Search results for: electronic data interchange
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26311

Search results for: electronic data interchange

23761 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 95
23760 A Literature Review of Ergonomics Sitting Studies to Characterize Safe and Unsafe Sitting Behaviors

Authors: Yoonjin Lee, Dongwook Hwang, Juhee Park, Woojin Park

Abstract:

As undesirable sitting posture is known to be a major cause of musculoskeletal disorder of office workers, sitting has attracted attention on occupational health. However, there seems to be no consensus on what are safe and unsafe sitting behaviors. The purpose of this study was to characterize safe and unsafe behaviors based on scientific findings of sitting behavior. Three objectives were as follows; to identify different sitting behaviors measure used in ergonomics studies on safe sitting, for each measure identified, to find available findings or recommendations on safe and unsafe sitting behaviors along with relevant empirical grounds, and to synthesize the findings or recommendations to provide characterizations of safe and unsafe behaviors. A systematic review of electronic databases (Google Scholar, PubMed, Web of Science) was conducted for extensive search of sitting behavior. Key terms included awkward sitting position, sedentary sitting, dynamic sitting, sitting posture, sitting posture, and sitting biomechanics, etc. Each article was systemically abstracted to extract a list of studied sitting behaviors, measures used to study the sitting behavior, and presence of empirical evidence of safety of the sitting behaviors. Finally, characterization of safe and unsafe sitting behavior was conducted based on knowledge with empirical evidence. This characterization is expected to provide useful knowledge for evaluation of sitting behavior and about postures to be measured in development of sensing chair.

Keywords: sitting position, sitting biomechanics, sitting behavior, unsafe sitting

Procedia PDF Downloads 302
23759 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 271
23758 Efficient Sampling of Probabilistic Program for Biological Systems

Authors: Keerthi S. Shetty, Annappa Basava

Abstract:

In recent years, modelling of biological systems represented by biochemical reactions has become increasingly important in Systems Biology. Biological systems represented by biochemical reactions are highly stochastic in nature. Probabilistic model is often used to describe such systems. One of the main challenges in Systems biology is to combine absolute experimental data into probabilistic model. This challenge arises because (1) some molecules may be present in relatively small quantities, (2) there is a switching between individual elements present in the system, and (3) the process is inherently stochastic on the level at which observations are made. In this paper, we describe a novel idea of combining absolute experimental data into probabilistic model using tool R2. Through a case study of the Transcription Process in Prokaryotes we explain how biological systems can be written as probabilistic program to combine experimental data into the model. The model developed is then analysed in terms of intrinsic noise and exact sampling of switching times between individual elements in the system. We have mainly concentrated on inferring number of genes in ON and OFF states from experimental data.

Keywords: systems biology, probabilistic model, inference, biology, model

Procedia PDF Downloads 349
23757 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients

Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga

Abstract:

In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.

Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence

Procedia PDF Downloads 866
23756 Disidentification of Historical City Centers: A Comparative Study of the Old and New Settlements of Mardin, Turkey

Authors: Fatma Kürüm Varolgüneş, Fatih Canan

Abstract:

Mardin is one of the unique cities in Turkey with its rich cultural and historical heritage. Mardin’s traditional dwellings have been affected both by natural data such as climate and topography and by cultural data like lifestyle and belief. However, in the new settlements, housing is formed with modern approaches and unsuitable forms clashing with Mardin’s culture and environment. While the city is expanding, traditional textures are ignored. Thus, traditional settlements are losing their identity and are vanishing because of the rapid change and transformation. The main aim of this paper is to determine the physical and social data needed to define the characteristic features of Mardin’s old and new settlements. In this context, based on social and cultural data, old and new settlement formations of Mardin have been investigated from various aspects. During this research, the following methods have been utilized: observations, interviews, public surveys, literature review, as well as site examination via maps, photographs and questionnaire methodology. In conclusion, this paper focuses on how changes in the physical forms of cities affect the typology and the identity of cities, as in the case of Mardin.

