Search results for: y+ dimensionless distance from wall
764 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System
Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia
Abstract:
This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control
Procedia PDF Downloads 286763 Impact of Vehicle Travel Characteristics on Level of Service: A Comparative Analysis of Rural and Urban Freeways
Authors: Anwaar Ahmed, Muhammad Bilal Khurshid, Samuel Labi
Abstract:
The effect of trucks on the level of service is determined by considering passenger car equivalents (PCE) of trucks. The current version of Highway Capacity Manual (HCM) uses a single PCE value for all tucks combined. However, the composition of truck traffic varies from location to location; therefore a single PCE-value for all trucks may not correctly represent the impact of truck traffic at specific locations. Consequently, present study developed separate PCE values for single-unit and combination trucks to replace the single value provided in the HCM on different freeways. Site specific PCE values, were developed using concept of spatial lagging headways (the distance from the rear bumper of a leading vehicle to the rear bumper of the following vehicle) measured from field traffic data. The study used data from four locations on a single urban freeway and three different rural freeways in Indiana. Three-stage-least-squares (3SLS) regression techniques were used to generate models that predicted lagging headways for passenger cars, single unit trucks (SUT), and combination trucks (CT). The estimated PCE values for single-unit and combination truck for basic urban freeways (level terrain) were: 1.35 and 1.60, respectively. For rural freeways the estimated PCE values for single-unit and combination truck were: 1.30 and 1.45, respectively. As expected, traffic variables such as vehicle flow rates and speed have significant impacts on vehicle headways. Study results revealed that the use of separate PCE values for different truck classes can have significant influence on the LOS estimation.Keywords: level of service, capacity analysis, lagging headway, trucks
Procedia PDF Downloads 355762 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell
Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari
Abstract:
This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy
Procedia PDF Downloads 146761 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration
Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas
Abstract:
Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.Keywords: dough, experimental, numerical, rupture
Procedia PDF Downloads 122760 Saving the Decolonized Subject from Neglected Tropical Diseases: Public Health Campaign and Household-Centred Sanitation in Colonial West Africa, 1900-1960
Authors: Adebisi David Alade
Abstract:
In pre-colonial West Africa, the deadliness of the climate vis-a- vis malaria and other tropical diseases to Europeans turned the region into the “white man’s grave.” Thus, immediately after the partition of Africa in 1885, civilisatrice and mise en valeur not only became a pretext for the establishment of colonial rule; from a medical point of view, the control and possible eradication of disease in the continent emerged as one of the first concerns of the European colonizers. Though geared toward making Africa exploitable, historical evidence suggests that some colonial Water, Sanitation and Hygiene (WASH) policies and projects reduced certain tropical diseases in some West African communities. Exploring some of these disease control interventions by way of historical revisionism, this paper challenges the orthodox interpretation of colonial sanitation and public health measures in West Africa. This paper critiques the deployment of race and class as analytical tools for the study of colonial WASH projects, an exercise which often reduces the complexity and ambiguity of colonialism to the binary of colonizer and the colonized. Since West Africa presently ranks high among regions with Neglected Tropical Diseases (NTDs), it is imperative to decentre colonial racism and economic exploitation in African history in order to give room for Africans to see themselves in other ways. Far from resolving the problem of NTDs by fiat in the region, this study seeks to highlight important blind spots in African colonial history in an attempt to prevent post-colonial African leaders from throwing away the baby with the bath water. As scholars researching colonial sanitation and public health in the continent rarely examine its complex meaning and content, this paper submits that the outright demonization of colonial rule across space and time continues to build ideological wall between the present and the past which not only inhibit fruitful borrowing from colonial administration of West Africa, but also prevents a wide understanding of the challenges of WASH policies and projects in most West African states.Keywords: colonial rule, disease control, neglected tropical diseases, WASH
Procedia PDF Downloads 187759 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor
Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst
Abstract:
Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics
Procedia PDF Downloads 210758 Low Students' Access to University Education in Nigeria: Causes and Remedy
Authors: Robert Ogbanje Okwori
Abstract:
The paper explained the causes low students’ access to university education in Nigeria and how it can be remedied. It is discovered that low students’ access to university education in Nigeria is evident despite these number of universities in the country. In 2006/2007 academic session, 806,089 sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 123,626 (15.3%) were admitted while 2011/2012 academic session, a total of 1,493,604 candidates sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 65,073 (43.57%) were admitted. This necessitates for the research. Therefore, the study posed the following research questions. What are causes of low students’ access to university education in Nigeria? What are the challenges of students’ access to university education in Nigeria? How can students’ access to university education in Nigeria be improved? Sample survey research design was adopted for the study. A structured questionnaire was used to gather data for the study. Six hundred and eighty (680) respondents which comprised of 100 level university students; JAMB Officers and University administrators (Vice Chancellors, Registrars and Admission Officers) were used for the study. Stratified random sampling was applied for adequate representation of respondents from universities in the six geopolitical zones of Nigeria. Mean was used to answer research questions while Kuder-Richardson formula 20 was used to check the internal consistency of the instrument. The correlation coefficient of the instrument was 0.87. The major findings include the carrying capacity of each university contributes to low students’ access to university education and academic staff were inadequate. From the analysis of the study, it is concluded that the rate of access to university education is low, therefore, every university should establish distance learning programme to reduce university admission crisis. The training infrastructure in the universities should be improved upon by the owners to increase the carrying capacity of each university.Keywords: access, causes, low, university
Procedia PDF Downloads 468757 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet
Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez
Abstract:
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles
Procedia PDF Downloads 34756 Evaluating Probable Bending of Frames for Near-Field and Far-Field Records
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
Most reinforced concrete structures are designed only under heavy loads have large transverse reinforcement spacing values, and therefore suffer severe failure after intense ground movements. The main goal of this paper is to compare the shear- and axial failure of concrete bending frames available in Tehran using incremental dynamic analysis under near- and far-field records. For this purpose, IDA analyses of 5, 10, and 15-story concrete structures were done under seven far-fault records and five near-faults records. The results show that in two-dimensional models of short-rise, mid-rise and high-rise reinforced concrete frames located on Type-3 soil, increasing the distance of the transverse reinforcement can increase the maximum inter-story drift ratio values up to 37%. According to the existing results on 5, 10, and 15-story reinforced concrete models located on Type-3 soil, records with characteristics such as fling-step and directivity create maximum drift values between floors more than far-fault earthquakes. The results indicated that in the case of seismic excitation modes under earthquake encompassing directivity or fling-step, the probability values of failure and failure possibility increasing rate values are much smaller than the corresponding values of far-fault earthquakes. However, in near-fault frame records, the probability of exceedance occurs at lower seismic intensities compared to far-fault records.Keywords: IDA, failure curve, directivity, maximum floor drift, fling step, evaluating probable bending of frames, near-field and far-field earthquake records
Procedia PDF Downloads 108755 Net Regularity and Its Ethical Implications on Internet Stake Holders
Authors: Nourhan Elshenawi
Abstract:
Net Neutrality (NN) is the principle of treating all online data the same without any prioritization of some over others. A research gap in current scholarship about “violations of NN” and the subsequent ethical concerns paves the way for the following research question: To what extent violations of NN entail ethical concerns and implications for Internet stakeholders? To answer this question, NR is examined using the two major action-based ethical theories, Kantian and Utilitarian, across the relevant Internet stakeholders. First some necessary IT background is provided that shapes how the Internet works and who the key stakeholders are. Following the IT background, the relationship between the stakeholders, users, Internet Service Providers (ISPs) and content providers is discussed and illustrated. Then some violations of NN that are currently occurring is covered, without attracting any attention from the general public from an ethical perspective, as a new term Net Regularity (NR). Afterwards, the current scholarship on NN and its violations are discussed, that are mainly from an economic and sociopolitical perspectives to highlight the lack of ethical discussions on the issue. Before moving on to the ethical analysis however, websites are presented as digital entities that are affected by NR and their happiness is measured using functionalism. The analysis concludes that NR is prone to an unethical treatment of Internet stakeholders in the perspective of both theories. Finally, the current Digital Divide in the world is presented to be able to better illustrate the implications of NR. The implications present the new Internet divide that will take place between individuals within society. Through answering the research question using ethical analysis, it attempts to shed some light on the issue of NR and what kind of society it would lead to. NR would not just lead to a divided society, but divided individuals that are separated by something greater than distance, the Internet.Keywords: digital divide, digital entities, digital ontology, internet ethics, internet law, net neutrality, internet service providers, websites as beings
