Search results for: solar powered vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3128

Search results for: solar powered vehicle

578 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 154
577 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 273
576 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng DianXun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver

Procedia PDF Downloads 404
575 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications

Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita

Abstract:

Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.

Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution

Procedia PDF Downloads 384
574 From Sound to Music: The Trajectory of Musical Semiotics in a Selected Soundscape Environment in South-Western Nigeria

Authors: Olatunbosun Samuel Adekogbe

Abstract:

This paper addresses the question of musical signification, revolving around nature and its natural divides; the paper tends to examine the roles of the dispositional apparatus of listeners to react to sounding environments through music as coordinated sound that focuses on the powerful strain between vibrational occurrences of sound and potentials of being structured. This paper sets out to examine music as a simple conventional design that does not allude to something beyond music and sound as a vehicle to communicate through production, perception, translation, and reaction with regard to melodic and semiotic functions of sounds. This paper adopts the application of questionnaire and evolutionary approach methods to probe musical adaptation, reproduction, and natural selection as the basis for explaining specific human behavioural responses to musical sense-making beyond the above-sketched dichotomies, with a major focus on the transition from acoustic-emotional sensibilities to musical meaning in the selected soundscapes. It was observed that music has emancipated itself from the level of mere acoustic processing of sounds to a functional description in terms of allowing music users to share experiences and interact with the soundscaping environment. The paper, therefore, concludes that the audience as music participants and listeners in the selected soundscapes have been conceived as adaptive devices in the paradigm shift, which can build up new semiotic linkages with the sounding environments in southwestern Nigeria.

Keywords: semiotics, sound, music, soundscape, environment

Procedia PDF Downloads 65
573 Roof Integrated Photo Voltaic with Air Collection on Glasgow School of Art Campus Building: A Feasibility Study

Authors: Rosalie Menon, Angela Reid

Abstract:

Building integrated photovoltaic systems with air collectors (hybrid PV-T) have proved successful however there are few examples of their application in the UK. The opportunity to pull heat from behind the PV system to contribute to a building’s heating system is an efficient use of waste energy and its potential to improve the performance of the PV array is well documented. As part of Glasgow School of Art’s estate expansion, the purchase and redevelopment of an existing 1950’s college building was used as a testing vehicle for the hybrid PV-T system as an integrated element of the upper floor and roof. The primary objective of the feasibility study was to determine if hybrid PV-T was technically and financially suitable for the refurbished building. The key consideration was whether the heat recovered from the PV panels (to increase the electrical efficiency) can be usefully deployed as a heat source within the building. Dynamic thermal modelling (IES) and RetScreen Software were used to carry out the feasibility study not only to simulate overshadowing and optimise the PV-T locations but also to predict the atrium temperature profile; predict the air load for the proposed new 4 No. roof mounted air handling units and to predict the dynamic electrical efficiency of the PV element. The feasibility study demonstrates that there is an energy reduction and carbon saving to be achieved with each hybrid PV-T option however the systems are subject to lengthy payback periods and highlights the need for enhanced government subsidy schemes to reward innovation with this technology in the UK.

Keywords: building integrated, photovoltatic thermal, pre-heat air, ventilation

Procedia PDF Downloads 171
572 Microscopic Simulation of Toll Plaza Safety and Operations

Authors: Bekir O. Bartin, Kaan Ozbay, Sandeep Mudigonda, Hong Yang

Abstract:

The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.

Keywords: microscopic simulation, toll plaza, surrogate safety, application programming interface

Procedia PDF Downloads 183
571 Willingness of Spanish Wineries to Implement Renewable Energies in Their Vineyards and Wineries, as Well as the Limitations They Perceive for Their Implementation

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo

Abstract:

Climate change, depletion of non-renewable resources in the current energies, pollution from them, the greater ecological awareness of the population, are factors that suggest the change of energy sources in business. The agri-food industry is a growth sector, concerned about product innovation, process and with a clear awareness of what climate change may mean for it. This sector is supposed to have a high receptivity to the implementation of clean energy, as this favors not only the environment but also the essence of its business. This work, through surveys, aims to know the willingness of Spanish wineries to implement renewable energies in their vineyards, as well as the limitations they perceive for their implementation. This questionnaire allows the characterization of the sector in terms of its geographical typologies, their activity levels, their perception of environmental issues, the degree of implementation of measures to mitigate climate change and improve energy efficiency, and its uses and energy consumption. The analysis of data proves that the penetration of renewable energies is still at low levels, being the most used energies, solar thermal, photovoltaic and biomass. The initial investment seems to be at the origin of the lack of implantation of this type of energy in the wineries, and not so much the costs of operations and maintenance. The environmental management of the wineries is still at an embryonic stage within the company's organization chart, because these services are either outsourced or, if technicians are available, they are not exclusively dedicated to these tasks. However, there is a strong environmental awareness, as evidenced by the number of climate change mitigation and energy efficiency measures already adopted. The gap between high awareness and low achievement is probably due to the lack of knowledge about how to do it or the perception of a high cost.

Keywords: survey, renewable energy, winery, Spanish case

Procedia PDF Downloads 252
570 Mitigating Climate Change Issues: International Students' Perceptions on Energy Conservation and Effective Transportation

Authors: Indrapriya Kularatne, Olufemi Omisakin

Abstract:

Climate change mitigation is one of the most complex challenges that humanity has ever faced in the context of global environmental protection. This a multifaceted challenge that needs immediate, targeted and concentrated actions at global, national and local levels. Individual actions play a crucial role in mitigating climate change. New Zealand attracts a significant number of international students annually for higher education. Therefore, it is critical to understand what international students are bringing into the country in terms of their practices for mitigating climate change challenges. This exploratory research aims to investigate international students' perceptions on mitigating climate change issues. The study focuses particularly on the areas of energy conservation and effective transportation. A specific questionnaire was developed covering the areas of energy conserving practices, use of energy efficient products, use of environmentally friendly transportation methods and practices to reduce vehicle usage. The quantitative data was collected from nearly 240 participants using the Qualtrics online system. The research findings provide valuable insights into international students' perceptions of sustainability and environmental protection actions, particularly in the areas of energy conservation and effective transportation. These insights can contribute to ongoing efforts to mitigate climate change issues and promote sustainable development practices in New Zealand.

Keywords: climate change, energy conservation, effective transportation, perceptions

Procedia PDF Downloads 66
569 The Probability of Smallholder Broiler Chicken Farmers' Participation in the Mainstream Market within Maseru District in Lesotho

Authors: L. E. Mphahama, A. Mushunje, A. Taruvinga

Abstract:

Although broiler production does not generate any large incomes among the smallholder community, it represents the main source of livelihood and part of nutritional requirement. As a result, market for broiler meat is growing faster than that of any other meat products and is projected to continue growing in the coming decades. However, the implication is that a multitude of factors manipulates transformation of smallholder broiler farmers participating in the mainstream markets. From 217 smallholder broiler farmers, socio-economic and institutional factors in broiler farming were incorporated into Binary model to estimate the probability of broiler farmers’ participation in the mainstream markets within the Maseru district in Lesotho. Of the thirteen (13) predictor variables fitted into the model, six (6) variables (household size, number of years in broiler business, stock size, access to transport, access to extension services and access to market information) had significant coefficients while seven (7) variables (level of education, marital status, price of broilers, poultry association, access to contract, access to credit and access to storage) did not have a significant impact. It is recommended that smallholder broiler farmers organize themselves into cooperatives which will act as a vehicle through which they can access contracts and formal markets. These cooperatives will also enable easy training and workshops for broiler rearing and marketing/markets through extension visits.

