliver, Oibar Martinez
Abstract:
This paper is intended to reveal the severity of electrostatic discharge (ESD) effects in electronic and optoelectronic devices by performing sensitivity tests based on Human Body Model (HBM) standard. We explain here the HBM standard in detail together with the typical failure modes associated with electrostatic discharges. In addition, a prototype of electrostatic charge generator has been designed, fabricated, and verified to stress electronic devices, which features a compact high voltage source. This prototype is inexpensive and enables one to do a battery of pre-compliance tests aimed at detecting unexpected weaknesses to static discharges at the component level. Some tests with different devices were performed to illustrate the behavior of the proposed generator. A set of discharges was applied according to the HBM standard to commercially available bipolar transistors, complementary metal-oxide-semiconductor transistors and light emitting diodes. It is observed that high current and voltage ratings in electronic devices not necessarily provide a guarantee that the device will withstand high levels of electrostatic discharges. We have also compared the result obtained by performing the sensitivity tests based on HBM with a real discharge generated by a human. For this purpose, the charge accumulated in the person is monitored, and a direct discharge against the devices is generated by touching them. Every test has been performed under controlled relative humidity conditions. It is believed that this paper can be of interest for research teams involved in the development of electronic and optoelectronic devices which need to verify the reliability of their devices in terms of robustness to electrostatic discharges.Keywords: human body model, electrostatic discharge, sensitivity tests, static charge monitoring
Procedia PDF Downloads 1491299 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set
Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny
Abstract:
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques
Procedia PDF Downloads 4161298 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 1021297 Taphonomy and Paleoecology of Cenomanian Oysters (Mollusca: Bivalvia) from Egypt
Authors: Ahmed El-Sabbagh, Heba Mansour, Magdy El-Hedeny
Abstract:
This study provided a taphonomic alteration and paleoecology of Cenomanian oysters from the Musabaa Salama area, south western Sinai, Egypt. Three oyster zones can be recognized in the studied area, a lower one of Amphidonte (Ceratostreon) flabellatum (lower-middle Cenomanian), a middle zone of Ilymatogyra (Afrogyra) africana (upper Cenomanian) and an upper one of Exogyra (Costagyra) olisiponensis (upper Cenomanian). Taphonomic features including disarticulation, fragmentation, encrustation and bioerosion were subjected to multivariate statistical analyses. The analyses showed that the distributions of the identified ichnospecies were greatly similar within the identified oyster zones in the Musabaa Salama section. With rare exceptions, Entobia cretacea, Gastrochaenolites torpedo and Maeandropolydora decipiens are considered as common to abundant ichnospecies within the three recorded oyster zones. In contrast, and with some exceptions, E. ovula, E. retiformis and Rogerella pattei are considered as frequent to common ichnospecies within the identified oyster zones. Other ichnospecies, including Caulostrepsis cretacea, G. orbicularis, Trypanites solitarius, E. geometrica and C. taeniola, are mostly recorded in rare to frequent occurrences. Careful investigation of these host shells and the preserved encrusters and/or bioerosion sculptures provided data concerning: 1) the substrate characteristics, 2) time of encrustation and bioerosion, 3) rate of sedimentation, 4) the planktonic productivity level, and 5) the general bathymetry and the rate of transgression across the substrate.Keywords: oysters, Cenomanian, taphonomy, palaeoecology, Sinai, Egypt
Procedia PDF Downloads 3091296 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast
Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi
Abstract:
Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature
Procedia PDF Downloads 2801295 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1261294 Studying the Establishment of Knowledge Management Background Factors at Islamic Azad University, Behshahr Branch
Authors: Mohammad Reza Bagherzadeh, Mohammad Hossein Taheri
Abstract:
Knowledge management serves as one of the great breakthroughs in information and knowledge era and given its outstanding features, successful organizations tends to adopt it. Therefore, to deal with knowledge management establishment in universities is of special importance. In this regard, the present research aims to shed lights on factors background knowledge management establishment at Islamic Azad University, Behshahr Branch (Northern Iran). Considering three factors information technology system, knowledge process system and organizational culture as a fundamental of knowledge management infrastructure, foregoing factors were evaluated individually. The present research was conducted in descriptive-survey manner and participants included all staffs and faculty members, so that according to Krejcie & Morgan table a sample size proportional to the population size was considered. The measurement tools included survey questionnaire whose reliability was calculated to 0.83 according to Cronbachs alpha. To data analysis, descriptive statistics such as frequency and its percentage tables, column charts, mean, standard deviation and as for inferential statistics Kolomogrov- Smirnov test and single T-test were used. The findings show that despite the good corporate culture as one of the three factors background the establishment of the knowledge management at Islamic Azad University Behshahr Branch, other two ones, including IT systems, and knowledge processes systems are characterized with adverse status. As a result, these factors have caused no necessary conditions for the establishment of Knowledge Management in the university provided.Keywords: knowledge management, information technology, knowledge processes, organizational culture, educational institutions