Procedia PDF Downloads 274754 Soybean Based Farming System Assessment in Pasuruan East Java Indonesia
Authors: Mohammad Saeri, Noor Rizkiyah, Kambang Vetrani Asie, Titin Apung Atikah
Abstract:
The study aims to assess efficient specific-location soybean farming technology assembly by assisting the farmers in applying the suggested technology. Superimposed trial was conducted to know NPK fertilizer effect toward soybean growth and yield and soybean improved variety test for the dissemination of improved variety. The assessment was conducted at the farmers group of Sumber Rejeki, Kepulungan Village, Gempol Sub-district, Pasuruan Regency as the soybean central at Pasuruan area. The number of farmers involved in the study was 38 people with 25 ha soybean area. This study was held from July to October 2012. The recommended technology package agreed at the socialization time and used in this research were: using Argomulyo variety seeds of 40 kg/ha, planting by drilling, planting by distance of 40x10 cm, deciding the seeds amount of 2-3 seeds per hole, and giving fertilization based on recommendation of East Java AIAT of 50 kg Urea, 100 kg SP-36 and 50 kg KCl. Farmers around the research location were used as control group. Assessment on soybean farming system was considered effective because it could increase the production up to 38%. The farming analysis showed that the result collaborator farmers gained were positively higher than non-collaborator farmers with RC ratio of 2.03 and 1.54, respectively. Argomulyo variety has the prospect to be developed due to the high yield of about 2 tons/ha and the larger seeds. The NPK fertilization test at the soybean plants showed that the fertilization had minor effect on the yield.Keywords: farming system, soybean, variety, location specific
Procedia PDF Downloads 178753 The Three-Zone Composite Productivity Model of Multi-Fractured Horizontal Wells under Different Diffusion Coefficients in a Shale Gas Reservoir
Authors: Weiyao Zhu, Qian Qi, Ming Yue, Dongxu Ma
Abstract:
Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interference of the fractures. In regard to the fractured horizontal wells, the free gas was found to majorly contribute to the productivity, while the contribution of the desorption increased with the increased pressure differences.Keywords: multi-scale, fracture network, composite model, productivity
Procedia PDF Downloads 270752 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures
Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.
Abstract:
Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays
Procedia PDF Downloads 157751 Identification of Environmental Damage Due to Mining Area Bangka Islands in Indonesia
Authors: Aroma Elmina Martha
Abstract:
Environment affects the continuity of life and human well-being and the bodies of other living. Environmental quality is very closely related to the quality of life. Sustainability must be protected from damage due to the use of natural resources, such as tin mining in Bangka island. This research is a descriptive study, which identifies the environmental damage caused by mining land and sea in Bangka district. The approach used is juridical, social and economic. The study uses primary legal materials, secondary, and tertiary, equipped with field research. The analysis technique used is qualitative analysis. The impacts of mining on land among other physical and chemical damage, erosion and widening the depth of the river, a pool of micro-climate, the quality and feasibility, vegetation, wildlife and biodiversity, land values, social and economic. This mining causes damage to the soil structure, and puddles in the former digs which were not backfilled again. The impact of mining on the ocean such as changes in current surge, erosion and abrasion basic coastal waters, shoreline change, marine water quality changes, and changes in marine communities. The findings of the research show that tin mining in the sea also potentially have a significant impact on the life of the reef, populations of marine organisms. However, mining on land needs to consider the impact of the damage, so that the damage can be minimized. In the recovery process needs to be pursued by exploiting the rest of the pile of tin. Thus, mining activities should take into account the distance of beach sediment size, wave height, wave length, wave period, and the acceleration of gravity. The process of the tin washing should be done in a fairly safe area, thus avoiding damage to the coral reefs that will eventually reduce the population of marine life.Keywords: abration, environmental damage, mining, shoreline
