Search results for: computer tasks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3742

Search results for: computer tasks

1192 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 142
1191 Development of an Efficient Algorithm for Cessna Citation X Speed Optimization in Cruise

Authors: Georges Ghazi, Marc-Henry Devillers, Ruxandra M. Botez

Abstract:

Aircraft flight trajectory optimization has been identified to be a promising solution for reducing both airline costs and the aviation net carbon footprint. Nowadays, this role has been mainly attributed to the flight management system. This system is an onboard multi-purpose computer responsible for providing the crew members with the optimized flight plan from a destination to the next. To accomplish this function, the flight management system uses a variety of look-up tables to compute the optimal speed and altitude for each flight regime instantly. Because the cruise is the longest segment of a typical flight, the proposed algorithm is focused on minimizing fuel consumption for this flight phase. In this paper, a complete methodology to estimate the aircraft performance and subsequently compute the optimal speed in cruise is presented. Results showed that the obtained performance database was accurate enough to predict the flight costs associated with the cruise phase.

Keywords: Cessna Citation X, cruise speed optimization, flight cost, cost index, and golden section search

Procedia PDF Downloads 292
1190 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 139
1189 Effectiveness of Participatory Ergonomic Education on Pain Due to Work Related Musculoskeletal Disorders in Food Processing Industrial Workers

Authors: Salima Bijapuri, Shweta Bhatbolan, Sejalben Patel

Abstract:

Ergonomics concerns the fitting of the environment and the equipment to the worker. Ergonomic principles can be employed in different dimensions of the industrial sector. Participation of all the stakeholders is the key to the formulation of a multifaceted and comprehensive approach to lessen the burden of occupational hazards. Taking responsibility for one’s own work activities by acquiring sufficient knowledge and potential to influence the practices and outcomes is the basis of participatory ergonomics and even hastens the process to identify workplace hazards. The study was aimed to check how participatory ergonomics can be effective in the management of work-related musculoskeletal disorders. Method: A mega kitchen was identified in a twin city of Karnataka, India. Consent was taken, and the screening of workers was done using observation methods. Kitchen work was structured to include different tasks, which included preparation, cooking, distributing, and serving food, packing food to be delivered to schools, dishwashing, cleaning and maintenance of kitchen and equipment, and receiving and storing raw material. Total 100 workers attended the education session on participatory ergonomics and its role in implementing the correct ergonomic practices, thus preventing WRMSDs. Demographic details and baseline data on related musculoskeletal pain and discomfort were collected using the Nordic pain questionnaire and VAS score pre- and post-study. Monthly visits were made, and the education sessions were reiterated on each visit, thus reminding, correcting, and problem-solving of each worker. After 9 months with a total of 4 such education session, the post education data was collected. The software SPSS 20 was used to analyse the collected data. Results: The majority of them (78%), depending on the availability and feasibility, participated in the intervention workshops were arranged four times. The average age of the participants was 39 years. The percentage of female participants was 79.49%, and 20.51% of participants comprised of males. The Nordic Musculoskeletal Questionnaire (NMQ) showed that knee pain was the most commonly reported complaint (62%) from the last 12 months with a mean VAS of 6.27, followed by low back pain. Post intervention, the mean VAS Score was reduced significantly to 2.38. The comparison of pre-post scores was made using Wilcoxon matched pairs test. Upon enquiring, it was found that, the participants learned the importance of applying ergonomics at their workplace which inturn was beneficial for them to handle any problems arising at their workplace on their own with self confidence. Conclusion: The participatory ergonomics proved effective with workers of mega kitchen, and it is a feasible and practical approach. The advantage of the given study area was that it had a sophisticated and ergonomically designed workstation; thus it was the lack of education and practical knowledge to use these stations was of utmost need. There was a significant reduction in VAS scores with the implementation of changes in the working style, and the knowledge of ergonomics helped to decrease physical load and improve musculoskeletal health.

Keywords: ergonomic awareness session, mega kitchen, participatory ergonomics, work related musculoskeletal disorders

Procedia PDF Downloads 138
1188 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback

Authors: Jacopo Baboni Schilingi

Abstract:

We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.

Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication

Procedia PDF Downloads 154
1187 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.

Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences

Procedia PDF Downloads 129
1186 Prospects for Building Mobile Micro-Hydro Powerplants with Information Management Systems

Authors: B. S. Akhmetov, P. T.Kharitonov, L. Sh. Balgabayeva, O. V. Kisseleva, T. S. Kartbayev

Abstract:

This article analyzes the applicability of known renewable energy technical means as mobile power sources under the field and extreme conditions. The requirements are determined for the parameters of mobile micro-HPP. The application prospectively of the mobile micro-HPP with intelligent control systems is proved for this purpose. Variants of low-speed electric generators for micro HPP are given. Variants of designs for mobile micro HPP are presented with the direct (gearless) transfer of torque from the hydraulic drive to the rotor of the electric generator. Variant of the hydraulic drive for micro HPP is described workable at low water flows. A general structure of the micro HPP intelligent system control is offered that implements the principle of maximum energy efficiency. The legitimacy of construction and application of mobile micro HPP is proved as electrical power sources for life safety of people under the field and extreme conditions.