Keywords: broiler chicken, mainstream market, Maseru district, participation, smallholder farmers

Procedia PDF Downloads 152
568 Performance Investigation of Thermal Insulation Materials for Walls: A Case Study in Nicosia (Turkish Republic of North Cyprus)

Authors: L. Vafaei, McDominic Eze

Abstract:

The performance of thermal energy in homes and buildings is a significant factor in terms of energy efficiency of a building. In a large sense, the performance of thermal energy is dependent on many factors of which the amount of thermal insulation is at one end a considerable factor, as likewise the essence of mass and the wall thickness and also the thermal resistance of wall material. This study is aimed at illustrating the different wall system in Turkish Republic of North Cyprus (TRNC), acknowledge the problem and suggest a solution through comparing the effect of thermal radiation two model rooms- L1 (Ytong wall) and L2 (heat insulated wall using stone wool) set up for experimentation. The model room has four face walls. The study consists of two stage, the first test is to access the effect of solar radiation for south facing wall and the second stage is to test the thermal performance of Ytong and heat insulated wall, the effects of climatic condition during winter. The heat insulated wall contains material hollow brick, stone wool, and gypsum while the Ytong wall contains cement concrete, for the outer surface and the inner surface and Ytong stone. The total heat of the wall was determined, 7T-Type thermocouple was used with a data logger system to record the data, temperature change recorded at an interval of 10 minutes. The result obtained was that Ytong wall save more energy than the heat insulated wall at night while heat insulated wall saves energy during the day when intensity is at maximum.

Keywords: heat insulation, hollow bricks, south facing, Ytong bricks wall

Procedia PDF Downloads 265
567 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions

Authors: Korban Oosthuizen, Robert C. Luckay

Abstract:

Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.

Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries

Procedia PDF Downloads 78
566 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 365
565 Study for Utilization of Industrial Solid Waste, Generated by the Discharge of Casting Sand Agglomeration with Clay, Blast Furnace Slag and Sugar Cane Bagasse Ash in Concrete Composition

Authors: Mario Sergio de Andrade Zago, Javier Mazariegos Pablos, Eduvaldo Paulo Sichieri

Abstract:

This research project accomplished a study on the technical feasibility of recycling industrial solid waste generated by the discharge of casting sand agglomeration with clay, blast furnace slag and sugar cane bagasse ash. For this, the plan proposed a methodology that initially establishes a process of solid waste encapsulation, by using solidification/stabilization technique on Portland cement matrices, in which the residuals act as small and large aggregates on the composition of concrete, and later it presents the possibility of using this concrete in the manufacture of concrete pieces (concrete blocks) for paving. The results obtained in this research achieved the objective set with great success, regarding the manufacturing of concrete pieces (blocks) for paving urban roads, whenever there is special vehicle traffic or demands capable of producing accentuated abrasion effects (surpassing the 50 MPa required by the regulation), which probes the technical practicability of using waste from sand casting agglomeration with clay and blast furnace slag used in this study, unlocking usage possibilities for construction.

Keywords: industrial solid waste, solidification/stabilization, Portland cement, reuse, bagasse ash in the sugar cane, concrete

Procedia PDF Downloads 302
564 Thermal Simulation for Urban Planning in Early Design Phases

Authors: Diego A. Romero Espinosa

Abstract:

Thermal simulations are used to evaluate comfort and energy consumption of buildings. However, the performance of different urban forms cannot be assessed precisely if an environmental control system and user schedules are considered. The outcome of such analysis would lead to conclusions that combine the building use, operation, services, envelope, orientation and density of the urban fabric. The influence of these factors varies during the life cycle of a building. The orientation, as well as the surroundings, can be considered a constant during the lifetime of a building. The structure impacts the thermal inertia and has the largest lifespan of all the building components. On the other hand, the building envelope is the most frequent renovated component of a building since it has a great impact on energy performance and comfort. Building services have a shorter lifespan and are replaced regularly. With the purpose of addressing the performance, an urban form, a specific orientation, and density, a thermal simulation method were developed. The solar irradiation is taken into consideration depending on the outdoor temperature. Incoming irradiation at low temperatures has a positive impact increasing the indoor temperature. Consequently, overheating would be the combination of high outdoor temperature and high irradiation at the façade. On this basis, the indoor temperature is simulated for a specific orientation of the evaluated urban form. Thermal inertia and building envelope performance are considered additionally as the materiality of the building. The results of different thermal zones are summarized using the 'Degree day method' for cooling and heating. During the early phase of a design process for a project, such as Masterplan, conclusions regarding urban form, density and materiality can be drawn by means of this analysis.

