Search results for: microorganisms detection
1537 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis
Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo
Abstract:
Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination
Procedia PDF Downloads 1531536 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 1091535 A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding
Authors: R. S. Remya, U. S. Sethulekshmi
Abstract:
Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background.Keywords: discrete wavelet transform, optical flow, optical flow variation, video tampering
Procedia PDF Downloads 3621534 A Network Approach to Analyzing Financial Markets
Authors: Yusuf Seedat
Abstract:
The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks
Procedia PDF Downloads 1971533 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 741532 Probiotics as an Alternative to Antibiotic Use in Pig Production
Authors: Z. C. Dlamini, R. L. S. Langa, A. I. Okoh, O. A. Aiyegoro
Abstract:
The indiscriminate usage of antibiotics in swine production have consequential outcomes; such as development of bacterial resistance to prophylactic antibiotics and possibility of antibiotic residues in animal products. The use of probiotics appears to be the most effective procedure with positive metabolic nutritional implications. The aim of this study was to investigate the efficacy of probiotic bacteria (Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBRC13956) administered as direct-fed microorganisms in weaned piglets. 45 weaned piglets blocked by weight were dived into 5 treatments groups: diet with antibiotic, diet with no-antibiotic and no probiotic, and diet with probiotic and diet with combination of probiotics. Piglets performance was monitored during the trials. Faecal and Ileum samples were collected for microbial count analysis. Blood samples were collected from pigs at the end of the trial, for analysis of haematological, biochemical and IgG stimulation. The data was analysed by Split-Plot ANOVA using SAS statistically software (SAS 9.3) (2003). The difference was observed between treatments for daily weight and feed conversion ratio. No difference was observed in analysis of faecal samples in regards with bacterial counts, difference was observed in ileums samples with enteric bacteria colony forming unit being lower in P2 treatment group as compared with lactic acid and total bacteria. With exception of globulin and albumin, biochemistry blood parameters were not affected, likewise for haematology, only basophils and segmented neutrophils were differed by having higher concentration in NC treatment group as compared with other treatment groups. Moreover, in IgG stimulation analysis, difference was also observed, with P2 treatment group having high concentration of IgG in P2 treatment group as compared to other groups. The results of this study suggest that probiotics have a beneficial effect on growth performances, blood parameters and IgG stimulation of pigs, most effective when they are administered in synergy form. This means that it is most likely that these probiotics will offer a significant benefit in pig farming by reducing risk of morbidity and mortality and produce quality meat that is more affordable to poorer communities, and thereby enhance South African pig industry’s economy. In addition, these results indicate that there is still more research need to be done on probiotics in regards with, i.e. dosage, shelf life and mechanism of action.Keywords: antibiotics, biochemistry, haematology, IgG-stimulation, microbial count, probiotics
Procedia PDF Downloads 3071531 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU
Procedia PDF Downloads 2931530 Comparison of Concentration of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-Ray Fluorescence
Authors: Sungroul Kim, Yeonjin Kim
Abstract:
This study was conducted by comparing the concentrations of heavy metals analyzed from the same samples with three X-Ray fluorescence (XRF) spectrometer in three different global research institutions, including PAN (A Branch of Malvern Panalytical, Seoul, South Korea), RTI (Research Triangle Institute, NC, U.S.A), and aerosol laboratory in Harvard University, Boston, U.S.A. To achieve our research objectives, the indoor air filter samples were collected at homes (n=24) of adults or child asthmatics then analyzed in PAN followed by Harvard University and RTI consecutively. Descriptive statistics were conducted for data comparison as well as correlation and simple regression analysis using R version 4.0.3. As a result, detection rates of most heavy metals analyzed in three institutions were about 90%. Of the 25 elements commonly analyzed among those institutions, 16 elements showed an R² (coefficient of determination) of 0.7 or higher (10 components were 0.9 or higher). The findings of this study demonstrated that XRF was a useful device ensuring reproducibility and compatibility for measuring heavy metals in PM2.5 collected from indoor air of asthmatics’ home.Keywords: heavy metals, indoor air quality, PM2.5, X-ray fluorescence
Procedia PDF Downloads 2051529 A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults
Authors: Jude Inwumoh, Adam P. R. Taylor, Kosala Gunawardane
Abstract:
Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL).Keywords: MMC-HVDC, DC faults, fault current limiters, control scheme
Procedia PDF Downloads 1431528 Single Cell and Spatial Transcriptomics: A Beginners Viewpoint from the Conceptual Pipeline
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Messenger ribooxynucleic acid (mRNA) molecules are compositional, protein-based. These proteins, encoding mRNA molecules (which collectively connote the transcriptome), when analyzed by RNA sequencing (RNAseq), unveils the nature of gene expression in the RNA. The obtained gene expression provides clues of cellular traits and their dynamics in presentations. These can be studied in relation to function and responses. RNAseq is a practical concept in Genomics as it enables detection and quantitative analysis of mRNA molecules. Single cell and spatial transcriptomics both present varying avenues for expositions in genomic characteristics of single cells and pooled cells in disease conditions such as cancer, auto-immune diseases, hematopoietic based diseases, among others, from investigated biological tissue samples. Single cell transcriptomics helps conduct a direct assessment of each building unit of tissues (the cell) during diagnosis and molecular gene expressional studies. A typical technique to achieve this is through the use of a single-cell RNA sequencer (scRNAseq), which helps in conducting high throughput genomic expressional studies. However, this technique generates expressional gene data for several cells which lack presentations on the cells’ positional coordinates within the tissue. As science is developmental, the use of complimentary pre-established tissue reference maps using molecular and bioinformatics techniques has innovatively sprung-forth and is now used to resolve this set back to produce both levels of data in one shot of scRNAseq analysis. This is an emerging conceptual approach in methodology for integrative and progressively dependable transcriptomics analysis. This can support in-situ fashioned analysis for better understanding of tissue functional organization, unveil new biomarkers for early-stage detection of diseases, biomarkers for therapeutic targets in drug development, and exposit nature of cell-to-cell interactions. Also, these are vital genomic signatures and characterizations of clinical applications. Over the past decades, RNAseq has generated a wide array of information that is igniting bespoke breakthroughs and innovations in Biomedicine. On the other side, spatial transcriptomics is tissue level based and utilized to study biological specimens having heterogeneous features. It exposits the gross identity of investigated mammalian tissues, which can then be used to study cell differentiation, track cell line trajectory patterns and behavior, and regulatory homeostasis in disease states. Also, it requires referenced positional analysis to make up of genomic signatures that will be sassed from the single cells in the tissue sample. Given these two presented approaches to RNA transcriptomics study in varying quantities of cell lines, with avenues for appropriate resolutions, both approaches have made the study of gene expression from mRNA molecules interesting, progressive, developmental, and helping to tackle health challenges head-on.Keywords: transcriptomics, RNA sequencing, single cell, spatial, gene expression.
Procedia PDF Downloads 1261527 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations
Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad
Abstract:
Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage
Procedia PDF Downloads 941526 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 441525 Tax Evasion with Mobility between the Regular and Irregular Sectors
Authors: Xavier Ruiz Del Portal
Abstract:
This paper incorporates mobility between the legal and black economies into a model of tax evasion with endogenous labor supply in which underreporting is possible in one sector but impossible in the other. We have found that the results of the effects along the extensive margin (number of evaders) become more robust and conclusive than those along the intensive margin (hours of illegal work) usually considered by the literature. In particular, it is shown that the following policies reduce the number of evaders: (a) larger and more progressive evasion penalties; (b) higher detection probabilities; (c) an increase in the legal sector wage rate; (d) a decrease in the moonlighting wage rate; (e) higher costs for creating opportunities to evade; (f) lower opportunities to evade, and (g) greater psychological costs of tax evasion. When tax concealment and illegal work also are taken into account, the effects do not vary significantly under the assumptions in Cowell (1985), except for the fact that policies (a) and (b) only hold as regards low- and middle-income groups and policies (e) and (f) as regards high-income groups.Keywords: income taxation, tax evasion, extensive margin responses, the penalty system
Procedia PDF Downloads 1591524 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 3751523 Biopolymers: A Solution for Replacing Polyethylene in Food Packaging
