Search results for: water vaporization
6164 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production
Authors: Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector
Procedia PDF Downloads 1256163 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents
Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef
Abstract:
Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation
Procedia PDF Downloads 686162 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean
Authors: S. Fares, K. Mellakh, A. Hmouri
Abstract:
The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.Keywords: oasis, rainfall harvesting, arid regions, Mediterranean
Procedia PDF Downloads 466161 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications
Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin
Abstract:
This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack
Procedia PDF Downloads 866160 Development of Multilayer Capillary Copper Wick Structure using Microsecond CO₂ Pulsed Laser
Authors: Talha Khan, Surendhar Kumaran, Rajeev Nair
Abstract:
The development of economical, efficient, and reliable next-generation thermal and water management systems to provide efficient cooling and water management technologies is being pursued application in compact and lightweight spacecraft. The elimination of liquid-vapor phase change-based thermal and water management systems is being done due to issues with the reliability and robustness of this technology. To achieve the motive of implementing the principle of using an innovative evaporator and condenser design utilizing bimodal wicks manufactured using a microsecond pulsed CO₂ laser has been proposed in this study. Cylin drical, multilayered capillary copper wicks with a substrate diameter of 39 mm are additively manufactured using a pulsed laser. The copper particles used for layer-by-layer addition on the substrate measure in a diameter range of 225 to 450 micrometers. The primary objective is to develop a novel, high-quality, fast turnaround, laser-based additive manufacturing process that will eliminate the current technical challenges involved with the traditional manufacturing processes for nano/micro-sized powders, like particle agglomeration. Raster-scanned, pulsed-laser sintering process has been developed to manufacture 3D wicks with controlled porosity and permeability.Keywords: liquid-vapor phase change, bimodal wicks, multilayered, capillary, raster-scanned, porosity, permeability
Procedia PDF Downloads 1966159 Development of Vapor Absorption Refrigeration System for Mini-Bus Car’s Air Conditioning: A Two-Fluid Model
Authors: Yoftahe Nigussie
Abstract:
This research explores the implementation of a vapor absorption refrigeration system (VARS) in mini-bus cars to enhance air conditioning efficiency. The conventional vapor compression refrigeration system (VCRS) in vehicles relies on mechanical work from the engine, leading to increased fuel consumption. The proposed VARS aims to utilize waste heat and exhaust gas from the internal combustion engine to cool the mini-bus cabin, thereby reducing fuel consumption and atmospheric pollution. The project involves two models: Model 1, a two-fluid vapor absorption system (VAS), and Model 2, a three-fluid VAS. Model 1 uses ammonia (NH₃) and water (H₂O) as refrigerants, where water absorbs ammonia rapidly, producing a cooling effect. The absorption cycle operates on the principle that absorbing ammonia in water decreases vapor pressure. The ammonia-water solution undergoes cycles of desorption, condensation, expansion, and absorption, facilitated by a generator, condenser, expansion valve, and absorber. The objectives of this research include reducing atmospheric pollution, minimizing air conditioning maintenance costs, lowering capital costs, enhancing fuel economy, and eliminating the need for a compressor. The comparison between vapor absorption and compression systems reveals advantages such as smoother operation, fewer moving parts, and the ability to work at lower evaporator pressures without affecting the Coefficient of Performance (COP). The proposed VARS demonstrates potential benefits for mini-bus air conditioning systems, providing a sustainable and energy-efficient alternative. By utilizing waste heat and exhaust gas, this system contributes to environmental preservation while addressing economic considerations for vehicle owners. Further research and development in this area could lead to the widespread adoption of vapor absorption technology in automotive air conditioning systems.Keywords: room, zone, space, thermal resistance
Procedia PDF Downloads 776158 Heavy Metal of Soil in Wastewater, Irrigated Agricultural Soil in a Surrounding Area of the Nhue River, Vietnam
Authors: Thi Lan Huong Nguyen, Motohei Kanayama, Takahiro Higashi, Van Chinh Le, Thu Ha Doan, Anh Daochu
Abstract:
Waste from industrial sources, serves as sources of water for irrigating farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals in the soils. Soil samples were collected from the different locations from upstream to downstream of the Nhue River to evaluate heavy metal pollution. The results showed that the concentrations of all heavy metals in the soil samples in the farmland area were much higher than the background level in that area (1.2-2.6 mg/kg for Cd, 42-60 mg/kg for Cr, 22-62mg/kg for Cu, 30-86 mg/kg for Pb, 119-245 mg/kg for Zn, and 26-57 mg/kg for Ni), and exceeded the level of Vietnamese standard for agricultural soil for all heavy metals Cd, Cu, Pb, and Zn except soil samples at upstream and downstream of the Nhue River.Keywords: heavy metal, soil, Nhue River, wastewater irrigation
Procedia PDF Downloads 4776157 Effect of Permeability Reducing Admixture Utilization on Sulfate Resistance of Self-Consolidating Concrete Mixture
Authors: Ali Mardani-Aghabaglou, Zia Ahmad Faqiri, Semsi Yazici
Abstract:
In this study, the effect of permeability reducing admixture (PRA) utilization on fresh properties, compressive strength and sulfate resistance of self-consolidating concrete (SSC) were investigated. For this aim, two different commercial PRA were used at two utilization ratios as %0.1 and %0.2 wt. CEM I 42.5 R type cement and crushed limestone aggregate having Dmax of 15 mm were used for preparing of SCC mixtures. In all mixtures, cement content, water/cement ratio, and flow value were kept constant as 450 kg, 0.40 and 65 ± 2 cm, respectively. In order to obtain desired flow value, a polycarboxylate ether-based high range water reducing admixture was used at different content. T50 flow time, flow value, L-box, and U-funnel of SCC mixture were measured as fresh properties. 1, 3, 7 and 28-day compressive strength of SCC mixture were obtained on 150 mm cubic specimens. To investigate the sulfate resistance of SCC mixture 75x75x285 mm prismatic specimens were produced. After 28-day water curing, specimens were immersed in %5 sodium sulfate solution during 210 days. The length change of specimens was measured at 5-day time intervals up to 210 days. According to the test results, all fresh properties of SCC mixtures were in accordance with the European federation of specialist construction chemicals and concrete systems (EFNARC) critter for SCC mixtures. The utilization of PRA had no significant effect on compressive strength and fresh properties of SCC mixtures. Regardless of PRA type, sulfate resistance of SCC mixture increased by adding of PRA into the SCC mixtures. The length changes of the SCC mixtures containing %1 and %2 PRA were measured as %8 and %14 less than that of control mixture containing no PRA, respectively.Keywords: permeability reducing admixture, self-consolidating concrete, fresh properties, sulfate resistance
Procedia PDF Downloads 1606156 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water
Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard
Abstract:
Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment
Procedia PDF Downloads 1266155 Roller Compacting Concrete “RCC” in Dams
Authors: Orod Zarrin, Mohsen Ramezan Shirazi
Abstract:
Rehabilitation of dam components such as foundations, buttresses, spillways and overtopping protection require a wide range of construction and design methodologies. Geotechnical Engineering considerations play an important role in the design and construction of foundations of new dams. Much investigation is required to assess and evaluate the existing dams. The application of roller compacting concrete (RCC) has been accepted as a new method for constructing new dams or rehabilitating old ones. In the past 40 years there have been so many changes in the usage of RCC and now it is one of most satisfactory solutions of water and hydropower resource throughout the world. The considerations of rehabilitation and construction of dams might differ due to upstream reservoir and its influence on penetrating and dewatering of downstream, operations requirements and plant layout. One of the advantages of RCC is its rapid placement which allows the dam to be operated quickly. Unlike ordinary concrete it is a drier mix, and stiffs enough for compacting by vibratory rollers. This paper evaluates some different aspects of RCC and focuses on its preparation progress.Keywords: spillway, vibrating consistency, fly ash, water tightness, foundation
Procedia PDF Downloads 6096154 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq, Rachid Elbachtiri
Abstract:
The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.Keywords: photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter
Procedia PDF Downloads 4086153 A Glycerol-Free Process of Biodiesel Production through Chemical Interesterification of Jatropha Oil
Authors: Ratna Dewi Kusumaningtyas, Riris Pristiyani, Heny Dewajani
Abstract:
Biodiesel is commonly produced via the two main routes, i.e. the transesterification of triglycerides and the esterification of free fatty acid (FFA) using short-chain alcohols. Both the two routes have drawback in term of the side product yielded during the reaction. Transesterification reaction of triglyceride results in glycerol as side product. On the other hand, FFA esterification brings in water as side product. Both glycerol and water in the biodiesel production are managed as waste. Hence, a separation process is necessary to obtain a high purity biodiesel. Meanwhile, separation processes is generally the most capital and energy intensive part in industrial process. Therefore, to reduce the separation process, it is essential to produce biodiesel via an alternative route eliminating glycerol or water side-products. In this work, biodiesel synthesis was performed using a glycerol-free process through chemical interesterification of jatropha oil with ethyl acetate in the presence on sodium acetate catalyst. By using this method, triacetine, which is known as fuel bio-additive, is yielded instead of glycerol. This research studied the effects of catalyst concentration on the jatropha oil interesterification process in the range of 0.5 – 1.25% w/w oil. The reaction temperature and molar ratio of oil to ethyl acetate were varied at 50, 60, and 70°C, and 1:6, 1:9, 1:15, 1:30, and 1:60, respectively. The reaction time was evaluated from 0 to 8 hours. It was revealed that the best yield was obtained with the catalyst concentration of 0.5%, reaction temperature of 70 °C, molar ratio of oil to ethyl acetate at 1:60, at 6 hours reaction time.Keywords: biodiesel, interesterification, glycerol-free, triacetine, jatropha oil
Procedia PDF Downloads 4326152 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation
Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen
Abstract:
In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.Keywords: air tunnel, ground heat exchanger, raft foundation, residential building
Procedia PDF Downloads 3376151 Research on Low interfacial Tension Viscoelastic Fluid Oil Displacement System in Unconventional Reservoir
Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang
Abstract:
Unconventional oil reservoirs have the characteristics of strong heterogeneity and poor injectability, and traditional chemical flooding technology is not effective in such reservoirs; polymer flooding in the production of heavy oil reservoirs is difficult to handle produced fluid and easy to block oil wells, etc. Therefore, a viscoelastic fluid flooding system with good adaptability, low interfacial tension, plugging, and diverting capabilities was studied. The viscosity, viscoelasticity, surface/interfacial activity, wettability, emulsification, and oil displacement performance of the anionic Gemini surfactant flooding system were studied, and the adaptability of the system to the reservoir environment was evaluated. The oil displacement effect of the system in low-permeability and high-permeability (heavy oil) reservoirs was investigated, and the mechanism of the system to enhance water flooding recovery was discussed. The results show that the system has temperature resistance and viscosity increasing performance (65℃, 4.12mPa•s), shear resistance and viscoelasticity; at a lower concentration (0.5%), the oil-water interfacial tension can be reduced to ultra-low (10-3mN/m); has good emulsifying ability for heavy oil, and is easy to break demulsification (4.5min); has good adaptability to reservoirs with high salinity (30000mg/L). Oil flooding experiments show that this system can increase the water flooding recovery rate of low-permeability homogeneous and heterogeneous cores by 13% and 15%, respectively, and can increase the water-flooding recovery rate of high-permeability heavy oil reservoirs by 40%. The anionic Gemini surfactant flooding system studied in this paper is a viscoelastic fluid, has good emulsifying and oil washing ability, can effectively improve sweep efficiency, reduce injection pressure, and has broad application in unconventional reservoirs to enhance oil recovery prospect.Keywords: oil displacement system, recovery factor, rheology, interfacial activity, environmental adaptability
Procedia PDF Downloads 1296150 Advancement of Oscillating Water Column Wave Energy Technologies through Integrated Applications and Alternative Systems
Authors: S. Doyle, G. A. Aggidis
Abstract:
Wave energy converter technologies continue to show good progress in worldwide research. One of the most researched technologies, the Oscillating Water Column (OWC), is arguably one of the most popular categories within the converter technologies due to its robustness, simplicity and versatility. However, the versatility of the OWC is still largely untapped with most deployments following similar trends with respect to applications and operating systems. As the competitiveness of the energy market continues to increase, the demand for wave energy technologies to be innovative also increases. For existing wave energy technologies, this requires identifying areas to diversify for lower costs of energy with respect to applications and synergies or integrated systems. This paper provides a review of all OWCs systems integrated into alternative applications in the past and present. The aspects and variation in their design, deployment and system operation are discussed. Particular focus is given to the Multi-OWCs (M-OWCs) and their great potential to increase capture on a larger scale, especially in synergy applications. It is made clear that these steps need to be taken in order to make wave energy a competitive and viable option in the renewable energy mix as progression to date shows that stand alone single function devices are not economical. Findings reveal that the trend of development is moving toward these integrated applications in order to reduce the Levelised Cost of Energy (LCOE) and will ultimately continue in this direction in efforts to make wave energy a competitive option in the renewable energy mix.Keywords: wave energy converter, oscillating water column, ocean energy, renewable energy