Procedia PDF Downloads 322750 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis
Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe
Abstract:
Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids
Procedia PDF Downloads 69749 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones
Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu
Abstract:
In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV
Procedia PDF Downloads 174748 Challenges and Prospects of Preservation of Tangible Cultural Heritage Management: A Case Study in Lake Tana Islands, Ethiopia
Authors: Ayele Tamene
Abstract:
Cultural heritage is the legacy of physical artifacts and intangible attributes of a group or society that are inherited from past generations, maintained in the present and bestowed for the benefit of future generations. Tangible heritage e includes buildings and historic places, monuments, artifacts, etc., which are considered worthy of preservation for the future. These include objects significant to the archaeology, architecture, science or technology of a specific culture. The research addressed the challenges and prospects of preservation of tangible cultural heritage management in Lake Tana islands; Amahara Regional State. Specifically, the research inquired the major factors which affected tangible cultural heritage management, investigated how communities successfully involved in tangible cultural heritage management, and described the contribution of cultural management to tourism development. It employed qualitative research approaches to grasp the existing condition in the study area. Major techniques of data gathering such as in-depth interview, observation/photographing and Focus Group Discussion (FGDs) were used. Related documents collected through secondary sources were examined and analyzed. In Lake Tana Islands precious heritages such as ancient religious manuscripts (written since 9th century), sacral wall paintings, gold and silver Crosses, crowns and prestigious clothes of the various kings of the medieval and the 19th century are found. The study indicated that heritages in Tana islands were affected by both natural and manmade problems. In Lake Tana Islands, movable heritages were looted several times by foreign aggressors, tourists, and local people who serve there. Some heritages were affected by visitors by their camera flash light and hand touch. Most heritages in the Tana islands lacked community ownership and preserved non- professionally which highly affected their originality and authenticity. Therefore, the local community and the regional government should work together in the preservation of these heritage sites and enhance their role for socio-economic development as a center of research and tourist destinations.Keywords: cultural heritages, heritage preservation, lake Tana heritages, non professional preservation tangible heritages
Procedia PDF Downloads 328747 Evaluation of the Urban Landscape Structures and Dynamics of Hawassa City, Using Satellite Images and Spatial Metrics Approaches, Ethiopia
Authors: Berhanu Terfa, Nengcheng C.
Abstract:
The study deals with the analysis of urban expansion and land transformation of Hawass City using remote sensing data and landscape metrics during last three decades (1987–2017). Remote sensing data from Various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used to examine the urban expansion, growth types, and spatial isolation within the urban landscape to develop an understanding the trends of built-up growth in Hawassa City, Ethiopia. Landscape metrics and built-up density were employed to analyze the pattern, process and overall growth status. The area under investigation was divided into concentric circles with a consecutive circle of 1 km incremental radius from the central pixel (Central Business District) for analysis. The result exhibited that the built-up area had increased by 541.32% between 1987 and 2017and an extension growth types (more than 67 %) was observed. The major growth took place in north-west direction followed by north direction in haphazard manner during 1987–1995 period, whereas predominant built-up development was observed in south and southwest direction during 1995–2017 period. Land scape metrics result revealed that the of urban patches density, total edge and edge density increased, while mean nearest neighbors’ distance decreased showing the tendency of sprawl.Keywords: landscape metrics, spatial patterns, remote sensing, multi-temporal, urban sprawl
Procedia PDF Downloads 286746 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey
Authors: Çağan Alevkayali, Şermin Tağil
Abstract:
Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization
Procedia PDF Downloads 322745 Views from Shores Past: Palaeogeographic Reconstructions as an Aid for Interpreting the Movement of Early Modern Humans on and between the Islands of Wallacea
Authors: S. Kealy, J. Louys, S. O’Connor
Abstract:
The island archipelago that stretches between the continents of Sunda (Southeast Asia) and Sahul (Australia - New Guinea) and comprising much of modern-day Indonesia as well as Timor-Leste, represents the biogeographic region of Wallacea. The islands of Wallaea are significant archaeologically as they have never been connected to the mainlands of either Sunda or Sahul, and thus the colonization by early modern humans of these islands and subsequently Australia and New Guinea, would have necessitated some form of water crossings. Accurate palaeogeographic reconstructions of the Wallacean Archipelago for this time are important not only for modeling likely routes of colonization but also for reconstructing likely landscapes and hence resources available to the first colonists. Here we present five digital reconstructions of coastal outlines of Wallacea and Sahul (Australia and New Guinea) for the periods 65, 60, 55, 50, and 45,000 years ago using the latest bathometric chart and a sea-level model that is adjusted to account for the average uplift rate known from Wallacea. This data was also used to reconstructed island areal extent as well as topography for each time period. These reconstructions allowed us to determine the distance from the coast and relative elevation of the earliest archaeological sites for each island where such records exist. This enabled us to approximate how much effort exploitation of coastal resources would have taken for early colonists, and how important such resources were. These reconstructions also allowed us to estimate visibility for each island in the archipelago, and to model how intervisible each island was during the period of likely human colonisation. We demonstrate how these models provide archaeologists with an important basis for visualising this ancient landscape and interpreting how it was originally viewed, traversed and exploited by its earliest modern human inhabitants.Keywords: Wallacea, palaeogeographic reconstructions, islands, intervisibility
Procedia PDF Downloads 211744 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.Keywords: Green–Naghdi equations, nonlinearity, numerical prediction, sloshing waves, solitary waves
Procedia PDF Downloads 285743 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems
Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah
Abstract:
Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing
Procedia PDF Downloads 337742 Immersed in Design: Using an Immersive Teaching Space to Visualize Design Solutions
Authors: Lisa Chandler, Alistair Ward
Abstract:
A significant component of design pedagogy is the need to foster design thinking in various contexts and to support students in understanding links between educational exercises and their potential application in professional design practice. It is also important that educators provide opportunities for students to engage with new technologies and encourage them to imagine applying their design skills for a range of outcomes. Problem solving is central to design so it is also essential that students understand that there can be multiple solutions to a design brief, and are supported in undertaking creative experimentation to generate imaginative outcomes. This paper presents a case study examining some innovative approaches to addressing these elements of design pedagogy. It investigates the effectiveness of the Immerse Lab, a three wall projection room at the University of the Sunshine Coast, Australia, as a learning context for design practice, for generating ideas and for supporting learning involving the comparative display of design outcomes. The project required first year design students to create a simple graphic design derived from an ordinary object and to incorporate specific design criteria. Utilizing custom-designed software, the students’ solutions were projected together onto the Immerse walls to create a large-scale, immersive grid of images, which was used to compare and contrast various responses to the same problem. The software also enabled individual student designs to be transformed, multiplied and enlarged in multiple ways and prompted discussions around the applicability of the designs in real world contexts. Teams of students interacted with their projected designs, brainstorming imaginative applications for their outcomes. Analysis of 77 anonymous student surveys revealed that the majority of students found: learning in the Immerse Lab to be beneficial; comparative review more effective than in standard tutorial rooms; that the activity generated new ideas; it encouraged students to think differently about their designs; it inspired students to develop their existing designs or create new ones. The project demonstrates that curricula involving immersive spaces can be effective in supporting engaging and relevant design pedagogy and might be utilized in other disciplinary areas.Keywords: design pedagogy, immersive education, technology-enhanced learning, visualization
Procedia PDF Downloads 258741 Cognitive Behavioral Training to Enhance Performance and Well-Being in Collegiate Athletes
Authors: Angelina Tarabokija
Abstract:
This study looks into how cognitive behavioral training (CBT) techniques affect collegiate track and field athletes' anxiety related to performance, with a focus on distance runners. The goal of the research is to discover whether consistent use of cognitive behavioral therapy (CBT) methods, such as progressive muscle relaxation, yoga (Y-CBT), visualization, relaxed breathing, and meditation, can reduce performance anxiety and improve sports performance. Six runners from the Rider Track & Field team, aged eighteen to twenty-three, participated in the quantitative research design used in the technique. Prior to employing CBT techniques every day for two weeks, including before competitions or on race day, participants conducted baseline assessments using the Sport Anxiety Scale-2 (SAS-2). The SAS-2 was used in post-competition evaluations