Procedia PDF Downloads 5211293 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 1061292 A Short Study on the Effects of Public Service Advertisement on Gender Bias in Accessible and Non-Accessible Format
Authors: Amrin Moger, Sagar Bhalerao, Martin Mathew
Abstract:
Advertisements play a vital role in dissemination of information regarding products and services. Advertisements as Mass Media tool is not only a source of entertainment, but also a source of information, education and entertainment. It provides information about the outside world and exposes us to other ways of life and culture. Public service advertisements (PSA) are generally aimed at public well-being. Aim of PSA is not to make profit, but rather to change public opinion and raise awareness in the Society about a social issue.’ Start with the boys’ is one such PSA aims to create awareness about issue of ‘gender bias’ that is taught prevalent in the society. Persons with disabilities (PWDs) are also consumers of PSA in the society. The population of persons with disability in the society also faces gender bias and discrimination. It is a double discrimination. The advertisement selected for the study gives out a strong message on gender bias and therefore must be accessible to everyone including PWDs in the society. Accessibility of PSA in the digital format can be done with the help of Universal Design (UD) in digital media application. Features of UD inclusive in nature, and it focus on eliminating established barriers through initial designs. It considers the needs of diverse people, whether they are persons with or without disability. In this research two aspects of UD in digital media: captioning and Indian sign language (ISL) is used. Hence a short survey study was under taken to know the effects of a multimedia on gender bias, in accessible format on persons with and without disability. The result demonstrated a significant difference in the opinion, on the usage accessible and non-accessible format for persons with and without disability and their understanding of message in the PSA selected for the study.Keywords: public service advertisements, gender, disability, accessibility
Procedia PDF Downloads 3541291 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System
Authors: Deyu Zhou, Xiao Xue, Lizhen Cui
Abstract:
With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks
Procedia PDF Downloads 791290 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand
Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul
Abstract:
Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals
Procedia PDF Downloads 3951289 Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations
Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan
Abstract:
The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.Keywords: multi-directionally reinforced composites, 4-D orthogonal preform, course weave, fine weave, fibre bundle spools, unit cell, fibre architecture, fibre volume fraction, fibre distribution
Procedia PDF Downloads 2331288 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 3571287 The Effect of Neurocognitive Exercise Program on ADHD Symptoms, Attention, and Dynamic Balance in Medication Naive Children with ADHD: A Pilot Study
Authors: Nurullah Buker, Ezgi Karagoz, Yesim Salik Sengul, Sevay Alsen Guney, Gokhan Yoyler, Aylin Ozbek
Abstract:
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders with heterogeneous clinical features such as inattention, hyperactivity, and impulsivity. Many different types of exercise interventions were employed for children with ADHD. However, previous studies have usually examined the effects of non-specific exercise programs or short-term effects of exercise. The aim of this study is to investigate the effect of the Neurocognitive Exercise Program (NEP), which is a structured exercise program derived from Life Kinetik, and a relatively new for children with ADHD, on symptoms, attention, and dynamic balance in medication-naïve children with ADHD. Fourteen medication-naive children (7-12 years) with ADHD were included in the intervention group. NEP was performed once a week for ten weeks. The intervention group also performed a structured home exercise program for another six days, for ten weeks. The children in the intervention group were assessed at baseline, in the third month, in the sixth month, and in the twelfth month regarding ADHD-related symptoms, attention, and dynamic balance. Fifteen age-matched typically developing children were assessed once for establishing normative values. Hyperactivity-Impulsivity score and dynamic balance were found to improve after NEP in the ADHD group in the 3rd month (p<0.05). In addition, these results were similar for both groups after NEP and at the end of the 12th month (p>0.05). The NEP may provide beneficial effects on hyperactivity-impulsivity, oppositional defiant, and dynamic balance in children with ADHD, and the improvements may be maintained in the long term.Keywords: ADHD, attention problems, dynamic balance, neurocognitive exercise