Procedia PDF Downloads 1386149 Estimation of Leachate Generation from Municipal Solid Waste Landfills in Selangor
Authors: Tengku Nilam Baizura, Noor Zalina Mahmood
Abstract:
In Malaysia, landfilling is the most preferred method and most of it does not have the proper leachate treatment system which can cause environmental problems. Leachate is the major factor to river water pollution since most landfills are located near the river which is the main water resource for the country. The study aimed to estimate leachate production from landfills in Selangor. A simple mathematical modelling was used for the calculation of annual leachate volume. The estimate of identified landfill area (A) using Google Earth was multiplied by the annual rainfall (R). The product is expressed as volume (V). The data indicate that the leachate production is high even it is fully closed. It is important to design the efficient landfill and proper leachate treatment processes especially for the old/closed landfill. Extensive monitoring will be required to predict future impact.Keywords: landfill, leachate, municipal solid waste management, waste disposal
Procedia PDF Downloads 3756148 Rain Dropsize Distribution from Individual Storms and Variability in Nigeria Topical Region
Authors: Akinyemi Tomiwa
Abstract:
The microstructure of rainfall is important for predicting and modeling various environmental processes, such as rainfall interception by vegetation, soil erosion, and radar signals in rainfall. This rain microstructure was studied with a vertically pointing Micro Rain Radar (MRR) located at a tropical location in Akure South West Nigeria (7o 15’ N, 5o 15’ E). This research utilizes two years of data (2018 and 2019), and the data obtained comprises rainfall parameters such as Rain rates, radar reflectivity, liquid water content, fall velocity and Drop Size Distribution (DSD) based on vertical profiles. The measurement and variations of rain microstructure of these parameters with heights for different rain types were presented from ground level up to the height of 4800 m at 160 m range gates. It has been found that the convective, stratiform and mixed, which are the three major rain types, have different rain microstructures at different heights and were evaluated in this research. The correlation coefficient and the regression line equation were computed for each rain event. The highest rain rate and liquid water content were observed within the height range of 160-4800. It was found that a good correlation exists between the measured parameters. Hence it shows that specific liquid water content increases with increasing rain rate for both stratiform and convective rain types in this part of the world. The results can be very useful for a better understanding of rain structure over tropical regions.Keywords: rain microstructure, drop size distribution, rain rates, stratiform, convective.
Procedia PDF Downloads 436147 Geared Turbofan with Water Alcohol Technology
Authors: Abhinav Purohit, Shruthi S. Pradeep
Abstract:
In today’s world, aviation industries are using turbofan engines (permutation of turboprop and turbojet) which meet the obligatory requirements to be fuel competent and to produce enough thrust to propel an aircraft. But one can imagine increasing the work output of this particular machine by reducing the input power. In striving to improve technologies, especially to augment the efficiency of the engine with some adaptations, which can be crooked to new concepts by introducing a step change in the turbofan engine development. One hopeful concept is, to de-couple the fan with the help of reduction gear box in a two spool shaft engine from the rest of the machinery to get more work output with maximum efficiency by reducing the load on the turbine shaft. By adapting this configuration we can get an additional degree of freedom to better optimize each component at different speeds. Since the components are running at different speeds we can get hold of preferable efficiency. Introducing water alcohol mixture to this concept would really help to get better results.Keywords: emissions, fuel consumption, more power, turbofan
Procedia PDF Downloads 4396146 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand
Authors: W. Thongwat, B. Terakulsatit
Abstract:
The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.Keywords: environmental geology, soil salinity, geochemistry, groundwater hydrology
Procedia PDF Downloads 1266145 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks
Authors: Nicholas Aerne, John P. Parmigiani
Abstract:
There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply
Procedia PDF Downloads 2086144 Comparative Study of Ecological City Criteria in Traditional Iranian Cities
Authors: Zahra Yazdani Paraii, Zohreh Yazdani Paraei
Abstract:
Many urban designers and planners have been involved in the design of environmentally friendly or nature adaptable urban development models due to increase in urban populations in the recent century, limitation on natural resources, climate change, and lack of enough water and food. Ecological city is one of the latest models proposed to accomplish the latter goal. In this work, the existing establishing indicators of the ecological city are used regarding energy, water, land use and transportation issues. The model is used to compare the function of traditional settlements of Iran. The result of investigation shows that the specifications and functions of the traditional settlements of Iran fit well into the ecological city model. It is found that the inhabitants of the old cities and villages in Iran had founded ecological cities based on their knowledge of the environment and its natural opportunities and limitations.Keywords: ecological city, traditional city, urban design, environment
Procedia PDF Downloads 2596143 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil
Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah
Abstract:
Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.Keywords: laterite, OMC, compaction energy, moisture content
Procedia PDF Downloads 4126142 Synthesis of Silver Nanoparticles Adsorbent from Phytolacca Dodecandra ‘Endod’ Leaf to Water Treatment, at Almeda Textile Factory, Tigray Ethiopia
Authors: Letemariam Gebreslassie Gebrekidan
Abstract:
Water pollution is one of the most feared problems in modern societies, especially in developing countries like Ethiopia. Nanoparticles with controlled size and composition are of fundamental and technological interest as they provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatment. The synthesis of metallic nanoparticles is an active area of academic and, more importantly, application research in nanotechnology. Adsorption is a process in which pollutants are absorbed on a solid surface. A molecule (pollutant) adhered to the solid surface is called an adsorbate, and the solid surface is an adsorbent. Adsorption is controlled by various parameters such as temperature, the nature of the adsorbate and adsorbent, and the presence of other pollutants along with the experimental conditions (pH, concentration of pollutants, contact time, particle size, and temperature). Depending on the main problem of water pollution, this research is available on the adsorption of wastewater using silver nanoparticles extracted from phytolacca Dodecandra leaf. AgNP was synthesized from a 1mM aqueous solution of silver nitrate (AgNO3) and Phytolacca Dodecandra leaf extract at room temperature. The synthesized nanoparticles were characterized using UV/visible Spectrometer, FTIR and XRD. In the UV-Vis spectrum, The Surface Plasmon resonance (SPR) peak was observed at 414 nm, which confirmed the synthesis of AgNPs. FTIR spectroscopy, recorded from 4000 cm-1 to 400 cm-1, indicated the presence of a capping agent with the nanoparticles. From the XRD results, the average crystalline size was estimated to be 20 nm Confirming the nanoparticle nature of the obtained sample. Thus, the present method leads to the formation of silver nanoparticles with well-defined dimensions. The effects of different parameters like solution pH, adsorbent dose, contact time and initial concentration of dye were studied. The concentration of MB is 0.01 mg/L and 0.002 mg/L before and after adsorption, respectively. The wastewater containing MB was well purified using AgNP adsorbent.Keywords: wastewater, silver nanoparticle, Characterization, adsorption, parameter
Procedia PDF Downloads 266141 Toxicity of Cry1ac Bacillus thuringiensis against Helicoverpa armigera (Hubner) on Artificial Diet under Laboratory Conditions
Authors: Tahammal Hussain, Khuram Zia, Mumammad Jalal Arif, Megha Parajulee, Abdul Hakeem
Abstract:
The Bioassay on neonate, 2nd and 3rd instar larvae of Helicoverpa armigera (Hubner) were conducted against Bacillus thuringiensis proteins Cry1Ac. Cry1Ac was incorporated into an artificial diet and was serially diluted with distilled water and then mixed with diet at an appropriate temperature of diet. Toxins incorporated prepared diet was poured into Petri-dishes. For controls, distilled water was mixed with the diet. Five toxin doses 0.25, 0.5, 1, 2, and 4 ug / ml and one control were used for each instars of H. armigera 20 larvae were used in each replication and each treatment is replicated four times. LC50 of Cry1Ac against neonate, 2nd and 3rd instar larvae of H. armigera were 0.34, 0.81 and 1.46 ug / ml. So Cry1Ac is more effective against neonate larvae of H .armigera as compared to 2nd and 3rd instar larvae under laboratory conditions.Keywords: B. thuringiensis, Cry1Ac, H. armigera, toxicity
Procedia PDF Downloads 4186140 Heilong-Amur River: From Disputed Border to Brigde of Cooperation
Abstract:
With the international river playing an increasingly important role in international relations, the border river between China and Russia has attracted more attention. During the history of Sino-Russian relations, Heilong-Amur River used to be a disputed border. The Sino-Russian transboundary water cooperation regarding the Heilong-Amur River started in 1950s and has obtained rapid improvement. In the 21st century, this cooperation has made substantial progress, which is worthy of a further study. However, this cooperation is facing with obstacles in aspects of economy, policy, implementation and mutual understandings. Under this circumstance, from the perspective of China, it is of necessity to realize these problems and take appropriate measures to promote the cooperation. The current Sino-Russian relations is conducive to transboundary water resources cooperation regarding the Heilong-Amur River and some measures adopted by China are already ongoing.Keywords: China, cooperation, Heilong-Amur River, Russia
Procedia PDF Downloads 3856139 An Analysis of Energy Use and Input Level for Tomato Production in Turkey
Authors: Hasan Vural
Abstract:
The purpose of this study was to determine energy equivalents of inputs and output in tomato production in Bursa province. The data in this study were collected from tomato farms in Bursa province, Karacabey and Mustafakemalpasa district. Questionnaires were administered through face-to-face interview in 2011-2012. The results of the study show that diesel have the highest rate of energy equivalency of all the inputs used in tomato production at 60,07%. The energy equivalent rate of electricity is 4,26% and the energy equivalent rate of water is 0,87%. The energy equivalent rates for human power, machinery, chemicals and water for irrigation were determined to be low in tomato production. According to the output/input ratio calculated, the energy ratio is 1,50 in tomato production in the research area. This ratio implies that the inputs used in tomato production have not been used effectively. Ineffective use of these resources also causes environmental problems.Keywords: Tomato production, energy ratio, energy input, Turkey
Procedia PDF Downloads 2366138 Low- and High-Temperature Methods of CNTs Synthesis for Medicine
Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza
Abstract:
One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation
Procedia PDF Downloads 4526137 Experimental Investigation of Recycling Cementitious Materials in Low Strength Range for Sustainability and Affordability
Authors: Mulubrhan Berihu
Abstract:
Due to the design versatility, availability, and cost efficiency, concrete continues to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes, and the use of these industrial waste products has technical, economic, and environmental benefits besides the reduction of CO2 emission from cement production. This paper aims to document the effect on the strength property of concrete due to the use of low cement by maximizing supplementary cementitious materials like fly ash. The amount of cement content was below 250 kg/m3, and in all the mixes, the quantity of powder (cement + fly ash) is almost kept at about 500 kg. According to this, seven different cement content (250 kg/m3, 195 kg/m3, 150 kg/m3, 125 kg/m3, 100 kg/m3, 85 kg/m3, 70 kg/m3) with different amount of replacement of SCMs was conducted. The mix proportion was prepared by keeping the water content constant and varying the cement content, SCMs, and water-to-binder ratio. Based on the different mix proportions of fly ash, a range of mix designs was formulated. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa, and the experimental results indicate that strength is a function of w/b. The experiment result shows a big difference in gaining of compressive strength from 7 days to 28 days and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases, the strength decreases significantly. At the same time, higher permeability was seen in the specimens which were tested for three hours than one hour.Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs
Procedia PDF Downloads 496136 Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water
Authors: Temesgen Geremew
Abstract:
This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications.Keywords: polythiophene, Pb2+, SERS, nanoparticles
Procedia PDF Downloads 616135 Chemical Risk Posed by Hospital Liquid Effluents Example CHU Beni Messous Algiers
Authors: Laref Nabil
Abstract:
Ecology is at the center of many debates and international regulations. It therefore becomes a necessity and a privileged axis in many countries policy. The rise of environmental problems, the particularism of the hospital as an actor Public Health must lead by example in hygiene, prevention of risks to man and his environment. In this, it seemed interesting to make a poster on hospital liquid effluents in order to know not only the regulatory aspects but also their degree of pollution and their management in health institutions. Materials and methods: Samples taken at several looks, analysis performed at STEP Reghaia Algiers. Discussion and / or findings: In general, central gaze analysis results of water we can conclude that the contents of the various physico-chemical parameters greatly exceed the standards. Although the hypothesis of assimilating hospital liquid effluents domestic waters is confirmed, the liquid effluent from the University Hospital of Beni Messous and dumped in the natural environment still represent ecotoxicological risk.Keywords: health, hospital, liquid effluents, water
Procedia PDF Downloads 452