Keywords: urban and local identity, historical city center, traditional settlements, Mardin

Procedia PDF Downloads 328
23755 Pediatric Hearing Aid Use: A Study Based on Data Logging Information

Authors: Mina Salamatmanesh, Elizabeth Fitzpatrick, Tim Ramsay, Josee Lagacé, Lindsey Sikora, JoAnne Whittingham

Abstract:

Introduction: Hearing loss (HL) is one of the most common disorders that presents at birth and in early childhood. Universal newborn hearing screening (UNHS) has been adopted based on the assumption that with early identification of HL, children will have access to optimal amplification and intervention at younger ages, therefore, taking advantage of the brain’s maximal plasticity. One particular challenge for parents in the early years is achieving consistent hearing aid (HA) use which is critical to the child’s development and constitutes the first step in the rehabilitation process. This study examined the consistency of hearing aid use in young children based on data logging information documented during audiology sessions in the first three years after hearing aid fitting. Methodology: The first 100 children who were diagnosed with bilateral HL before 72 months of age since 2003 to 2015 in a pediatric audiology clinic and who had at least two hearing aid follow-up sessions with available data logging information were included in the study. Data from each audiology session (age of child at the session, average hours of use per day (for each ear) in the first three years after HA fitting) were collected. Clinical characteristics (degree of hearing loss, age of HA fitting) were also documented to further understanding of factors that impact HA use. Results: Preliminary analysis of the results of the first 20 children shows that all of them (100%) have at least one data logging session recorded in the clinical audiology system (Noah). Of the 20 children, 17(85%) have three data logging events recorded in the first three years after HA fitting. Based on the statistical analysis of the first 20 cases, the median hours of use in the first follow-up session after the hearing aid fitting in the right ear is 3.9 hours with an interquartile range (IQR) of 10.2h. For the left ear the median is 4.4 and the IQR is 9.7h. In the first session 47% of the children use their hearing aids ≤5 hours, 12% use them between 5 to 10 hours and 22% use them ≥10 hours a day. However, these children showed increased use by the third follow-up session with a median (IQR) of 9.1 hours for the right ear and 2.5, and of 8.2 hours for left ear (IQR) IQR is 5.6 By the third follow-up session, 14% of children used hearing aids ≤5 hours, while 38% of children used them ≥10 hours. Based on the primary results, factors like age and level of HL significantly impact the hours of use. Conclusion: The use of data logging information to assess the actual hours of HA provides an opportunity to examine the: a) challenges of families of young children with HAs, b) factors that impact use in very young children. Data logging when used collaboratively with parents, can be a powerful tool to identify problems and to encourage and assist families in maximizing their child’s hearing potential.

Keywords: hearing loss, hearing aid, data logging, hours of use

Procedia PDF Downloads 230
23754 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
23753 Information and Communication Technology (ICT) and Yoruba Language Teaching

Authors: Ayoola Idowu Olasebikan

Abstract:

The global community has become increasingly dependent on various kinds of technologies out of which Information and Communication Technologies (ICTs) appear to be the most prominent. ICTs have become multipurpose tools which have had a revolutionary impact on how we see the world and how we live in it. Yoruba is the most widely spoken African language outside Africa but it remains one of the badly spoken language in the world as a result of its outdated teaching method in the African schools which prevented its standard version from being spoken and written. This paper conducts a critical review of the traditional methods of teaching Yoruba language. It then examines the possibility of leveraging on ICTs for improved methods of teaching Yoruba language to achieve global standard and spread. It identified key ICT platforms that can be deployed for the teaching of Yoruba language and the constraints facing each of them. The paper concludes that Information and Communication Technologies appear to provide veritable opportunity for paradigm shift in the methods of teaching Yoruba Language. It also opines that Yoruba language has the potential to transform economic fortune of Africa for sustainable development provided its teaching is taken beyond the brick and mortar classroom to the virtual classroom/global information super highway called internet or any other ICTs medium. It recommends that students and teachers of Yoruba language should be encouraged to acquire basic skills in computer and internet technology in order to enhance their ability to develop and retrieve electronic Yoruba language teaching materials.

Keywords: Africa, ICT, teaching method, Yoruba language

Procedia PDF Downloads 361
23752 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 43
23751 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model

Authors: Si Chen, Quanhong Jiang

Abstract:

In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.

Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics

Procedia PDF Downloads 79
23750 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 64
23749 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs

Authors: Navneet Kaur, Amarpreet Singh

Abstract:

In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.

Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network

Procedia PDF Downloads 348
23748 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 168
23747 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings

Authors: Jude K. Safo

Abstract:

Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.

Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics

Procedia PDF Downloads 68
23746 Prevalence of Behavioral and Emotional Problems in School Going Adolescents in India

Authors: Anshu Gupta, Charu Gupta

Abstract:

Background: Adolescence is the transitional period between puberty and adulthood. It is marked by immense turmoil in emotional and behavioral spheres. Adolescents are at risk of an array of behavioral and emotional problems, resulting in social, academic and vocational function impairments. Conflicts in the family and inability of the parents to cope with the changing demands of an adolescent have a negative impact on the overall development of the child. This augers ill for the individual’s future, resulting in depression, delinquency and suicides among other problems. Aim: The aim of the study was to compare the prevalence of behavioral and emotional problems in school going adolescents aged 13 to 15 years residing in Ludhiana city. Method: A total of 1380 school children in the age group of 13 to 15 years were assessed by the adolescent health screening questionnaire (FAPS) and Youth Self-Report (2001) questionnaire. Statistical significance was ascertained by t-test, chi-square test (x²) and ANOVA, as appropriate. Results: A considerably high prevalence of behavioral and emotional problems was found in school going adolescents (26.5%), more in girls (31.7%) than in boys (24.4%). In case of boys, the maximum problem was in the 13 year age group, i.e., 28.2%, followed by a significant decline by the age of 14 years, i.e., 24.2% and 15 years, i.e., 19.6%. In case of girls also, the maximum problem was in the 13 year age group, i.e., 32.4% followed by a marginal decline in the 14 years i.e., 31.8% and 15 year age group, i.e., 30.2%. Demographic factors were non contributory. Internalizing syndrome (22.4%) was the most common problem followed by the neither internalizing nor externalizing (17.6%) group. In internalizing group, most (26.5%) of the students were observed to be anxious/ depressed. Social problem was observed to be the most frequent (10.6%) among neither internalizing nor externalizing group. Aggressive behavior was the commonest (8.4%) among externalizing group. Internalizing problems, mainly anxiety and depression, were commoner in females (30.6%) than males (24.6%). More boys (16%) than girls (13.4%) were reported to suffer from externalizing disorders. A critical review of the data showed that most of the adolescents had poor knowledge about reproductive health. Almost 36% reported that the source of their information on sexual and reproductive health being friends and the electronic media. There was a high percentage of adolescents who reported being worried about sexual abuse (20.2%) with majority of them being girls (93.6%) reflecting poorly on the social setup in the country. About 41% of adolescents reported being concerned about body weight and most of them being girls (92.4%). Up to 14.5% reported having thoughts of using alcohol or drugs perhaps due to the easy availability of substances of abuse in this part of the country. 12.8% (mostly girls) reported suicidal thoughts. Summary/conclusion: There is a high prevalence of emotional and behavioral problems among school-going adolescents. Resolution of these problems during adolescence is essential for attaining a healthy adulthood. The need of the hour is to spread awareness among caregivers and formulation of effective management strategies including school mental health programme.

Keywords: adolescence, behavioral, emotional, internalizing problem

Procedia PDF Downloads 288
23745 The Names of the Traditional Motif of Batik Solo

Authors: Annisa D. Febryandini

Abstract:

Batik is a unique cultural heritage that strongly linked with its community. As a product of current culture in Solo, Batik Solo not only has a specific design and color to represent the cultural identity, cultural values, and spirituality of the community, but also has some specific names given by its community which are not arbitrary. This qualitative research paper uses the primary data by interview method as well as the secondary data to support it. Based on the data, this paper concludes that the names consist of a word or words taken from a current name of things in Javanese language. They indicate the cultural meaning such as a specific event, a hope, and the social status of the people who use the motif. Different from the other research, this paper takes a look at the names of traditional motif of Batik Solo which analyzed linguistically to reveal the cultural meaning.

Keywords: traditional motif, Batik, solo, anthropological linguistics

Procedia PDF Downloads 277
23744 Review of Speech Recognition Research on Low-Resource Languages

Authors: XuKe Cao

Abstract:

This paper reviews the current state of research on low-resource languages in the field of speech recognition, focusing on the challenges faced by low-resource language speech recognition, including the scarcity of data resources, the lack of linguistic resources, and the diversity of dialects and accents. The article reviews recent progress in low-resource language speech recognition, including techniques such as data augmentation, end to-end models, transfer learning, and multi-task learning. Based on the challenges currently faced, the paper also provides an outlook on future research directions. Through these studies, it is expected that the performance of speech recognition for low resource languages can be improved, promoting the widespread application and adoption of related technologies.

Keywords: low-resource languages, speech recognition, data augmentation techniques, NLP

Procedia PDF Downloads 14
23743 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125
23742 Nearest Neighbor Investigate Using R+ Tree

Authors: Rutuja Desai

Abstract:

Search engine is fundamentally a framework used to search the data which is pertinent to the client via WWW. Looking close-by spot identified with the keywords is an imperative concept in developing web advances. For such kind of searching, extent pursuit or closest neighbor is utilized. In range search the forecast is made whether the objects meet to query object. Nearest neighbor is the forecast of the focuses close to the query set by the client. Here, the nearest neighbor methodology is utilized where Data recovery R+ tree is utilized rather than IR2 tree. The disadvantages of IR2 tree is: The false hit number can surpass the limit and the mark in Information Retrieval R-tree must have Voice over IP bit for each one of a kind word in W set is recouped by Data recovery R+ tree. The inquiry is fundamentally subordinate upon the key words and the geometric directions.