Procedia PDF Downloads 811286 Framework for the Assessment of National Systems of Innovation in Biotechnology
Authors: Andrea Schiffauerova, Amnah Alzeyoudi
Abstract:
This paper studies patterns of innovation within national constitutional context. Its objective is to examine national systems of innovation in biotechnology in six leading innovative countries: the US, Japan, Germany, the UK, France and Canada. The framework proposed for this purpose consists of specific factors considered critical for the development of national systems of innovation, which are industry size, innovative activities, area of specialization, industry structure, national policy, the level of government intervention, the stock of knowledge in universities and industries, knowledge transfer from universities to industry and country-specific conditions for start-ups. The paper then uses the framework to provide detailed cross-country comparisons while highlighting particular features of national institutional context which affect the creation and diffusion of scientific knowledge within the system. The study is primarily based on the extensive survey of literature and it is complemented by the quantitative analysis of the patent data extracted from the United States Patent and Trademark Office (USPTO). The empirical analysis provides numerous insights and greatly complements the data gained from the literature and other sources. The final cross-country comparative analysis identifies three patterns followed by the national innovation systems in the six countries. The proposed cross-country relative positioning analysis may help in drawing policy implications and strategies leading to the enhancement of national competitive advantage and innovation capabilities of nations.Keywords: comparative analysis, framework, national systems of innovation, patent analysis, United States Patent and Trademark Office (USPTO)
Procedia PDF Downloads 3131285 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product
Authors: Devendra Sillu, Shekhar Agnihotri
Abstract:
The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery
Procedia PDF Downloads 1331284 Applying Failure Modes and Effect Analysis Concept in a Global Software Development Process
Authors: Camilo Souza, Lidia Melo, Fernanda Terra, Francisco Caio, Marcelo Reis
Abstract:
SIDIA is a research and development (R&D) institute that belongs to Samsung’s global software development process. The SIDIA’s Model Team (MT) is a part of Samsung’s Mobile Division Area, which is responsible for the development of Android releases embedded in Samsung mobile devices. Basically, in this software development process, the kickoff occurs in some strategic countries (e.g., South Korea) where some software requirements are applied and the initial software tests are performed. When the software achieves a more mature level, a new branch is derived, and the development continues in subsidiaries from other strategic countries (e.g., SIDIA-Brazil). However, even in the newly created branches, there are several interactions between developers from different nationalities in order to fix bugs reported during test activities, apply some specific requirements from partners and develop new features as well. Despite the GSD strategy contributes to improving software development, some challenges are also introduced as well. In this paper, we share the initial results about the application of the failure modes and effect analysis (FMEA) concept in the software development process followed by the SIDIA’s model team. The main goal was to identify and mitigate the process potential failures through the application of recommended actions. The initial results show that the application of the FMEA concept allows us to identify the potential failures in our GSD process as well as to propose corrective actions to mitigate them. Finally, FMEA encouraged members of different teams to take actions that contribute to improving our GSD process.Keywords: global software development, potential failures, FMEA, recommended actions
Procedia PDF Downloads 2271283 Evaluation of Water-Soluble Ionic Liquids Based on Quaternized Hyperbranched Polyamidoamine and Amino Acids for Chemical Enhanced Oil Recovery
Authors: Rasha Hosny, Ahmed Zahran, Mahmoud Ramzi, Fatma Mahmoud Abdelhafiz, Ammona S. Mohamed, Mahmoud Fathy Mubarak
Abstract:
Ionic liquids' ability to be tuned and stability under challenging environmental conditions are their significant features in enhanced oil recovery. In this study, two amino acid ionic liquids (AAILs) were prepared from quaternized hyperbranched polyamidoamine PAMAM (G0.5 C12) and amino acids (Cysteine and Lysine). The chemical structures of the prepared AAILs were verified by using FTIR and 1H-NMR spectra. These AAILs were tested for solubility, thermal stability, and surface activity in the presence of Egyptian medium crude oils under different PVT parameters after being diluted in several brine solutions of various salt compositions at 10% (w/w) salinity. The measurements reveal that the produced AAILs have good solubility and thermal stability. The effect of different concentrations of AAILs (0.1-5%) and salinity (20000-70000 ppm) on Interfacial tension (IFT) were studied. To test the efficacy of (AAILs) for a CEOR, numerous flooding experiments were carried out in samples of sandstone rock. Rock wettability is important for sandstone rocks, so conduct wettability alteration by contact angle (CA) of (30-55) and IFT of (7-13). The additional oil recovery was largely influenced by ionic liquid concentration, which may be changed by dilution with the formation and injected brines. This research has demonstrated that EOR techniques led to a recovery wt. (22-45%).Keywords: amino acid ionic liquids, surface activity, critical micelle concentration, interfacial tension, contact angle, chemical enhanced oil recovery, wettability