Keywords: building envelope, density, masterplanning, urban form

Procedia PDF Downloads 145
563 Data-Driven Simulations Tools for Der and Battery Rich Power Grids

Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili

Abstract:

Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.

Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools

Procedia PDF Downloads 103
562 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements

Authors: Andrey Kupriyanov

Abstract:

In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.

Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)

Procedia PDF Downloads 181
561 Synthesis and Study of Properties of Polyaniline/Nickel Sulphide Nanocomposites

Authors: Okpaneje Onyinye Theresa, Ugwu Laeticia Udodiri, Okereke Ngozi Agatha, Okoli Nonso Livinus

Abstract:

This work is on the synthesis and study of the optical characterization of polyaniline/nickel sulphide nanocomposite. Polyaniline (PANI) and nickel sulphide (NiS) nanoparticles were synthesized by oxidative chemical polymerization and sol-gel method. The polyaniline nickel sulphide nanocomposites with various concentrations of NiS were synthesized by in-situ polymerization of aniline monomer. In each case, the nickel sulphide nanoparticles were uniformly dispersed in the aniline hydrochloride before the initiation of oxidative chemical polymerization using ammonium persulphate. The samples formed were subjected to optical characterization using an ultraviolet (UV)-visible light (VIS) spectrophotometer (model: 756S UV – VIS). Optical analysis of the synthesized nanoparticles and nanocomposites showed absorption of radiation within VIS regions. The Tauc model was used to obtain the optical band gap. Energy band gap values of PANI and NiS were found to be 2.50 eV and 1.95 eV, respectively. PANI/NiSnanocomposites has an energy band gap that decreased from 2.25 eV to 1.90 eV as the amount of NiS increased (from 0.5g to 2.0g). These optical results showed that these nanocomposites are potential materials to be considered in solar cells and optoelectronics devices. The structural analysis confirmed the formation of polyaniline and hexagonal nickel sulphide with an average crystallite size of 25.521 nm, while average crystallite sizes of PANI/NiSnanocomposites ranged from 19.458 nm to 25.108 nm. Average particle sizes obtained from the SEM images ranged from 23.24 nm to 51.88 nm. Compositional results confirmed the presence of desired elements that made up the nanoparticles and nanocomposites.

Keywords: polyaniline, nickel sulphide, polyaniline-nickel sulphide nanocomposite, optical characterization, structural analysis, morphological properties, compositional properties

Procedia PDF Downloads 114
560 Evaluation of Environmental, Social, and Governance Factors by U.S. Tolling Authorities in Bond Issuance Disclosures

Authors: Nicolas D. Norboge

Abstract:

Purchasers of municipal bonds in primary and secondary markets are increasingly expecting issuers to disclose environmental, social, and governance factors (ESG) inissuance and continuing disclosure documents. U.S. tolling authorities are slowly catching up with other transportation sectors, such as public transit, in integrating ESG factors into their bond disclosure documents. A systematic mixed-methods evaluation of publicly available bond disclosure documents from 2010-2022 suggest that only a small number of U.S. tolling authorities disclosedall ESG factors; however, the pace has accelerated significantly from 2020-2022. Because many tolling authorities have a direct financial stake in the growth of passenger vehicle miles traveled on their toll facilities, and in turn the burning of more climate-warming fossil fuels, one crucial questionthat remains is how bond purchasers will view increasedESG transparency. Recent moves by large institutional investors, credit rating agencies, and regulators suggestan expectation of ESG disclosure is a trend likely to endure. This researchsuggests tolling authorities will need to proactively consider these emerging trends and carefully adapt their disclosure practiceswhere possible. Building on these findings, this research also provides a basic sketch framework for how issuers can responsibly position themselves within the changing global municipal debt marketplace.