to track alterations in performance anxiety. The findings show that participants' total trait anxiety levels significantly decreased after utilizing CBT techniques for one week. However, after two weeks, a few participants' anxiety levels slightly increased, pointing to the need for more research and regular practice. The study indicates that CBT approaches can effectively reduce performance anxiety and increase athletic performance in collegiate track and field athletes, despite constraints related to participant motivation and potential confounding variables. Future areas for research could entail examining the precise impacts of worry, interruption of attention, and bodily anxiety on performance, as well as adding more controls. Overall, by providing insights into evidence-based strategies to maximize mental states and athletic performance in collegiate athletes, this study advances the area of sports psychology.Keywords: cognitive behavioral training, performance, athletes, anxiety, well-being, SAS-2, Sport, trait anxiety, somatic anxiety
Procedia PDF Downloads 10740 Surface Induced Alteration of Nanosized Amorphous Alumina
Authors: A. Katsman, L. Bloch, Y. Etinger, Y. Kauffmann, B. Pokroy
Abstract:
Various nanosized amorphous alumina thin films in the range of (2.4 - 63.1) nm were deposited onto amorphous carbon and amorphous Si3N4 membrane grids. Transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS) and differential scanning calorimetry (DSC) techniques were used to probe the size effect on the short range order and the amorphous to crystalline phase transition temperature. It was found that the short-range order changes as a function of size: the fraction of tetrahedral Al sites is greater in thinner amorphous films. This result correlates with the change of amorphous alumina density with the film thickness demonstrated by the reflectivity experiments: the thinner amorphous films have the less density. These effects are discussed in terms of surface reconstruction of the amorphous alumina films. The average atomic binding energy in the thin film layer decreases with decease of the thickness, while the average O-Al interatomic distance increases. The reconstruction of amorphous alumina is induced by the surface reconstruction, and the short range order changes being dependent on the density. Decrease of the surface energy during reconstruction is the driving force of the alumina reconstruction (density change) followed by relaxation process (short range order change). The amorphous to crystalline phase transition temperature measured by DSC rises with the decrease in thickness from 997.6°C for 13.9 nm to 1020.4 °C for 2.7 nm thick. This effect was attributed to the different film densities: formation of nanovoids preceding and accompanying crystallization process influences the crystallization rate, and by these means, the temperature of crystallization peak.Keywords: amorphous alumina, density, short range order, size effect
Procedia PDF Downloads 466739 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media
Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding
Abstract:
A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.Keywords: discrete elements, Hertzian contact, polydispersity, weakly nonlinear, wave propagation
Procedia PDF Downloads 204738 Analysis of the Variation on Earth Pressure by Addition of Construction Demolition Waste (C&D Waste) In Black Cotton Soil
Authors: Nirav Jadav, M. G.Vanza
Abstract:
Black cotton soils mainly exhibit the property of swelling/shrinkage when they react to moisture variations. This property causes development of cracks in the structures resting on these soils, which poses instability to the structures. Soil stabilization is a technique to enhance the geotechnical characteristics of Black cotton soils by changing their properties. Due to rapid growth in construction industry, a lot of waste material is being generated every day, which poses the problem of its disposal. If the waste material can be utilized for soil stabilization, it will mitigate the problems of its disposal. The tests results evaluate that the strength of the Black cotton soils increased by the use of C&D waste material. This study determines various Index and engineering properties of soil and compare for different proportions of soil and C&D Waste. For finding properties of soil and C&D Waste, various test is carried out like sieve analysis, hydrometer test, specific gravity test, Atterberg’s limit test, Standard proctor test and soil Triaxial unconsolidated undrained test. It also takes into account the characteristics alteration due to addition of C&D Waste in active and passive pressure. This study presents the efficacy for use of C&D Waste as a stabilizing material to be mixed with backfill soil in retaining walls. Standard proctor test was conducted at proportions S1W0 (soil = 100%, Waste = 0%), S7W1 (soil = 87.5%, waste = 12.5%), S3W1, S5W3 and S1W1. From these, S5W3 showed optimum results, so this proportion was considered for Soil Triaxial UU-Test. Also, S1W0 was considered too. When 37.5% of soil is replaced by C&D Waste, the Optimum moisture content (OMC) decrease by 11.48%, further, increase C&D Waste in soil OMC remains constant, and maximum dry density (MDD) were observed to be increased by 9.27%, further increased C&D Waste in soil MDD reduces. Carried out strength test, which shows cohesion decreased by 162% and the internal friction angle increased by 49.4% with compare to virgin soil. The study focuses on the potential use of C&D Waste as a stabilizing material in the retaining wall backfill. The active earth pressure decreases, and the passive earth pressure increases in the S5W3 mixture compared to the S1W0 mixture at the same depth.Keywords: black cotton soil, construction demolition waste, compaction test, strength test