Procedia PDF Downloads 1111282 Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation
Authors: Adrien Pyskir, Manuel Collet, Zoran Dimitrijevic, Claude-Henri Lamarque
Abstract:
During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper.Keywords: auxetics, metamaterials, structural dynamics, vibration isolation
Procedia PDF Downloads 1491281 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1531280 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis
Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas
Abstract:
Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux
Procedia PDF Downloads 1351279 Gross Anatomical and Ultra Structural Microscopic Studies on the Nose of the Dromedary Camel (Camelus Dromederius)
Authors: Mahmoud S Gewaily, Atif Hasan, Mohamed Kassab, Ali A. Mansour
Abstract:
The current study was carried out on the nose of seventeenth healthy adult camels. Specimens were collected from slaughter houses then fixed, dissected and photographed. For ultra structural studies, fresh samples were fixed in different fixatives and prepared for examination by light, scanning and electron microscopes. Grossly, nose of the camel had narrow nostrils, slit like in outline. In the nasal cavity, the nasal vestibule was narrow and has scanty dorsal and lateral cartilaginous support. The Nasal conchae (dorsal, middle and ventral) enclosed the dorsal, middle conchal sinuses and no ventral conchal sinus; instead there was recess and bull a. The ethmoidal conchae (8 in number) were noticeably fewer than in the other domestic animals like ox and horse. The olfactory mucosa was restricted to a small area covering the caudal parts of the ethmoidal conchae. The lining epithelium of the nasal cavity changes gradually from stratified squamous epithelium in the nasal vestibule to pseudo stratified columnar ciliated in the respiratory region and finally, olfactory epithelium covering the caudal parts of the ethmoidal conchae. In the dromedary camel, a special feature was the presence of dense and relatively long hair covering the nostrils and the rostral part of the nasal vestibule. In conclusion, the anatomical features of the nose of the dromedary camel, especially in its rostral parts enable this animal to breathe properly in the sandy dry weather.Keywords: camel nose, anatomy, dromedary camel, nasal vestibule
Procedia PDF Downloads 4391278 Measuring the Influence of Functional Proximity on Environmental Urban Performance via IMM: Four Study Cases in Milan
Authors: Massimo Tadi, M. Hadi Mohammad Zadeh, Ozge Ogut
Abstract:
Although how cities’ forms are structured is studied, more efforts are needed on systemic comprehensions and evaluations of the urban morphology through quantitative metrics that are able to describe the performance of a city in relation to its formal properties. More research is required in this direction in order to better describe the urban form characteristics and their impact on the environmental performance of cities and to increase their sustainability stewardship. With the aim of developing a better understanding of the built environment’s systemic structure, the intention of this paper is to present a holistic methodology for studying the behavior of the built environment and investigate the methods for measuring the effect of urban structure to the environmental performance. This goal will be pursued through an inquiry into the morphological components of the urban systems and the complex relationships between them. Particularly, this paper focuses on proximity, referring to the proximity of different land-uses, is a concept with which Integrated Modification Methodology (IMM) explains how land-use allocation might affect the choice of mobility in neighborhoods, and especially, encourage or discourage non-motived mobility. This paper uses proximity to demonstrate that the structure attributes can quantifiably relate to the performing behavior in the city. The target is to devise a mathematical pattern from the structural elements and correlate it directly with urban performance indicators concerned with environmental sustainability. The paper presents some results of this rigorous investigation of urban proximity and its correlation with performance indicators in four different areas in the city of Milan, each of them characterized by different morphological features.Keywords: built environment, ecology, sustainable indicators, sustainability, urban morphology
Procedia PDF Downloads 1681277 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 1341276 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle
Authors: Hu Ding, Kai Liu, Guoan Tang
Abstract:
The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest
Procedia PDF Downloads 218