Keywords: debt policy, ESG, municipal bonds, public-private partnerships, public tolling authorities, transportation finance, and policy

Procedia PDF Downloads 178
559 Investigation of Time Pressure and Instinctive Reaction in Moral Dilemmas While Driving

Authors: Jacqueline Miller, Dongyuan Y. Wang, F. Dan Richard

Abstract:

Before trying to make an ethical machine that holds a higher ethical standard than humans, a better understanding of human moral standards that could be used as a guide is crucial. How humans make decisions in dangerous driving situations like moral dilemmas can contribute to developing acceptable ethical principles for autonomous vehicles (AVs). This study uses a driving simulator to investigate whether drivers make utilitarian choices (choices that maximize lives saved and minimize harm) in unavoidable automobile accidents (moral dilemmas) with time pressure manipulated. This study also investigates how impulsiveness influences drivers’ behavior in moral dilemmas. Manipulating time pressure results in collisions that occur at varying time intervals (4 s, 5 s, 7s). Manipulating time pressure helps investigate how time pressure may influence drivers’ response behavior. Thirty-one undergraduates participated in this study using a STISM driving simulator to respond to driving moral dilemmas. The results indicated that the percentage of utilitarian choices generally increased when given more time to respond (from 4 s to 7 s). Additionally, participants in vehicle scenarios preferred responding right over responding left. Impulsiveness did not influence utilitarian choices. However, as time pressure decreased, response time increased. Findings have potential implications and applications on the regulation of driver assistance technologies and AVs.

Keywords: time pressure, automobile moral dilemmas, impulsiveness, reaction time

Procedia PDF Downloads 54
558 Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia

Authors: T. Aboumahboub, R. Brecha, H. B. Shrestha, U. F. Hutfilter, A. Geiges, W. Hare, M. Schaeffer, L. Welder, M. Gidden

Abstract:

The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia’s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system.

Keywords: decarbonization, energy system modelling, renewable energy, sector coupling

Procedia PDF Downloads 133
557 Contents for the Maintenance and Troubleshooting of Anti-lock Braking System for Automobile Craftsmen in Nigeria

Authors: Arah Abubakar Saidu, Audu Rufai, Abdulkadir Mohammed, Ibrahim Yakubu Umar, Idris Abubakar Mohammed

Abstract:

The study determined the contents for the maintenance and troubleshooting of an anti-lock braking system for automobile craftsmen in Nigeria. Two research questions were raised and answered and two null hypotheses were formulated and tested at a .05 level of significance. The study adopted a descriptive survey research design. The study was conducted in Federal Capital Territory (FCT), Abuja, Kaduna, Kano, Lagos and Plateau States, Nigeria. The targeted population for the study was 99 consisting of all 43 non-teaching Subject Matter Experts (SMEs). The study utilized the whole population of the study. The instruments used for data collection were Anti-lock Braking System Maintenance and Troubleshooting Contents Questionnaire (ABSMTQ). Mean was used to analyze data that answered research questions and Z-test was used in testing the null hypotheses. Findings revealed, among others, that 81 items as content for the maintenance of ABS and 61 items as content for troubleshooting ABS for automobile craftsmen in Nigeria. Based on the findings of the study, the recommended, among others, that the National Board for Technical Education should include the contents for the maintenance and troubleshooting ABS in Motor Vehicle Mechanic Works curriculum used for training automobile craftsmen through the process of curriculum review in order to equip them with the competencies in troubleshooting and maintenance of ABS.

Keywords: anti-lock braking system, maintenance, troubleshooting, automobile craftsmen

Procedia PDF Downloads 89
556 Hierarchical Optimization of Composite Deployable Bridge Treadway Using Particle Swarm Optimization

Authors: Ashraf Osman

Abstract:

Effective deployable bridges that are characterized by an increased capacity to weight ratio are recently needed for post-disaster rapid mobility and military operations. In deployable bridging, replacing metals as the fabricating material with advanced composite laminates as lighter alternatives with higher strength is highly advantageous. This article presents a hierarchical optimization strategy of a composite bridge treadway considering maximum strength design and bridge weight minimization. Shape optimization of a generic deployable bridge beam cross-section is performed to achieve better stress distribution over the bridge treadway hull. The developed cross-section weight is minimized up to reserving the margins of safety of the deployable bridging code provisions. Hence, the strength of composite bridge plates is maximized through varying the plies orientation. Different loading cases are considered of a tracked vehicle patch load. The orthotropic plate properties of a composite sandwich core are used to simulate the bridge deck structural behavior. Whereas, the failure analysis is conducted using Tsai-Wu failure criterion. The naturally inspired particle swarm optimization technique is used in this study. The proposed technique efficiently reduced the weight to capacity ratio of the developed bridge beam.