Procedia PDF Downloads 82737 Evaluation of Wheat Sowing and Fertilizer Application Methods in Wheat Weeds Management
Authors: Ebrahim Izadi-Darbandi
Abstract:
In order to investigation the effects of sowing methods, nitrogen and phosphorus application methods in wheat weeds management, an experiment was performed as split plot, based on randomized completely block design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, in 2010. Treatments included, wheat sowing methods (single-row with 30 cm distance and twine row on 50 cm width ridges) as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots. In this experiment, phosphorus and nitrogen sources for fertilization were super phosphate triple (150 kg ha-1) applied before wheat sowing and incorporated with soil and urea (200 kg ha-1) respectively, applied in 2 phases (pre-plant 50%) and near wheat shooting (50%). Results showed that the effect of fertilizers application methods and wheat sowing methods were significant (p≤0.01) on wheat yield increasing and reducing weed-wheat competition. Wheat twine row sowing method, reduced weeds biomass for 25% compared wheat single-row sowing method and increased wheat seed yield and biomass for 60% and 30% respectively. Phosphorus and nitrogen band application reduced weeds biomass for 46% and 53% respectively and increased wheat seed yield for 22% and 33% compared to their broadcast application. The effects of wheat sowing method plus phosphorus and nitrogen application methods interactions, showed that the fertilizers band application and wheat twine-row sowing method were the best methods in wheat yield improvement and reducing wheat-weeds interaction. These results shows that modifying of fertilization methods and wheat sowing method can have important role in fertilizers use efficiency and improving of weeds managements.Keywords: competition, wheat yield, fertilizer management, biomass
Procedia PDF Downloads 368736 Effects of Front Porch and Loft on Indoor Ventilation in the Renewal of Beijing Courtyard
Authors: Zhongzhong Zeng, Zichen Liang
Abstract:
In recent years, Beijing courtyards have been facing the problem of renewal and renovation, and the residents are faced with the problems of small house areas, large household sizes, old and dangerous houses, etc. Among the many renovation methods, the authors note two more common practices of using the front porch to expand the floor area and adding a loft. Residents and architects, however, did not give the ventilation performance of the significant interior consideration before beginning the remodeling. The aim of this article is to explore the good or negative impacts of both front porch and loft structures on the manner of interior ventilation in the courtyard. Ventilation, in turn, is crucial to the indoor environmental quality of a home. The major method utilized in this study is the comparative analysis method, in which the authors create four alternative house models with or without a front porch and an attic as two variables and examine internal ventilation using the CFD(Computational Fluid Dynamics) technique. The authors compare the indoor ventilation of four different architectural models with or without front porches and lofts as two variables. The results obtained from the analysis of the sectional airflow and the plane 1.5m height cloud are the existence of the loft, to a certain extent, disrupts the airflow organization of the building and makes the rear wall high windows of the building less effective. Occupying the front porch to become the area of the house has no significant effect on ventilation, but try not to occupy the front porch and add the loft at the same time in the building renovation. The findings of this study led to the following recommendations: strive to preserve the courtyard building's original architectural design and make adjustments to only the inappropriate elements or constructions. The ventilation in the loft portion is inadequate, and the inhabitants typically use the loft as a living area. This may lead to the building relying more on air conditioning in the summer, which would raise energy demand. The front porch serves as a transition place as well as a source of shade, weather protection, and inside ventilation. In conclusion, the examination of interior environments in upcoming studies should concentrate on cross-disciplinary, multi-angle, and multi-level research topics.Keywords: Beijing courtyard renewal, CFD, indoor environment, ventilation analysis
Procedia PDF Downloads 81735 Development of Alpha Spectroscopy Method with Solid State Nuclear Track Detector Using Aluminium Thin Films
Authors: Nidal Dwaikat
Abstract:
This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 Mev, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 Mev) can penetrate the film and reach the detector’s surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 Mev and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source.Keywords: aluminium thin film, alpha particles, copper substrate, CR-39 detector
Procedia PDF Downloads 365