Authors: Sonia Amariei, Ionut Avramia, Florin Ursachi, Ancuta Chetrariu, Ancuta Petraru
Abstract:
The food industry is one of the major generators of plastic waste derived from conventional synthetic petroleum-based polymers, which are non-biodegradable, used especially for packaging. These packaging materials, after the food is consumed, accumulate serious environmental concerns due to the materials but also to the organic residues that adhere to them. It is the concern of specialists, researchers to eliminate problems related to conventional materials that are not biodegradable or unnecessary plastic and replace them with biodegradable and edible materials, supporting the common effort to protect the environment. Even though environmental and health concerns will cause more consumers to switch to a plant-based diet, most people will continue to add more meat to their diet. The paper presents the possibility of replacing the polyethylene packaging from the surface of the trays for meat preparations with biodegradable packaging obtained from biopolymers. During the storage of meat products may occur deterioration by lipids oxidation and microbial spoilage, as well as the modification of the organoleptic characteristics. For this reason, different compositions of polymer mixtures and film conditions for obtaining must be studied to choose the best packaging material to achieve food safety. The compositions proposed for packaging are obtained from alginate, agar, starch, and glycerol as plasticizers. The tensile strength, elasticity, modulus of elasticity, thickness, density, microscopic images of the samples, roughness, opacity, humidity, water activity, the amount of water transferred as well as the speed of water transfer through these packaging materials were analyzed. A number of 28 samples with various compositions were analyzed, and the results showed that the sample with the highest values for hardness, density, and opacity, as well as the smallest water vapor permeability, of 1.2903E-4 ± 4.79E-6, has the ratio of components as alginate: agar: glycerol (3:1.25:0.75). The water activity of the analyzed films varied between 0.2886 and 0.3428 (aw< 0.6), demonstrating that all the compositions ensure the preservation of the products in the absence of microorganisms. All the determined parameters allow the appreciation of the quality of the packaging films in terms of mechanical resistance, its protection against the influence of light, the transfer of water through the packaging. Acknowledgments: This work was supported by a grant of the Ministry of Research, Innovation, and Digitization, CNCS/CCCDI – UEFISCDI, project number PN-III-P2-2.1-PED-2019-3863, within PNCDI III.Keywords: meat products, alginate, agar, starch, glycerol
Procedia PDF Downloads 1781522 Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography
Authors: Huy Q. Tran, Jungwon Huh, Kiseok Kwak, Choonghyun Kang
Abstract:
Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study.Keywords: concrete building, infrared thermography, nondestructive evaluation, subsurface delamination
Procedia PDF Downloads 2861521 Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture
Authors: Ghaneshree Moonsamy, Nodumo N. Zulu, Rajesh Lalloo, Suren Singh, Santosh O. Ramchuran
Abstract:
The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process.Keywords: probiotics, abalone aquaculture, bioprocess technology, manufacturing scale technology development
Procedia PDF Downloads 1571520 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing
Procedia PDF Downloads 1431519 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 5201518 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 3601517 Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control
Authors: Jijun Shi, Lichen Sun, Jianchao Zhao, Lizhi Sun, Enjun Liu, Chongwu Guo
Abstract:
Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded.Keywords: leak testing, spacecraft parts, relative error, error control
Procedia PDF Downloads 4621516 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling
Procedia PDF Downloads 3951515 The Antagonistic/Synergistic Effect of Probiotic Yeast Saccharomyces boulardii on Candida glabrata Adhesion
Authors: Zorica Tomičić, Ružica Tomičić, Peter Raspor
Abstract:
Growing resistance of pathogenic yeast Candida glabrata to many classes of antifungal drugs has stimulated efforts to discover new agents to combat a rising number of invasive C. glabrata infections, which deserves a great deal of concern due to the high mortality rate in immunocompromised populations. One promising strategy is the use of probiotic microorganisms, which, when administered in adequate amounts, confers a health benefit. A selected number of probiotic organisms, Saccharomyces boulardii among them, have been tested as potential biotherapeutic agents. The aim of this study was to investigate the effect of the probiotic yeast S. boulardii on the adhesion of clinical isolates of C. glabrata at different temperatures, pH values, and in the presence of three clinically important antifungal drugs, such as fluconazole, itraconazole and amphotericin B. The method used