Keywords: CFRP deployable bridges, disaster relief, military bridging, optimization of composites, particle swarm optimization

Procedia PDF Downloads 141
555 Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application

Authors: Mamta Bulla, Vinay Kumar

Abstract:

The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability.

Keywords: cyclability, energy density, nanocomposite, renewable energy, supercapacitor

Procedia PDF Downloads 11
554 Ameliorating Effects of Silver Nanoparticles Synthesized Using Chlorophytum borivillianum against Gamma Radiation Induced Oxidative Stress in Testis of Swiss Albino Mice

Authors: Ruchi Vyas, Sanjay Singh, Rashmi Sisodia

Abstract:

Chlorophytum borivillianum root extract (CBE) was chosen as a reducing agent to fabricate silver nanoparticles with the aim of studying its radioprotective efficacy. The formation of synthesized nanoparticles was characterized by UV–visible analysis (UV–vis), Fourier transform infra-red (FT-IR), Transmission electron microscopy (TEM), Scanning electron microscope (SEM). TEM analysis showed particles size in the range of 20-30 nm. For this study, Swiss albino mice were selected from inbred colony and were divided into 4 groups: group I- control (irradiated-6 Gy), group II- normal (vehicle treated), group III- plant extract alone and group IV- CB-AgNPs (dose of 50 mg/kg body wt./day) administered orally for 7 consecutive days before irradiation to serve as experimental. CB-AgNPs pretreatment rendered significant increase in body weight and testes weight at various post irradiation intervals in comparison to irradiated group. Supplementation of CB-AgNPs reversed the adverse effects of gamma radiation on biochemical parameters as it notably ameliorated the elevation in lipid peroxidation and decline in glutathione concentration in testes. These observations indicate the radio-protective potential of CB-AgNPs in testicular constituents against gamma irradiation in mice.

Keywords: Chlorophytum borivillianum, gamma radiation, radioprotective, silver nanoparticles

Procedia PDF Downloads 148
553 Hair Symbolism and Changing Perspective of Women’s Role in Children’s and Young Adult Literature

Authors: Suchismita Dattagupta

Abstract:

Social rules and guidelines specify how a body should be clothed and how it should look. The social rules have made the body a space for expression, oppression and sexual 'commodification'. Being a malleable aspect of the human body, hair has always been worn in a number of ways and this characteristic of hair has made it an essential vehicle for conveying symbolic meaning. Hair, particularly women’s hair has always been considered to be associated with richness and beauty, apart from being associated with sexual power. Society has always had a preoccupation with hair bordering on obsession and has projected its moral and political supremacy by controlling and influencing how an individual wears their hair. Irrespective of the gender of the individual, society has tried to control an individual’s hair to express its control. However, with time, there has been a marked change in the way hair has been used by the individual. Hair has always been the focus of scholarly studies; not just aesthetically, but also in the cultural and social context. The fascination with hair rises from the fact that it is the only part of the human body that is always on display. Fetishization of hair is common in literature and goes ahead to reveal the character’s social and moral status. Modern authors for children and young adults have turned this concept on its head to point out how characters are breaking away from the mould and establishing their personal, moral and social boundaries. This paper will trace the change in hair symbolism in literature for children and young adults to understand how it has changed over the course of the time and what light it throws on the changing pattern of women’s position in society.

Keywords: gender, hair, social symbols, society, women's role

Procedia PDF Downloads 234
552 Effects of AI-driven Applications on Bank Performance in West Africa

Authors: Ani Wilson Uchenna, Ogbonna Chikodi

Abstract:

This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.

Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)

Procedia PDF Downloads 7
551 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array

Authors: Alastair Hales, Xi Jiang, Siming Zhang

Abstract:

Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.

Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics

Procedia PDF Downloads 182
550 Zeolite Supported Iron-Sensitized TIO₂ for Tetracycline Photocatalytic ‎Degradation under Visible Light: A Comparison between Doping and Ion ‎Exchange ‎

Authors: Ghadeer Jalloul, Nour Hijazi, Cassia Boyadjian, Hussein Awala, Mohammad N. Ahmad, ‎Ahmad Albadarin

Abstract:

In this study, we applied Fe-sensitized TiO₂ supported over embryonic Beta zeolite (BEA) zeolite ‎for the photocatalytic degradation of Tetracycline (TC) antibiotic under visible light. Four different ‎samples having 20, 40, 60, and 100% w/w as a ratio of TiO₂/BEA were prepared. The ‎immobilization of solgel TiO₂ (33 m²/g) over BEA (390 m²/g) increased its surface area to (227 ‎m²/g) and enhanced its adsorption capacity from 8% to 19%. To expand the activity of TiO₂ ‎photocatalyst towards the visible light region (λ>380 nm), we explored two different metal ‎sensitization techniques with Iron ions (Fe³⁺). In the ion-exchange method, the substitutional cations ‎in the zeolite in TiO₂/BEA were exchanged with (Fe³⁺) in an aqueous solution of FeCl₃. In the ‎doping technique, solgel TiO₂ was doped with (Fe³⁺) from FeCl₃ precursor during its synthesis and ‎before its immobilization over BEA. (Fe-TiO₂/BEA) catalysts were characterized using SEM, XRD, ‎BET, UV-VIS DRS, and FTIR. After testing the performance of the various ion-exchanged catalysts ‎under blue and white lights, only (Fe-TiO₂/BEA 60%) showed better activity as compared to pure ‎TiO₂ under white light with 100 ppm initial catalyst concentration and 20 ppm TC concentration. As ‎compared to ion-exchanged (Fe-TiO₂/BEA), doped (Fe-TiO₂/BEA) resulted in higher photocatalytic ‎efficiencies under blue and white lights. The 3%-Fe-doped TiO₂/BEA removed 92% of TC ‎compared to 54% by TiO₂ under white light. The catalysts were also tested under real solar ‎irradiations. This improvement in the photocatalytic performance of TiO₂ was due to its higher ‎adsorption capacity due to BEA support combined with the presence of Iron ions that enhance the ‎visible light absorption and minimize the recombination effect by the charge carriers. ‎

Keywords: Tetracycline, photocatalytic degradation, immobilized TiO₂, zeolite, iron-doped TiO₂, ion-exchange

Procedia PDF Downloads 106
549 Growth of Metal Oxide (Tio2/Ag) Thin Films Sputtered by Hipims Effective in Bacterial Inactivation: Plasma Chemistry and Energetic

Authors: O. Baghriche, A. Zertal, C. Pulgarin, J. Kiwi, R. Sanjines

Abstract:

High-Power Impulse Magnetron Sputtering (HIPIMS) is a technology that belongs to the field of Ionized PVD of thin films. This study shows the first complete report on ultrathin TiO2/Ag nano-particulate films sputtered by highly ionized pulsed plasma magnetron sputtering (HIPIMS) leading to fast bacterial loss of viability. The Ag and the TiO2/Ag sputtered films induced complete Escherichia coli inactivation in the dark, which was not observed in the case of TiO2. When Ag was present, the bacterial inactivation was accelerated under low intensity solar simulated light and this has implications for a potential for a practical technology. The design, preparation, testing and surface characterization of these innovative films are described in this study. The HIPIMS sputtered composite films present an appreciable savings in metals compared to films obtained by conventional sputtering methods. HIPIMS sputtering induces a strong interaction with the rugous polyester 3-D structure due to the higher fraction of the Ag-ions (M+) attained in the magnetron chamber. The immiscibility of Ag and TiO2 in the TiO2/Ag films is shown by High Angular Dark Field (HAADF) microscopy. The ionization degree of the film forming species is significantly increased and film growth is assisted by an intense ion flux. Reports have revealed the significant enhancement of the film properties as the HIPIMS technology is used. However, a decrease of the deposition rate, as compared to the conventional DC magnetron sputtering Pulsed (DCMSP) process is commonly observed during HIPIMS.

Keywords: E. coli, HIPIMS, inactivation bacterial, sputtering

Procedia PDF Downloads 300