Keywords: information retrieval, nearest neighbor search, keyword search, R+ tree

Procedia PDF Downloads 291
23741 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 202
23740 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 188
23739 Relation between Pavement Roughness and Distress Parameters for Highways

Authors: Suryapeta Harini

Abstract:

Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.

Keywords: roughness index, network survey vehicle, regression, correlation

Procedia PDF Downloads 176
23738 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams

Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname

Abstract:

Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.

Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams

Procedia PDF Downloads 139
23737 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 89
23736 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu

Abstract:

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant  of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual  value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

Keywords: food waste reduction, particle filter, point-of-sales, sustainable development goals, Taylor's law, time series analysis

Procedia PDF Downloads 131
23735 Nanostructured Transition Metal Oxides Doped Graphene for High Performance Solid-State Supercapacitor Electrodes

Authors: G. Nyongombe, Guy L. Kabongo, B. M. Mothudi, M. S. Dhlamini

Abstract:

A series of Transition Metals Oxides (TMOs) doped graphene were synthesized and successfully used as supercapacitor electrode materials. The as-synthesized materials exhibited exceptional electrochemical properties owing to the combined properties of its constituents; high surface area and good conductivity were achieved. Several analytical characterization techniques were employed to investigate the morphology, crystal structure atomic arrangement and elemental chemical state in the materials for which scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted, respectively. Moreover, the electrochemical properties of the as-synthesized materials were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Furthermore, the effect of doping concentration on the interlayer distance of the graphene materials and the charge transfer resistance are investigated and correlated to the exceptional current density which was multiplied by a factor of ~80 after TMOs doping in graphene. Finally, the resulting high capacitance obtained confirms the contribution of grapheme exceptional electronic conductivity and large surface area on the electrode materials. Such good-performing electrode materials are highly promising for supercapacitors and other energy storage devices.

Keywords: energy density, graphene, supercapacitors, TMOs

Procedia PDF Downloads 258
23734 Aesthetic Analysis and Socio-Cultural Significance of Eku Idowo and Anipo Masquerades of the Anetuno (Ebira Chao)

Authors: Lamidi Lawal Aduozava

Abstract:

Masquerade tradition is an indigenous culture of the Anetuno an extraction of the Ebira referred to as Ebira chao. This paper seeks to make aesthetic analysis of the masquerades in terms of their costumes and socio-cultural significance. To this end, the study examined and documented the functions and roles of Anipo and Idowo masquerades in terms of therapeutic, economic, prophetic and divination, entertainment, and funeral functions to the owner community(Eziobe group of families) in Igarra, Edo State of Nigeria, West Africa. For the purpose of data collection, focus group discussion, participatory, visual and observatory methods of data collection were used. All the data collected were aesthetically, descriptively and historically analyzed.

Keywords: Aesthetics, , Costume, , Masquerades, , Significance.

Procedia PDF Downloads 163
23733 Rejoinders to the Expression of Reprimand among Jordanian Youth: A Pragmatic Study

Authors: Nisreen Al-Khawaldeh

Abstract:

The study investigates the expressions voiced by Jordanian youth as rejoinders to the expressions of reprimands. It also explores the impact sociocultural variables exert on such types of rejoinders. To our best knowledge, this study is the first of its kind. Despite the significance and sensitivity of such type of communicative act, there is a scarcity of research on it, and it has not been investigated in the Jordanian context. Data collected from observation of naturally occurring data. Data have been qualitatively and quantitatively analyzed in light of the rapport management approach (RMA). The analysis revealed different types of rejoinders, among which was the expression of apology, admitting responsibility, and trying to manage and fix the situation were the most used strategies. Variation in the types of strategies was attributed to the influence of the sociocultural variables. Promising ideas were recommended for future research.

Keywords: gender, rejoinder to reprimand, Jordanian youth, rapport management approach

Procedia PDF Downloads 196
23732 Nano Ceramics Materials in Clean Rooms: Properties and Characterization

Authors: HebatAllah Tarek, Zeyad El-Sayad, Ali F. Bakr

Abstract:

Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials.

Keywords: nano-ceramic coating, clean rooms, porcelain, surface properties

Procedia PDF Downloads 109