to assess adhesion was crystal violet staining. The selection of antimycotics concentrations used in the adhesion assay was based on minimum inhibitory concentrations (MICs) obtained by the preliminarily performed microdilution modification of the Reference method for broth dilution antifungal susceptibility testing of yeast (Clinical and Laboratory Standards Institute (CLSI), standard M27-A2). the results showed that despite the nonadhesiveness of S. boulardii cells, probiotic yeast significantly suppressed the adhesion of C. glabrata strains. Besides, at specific strain ratios, a slight stimulatory effect was observed in some C. glabrata strains, which highlights the importance of strain specificity and opens up further research interests. When environmental conditions are considered, temperature and pH significantly influenced co-culture adhesion of C. glabrata and S. boulardii. The adhesion of C. glabrata strains was relatively equally reduced over all tested temperature range (28°C, 37°C, 39°C and 42°C) in the presence of S. boulardii cells, while the adhesion of a few C. glabrata strains were significantly stimulated at 28°C and suppressed at 42°C. Further, the adhesion was highly dependent on pH, with the highest adherence at pH 4 and lowest at pH 8.5. It was observed that S. boulardii did not manage to suppress the adhesion of C. glabrata strains at high pH. Antimycotics on the other hand showed a greater impact, since S. boulardii failed to affect co-culture adhesion at higher antimycotics concentrations. As expected, exposure to various concentrations of amphotericin B significantly reduced the adherence ability of C.glabrata strains both in a single culture and co-culture with S. boulardii. Therefore, it can be speculated that S. boulardii could substitute the effect of antimycotics in a range concentrations and with specific type of strains. This would certainly change the view on the treatment of yeast infections in the future.Keywords: adhesion, antimycotics, candida glabrata, saccharomyces boulardii
Procedia PDF Downloads 691514 Early Detection of Major Earthquakes Using Broadband Accelerometers
Authors: Umberto Cerasani, Luca Cerasani
Abstract:
Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.Keywords: earthquake, accelerometer, earthquake forecasting, seism
Procedia PDF Downloads 1491513 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 711512 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks
Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid
Abstract:
Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.Keywords: WSN, routing, cluster based, meme, memetic algorithm
Procedia PDF Downloads 4871511 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents
Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi
Abstract:
Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.Keywords: styrofoam waste, polymeric resin, preconcentration, speciation, Cr(III)/Cr(VI) ions, FAAS
Procedia PDF Downloads 3001510 Bacterial Recovery of Copper Ores
Authors: Zh. Karaulova, D. Baizhigitov
Abstract:
At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus Acidophilus (S.a.), which are mixed cultures were both used in bacterial oxidation systems. They can stay active in the 20-400C temperature range. These bacteria were the most extensively studied and widely used in sulfide mineral recovery technology. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33оC. The growth rate decreased by one-half for each 4-5°C fall in temperature from 30°C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (>600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.Keywords: bacterial recovery, copper ore, bioleaching, bacterial inoculum
Procedia PDF Downloads 791509 Rapid Detection of MBL Genes by SYBR Green Based Real-Time PCR
Authors: Taru Singh, Shukla Das, V. G. Ramachandran
Abstract:
Objectives: To develop SYBR green based real-time PCR assay to detect carbapenemases (NDM, IMP) genes in E. coli. Methods: A total of 40 E. coli from stool samples were tested. Six were previously characterized as resistant to carbapenems and documented by PCR. The remaining 34 isolates previously tested susceptible to carbapenems and were negative for these genes. Bacterial RNA was extracted using manual method. The real-time PCR was performed using the Light Cycler III 480 instrument (Roche) and specific primers for each carbapenemase target were used. Results: Each one of the two carbapenemase gene tested presented a different melting curve after PCR amplification. The melting temperature (Tm) analysis of the amplicons identified was as follows: blaIMP type (Tm 82.18°C), blaNDM-1 (Tm 78.8°C). No amplification was detected among the negative samples. The results showed 100% concordance with the genotypes previously identified. Conclusions: The new assay was able to detect the presence of two different carbapenemase gene type by real-time PCR.Keywords: resistance, b-lactamases, E. coli, real-time PCR
Procedia PDF Downloads 4131508 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network
Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar
Abstract:
Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE
Procedia PDF Downloads 362