Keywords: mobile micro-hydro powerplants, information management systems, hydraulic drive, computer science

Procedia PDF Downloads 409
1185 Sentiment Analysis in Social Networks Sites Based on a Bibliometrics Analysis: A Comprehensive Analysis and Trends for Future Research Planning

Authors: Jehan Fahim M. Alsulami

Abstract:

Academic research about sentiment analysis in sentiment analysis has obtained significant advancement over recent years and is flourishing from the collection of knowledge provided by various academic disciplines. In the current study, the status and development trend of the field of sentiment analysis in social networks is evaluated through a bibliometric analysis of academic publications. In particular, the distributions of publications and citations, the distribution of subject, predominant journals, authors, countries are analyzed. The collaboration degree is applied to measure scientific connections from different aspects. Moreover, the keyword co-occurrence analysis is used to find out the major research topics and their evolutions throughout the time span. The area of sentiment analysis in social networks has gained growing attention in academia, with computer science and engineering as the top main research subjects. China and the USA provide the most to the area development. Authors prefer to collaborate more with those within the same nation. Among the research topics, newly risen topics such as COVID-19, customer satisfaction are discovered.

Keywords: bibliometric analysis, sentiment analysis, social networks, social media

Procedia PDF Downloads 218
1184 Frequent-Pattern Tree Algorithm Application to S&P and Equity Indexes

Authors: E. Younsi, H. Andriamboavonjy, A. David, S. Dokou, B. Lemrabet

Abstract:

Software and time optimization are very important factors in financial markets, which are competitive fields, and emergence of new computer tools further stresses the challenge. In this context, any improvement of technical indicators which generate a buy or sell signal is a major issue. Thus, many tools have been created to make them more effective. This worry about efficiency has been leading in present paper to seek best (and most innovative) way giving largest improvement in these indicators. The approach consists in attaching a signature to frequent market configurations by application of frequent patterns extraction method which is here most appropriate to optimize investment strategies. The goal of proposed trading algorithm is to find most accurate signatures using back testing procedure applied to technical indicators for improving their performance. The problem is then to determine the signatures which, combined with an indicator, outperform this indicator alone. To do this, the FP-Tree algorithm has been preferred, as it appears to be the most efficient algorithm to perform this task.

Keywords: quantitative analysis, back-testing, computational models, apriori algorithm, pattern recognition, data mining, FP-tree

Procedia PDF Downloads 361
1183 Cranioplasty with Custom Implant Realized Using 3D Printing Technology

Authors: Trad Khodja Rafik, Mahtout Amine, Ghoul Rachid, Benbouali Amine, Boulahlib Amine, Hariza Abdelmalik

Abstract:

Cranioplasty with custom implant realized using 3D printing technology. Cranioplasty is a surgical act that aims restoring cranial bone losses in order to protect the brain from external aggressions and to improve the patient aesthetic appearance. This objective can be achieved with taking advantage of the current technological development in computer science and biomechanics. The objective of this paper it to present an approach for the realization of high precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure four patients underwent this procedure with excellent aesthetic results.

Keywords: cranioplasty, cranial bone loss, 3D printing technology, custom-made implants, PMMA

Procedia PDF Downloads 111
1182 Interactive Shadow Play Animation System

Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding

Abstract:

The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.

Keywords: hadow play animation, Kinect, gesture recognition, VRPN, HCI

Procedia PDF Downloads 401
1181 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 125
1180 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment

Authors: Jing Zhao, Yongqing Bai, Qiaofang Shi, Huaihao Zhang

Abstract:

Advances in software technology enable computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.

Keywords: upper-division undergraduate, computer-based learning, laboratory instruction, molecular modeling

Procedia PDF Downloads 133
1179 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 339
1178 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 154
1177 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques

Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari

Abstract:

Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.

Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel

Procedia PDF Downloads 337
1176 Banking Innovation and Customers' Satisfaction in Nigeria: A Case Study of Some Selected Banks

Authors: Jameelah O. Yaqub

Abstract:

The financial industry all over the world has undergone and still undergoing great transformation especially with the introduction of e-products which involves the use of computers and telecommunications to enable banking transactions to be done by telephone or computer rather than by humans. The adoption of e-banking in Nigeria is becoming more popular with customers now being able to use the ATM cards for different transactions. The internet banking, POS machines, telephone banking as well as mobile banking are some other e-products being used in Nigeria. This study examines how satisfied bank customers are with the e-products. The study found that the ATM is the most popular e-products among bank customers in Nigeria; followed by the POS. The least use of the e-products is telephone banking. The study also found that visits to banks for transactions declined with the use of e-products. The chi-square analysis shows that there is significant relationship between the use of banks’ e-products and customers’ satisfaction. One of the major reason adduced by respondents for low usage of e-products is insecurity or fear of cyber fraud, it is therefore recommended that banks should provide adequate. Security for transactions and ensure the proper backing up of critical data files. In addition, government should ensure stable electricity supply to reduce banks’ running costs and consequently, customers’ cost of transactions.

Keywords: banks, e-products, innovation, Nigeria

Procedia PDF Downloads 337
1175 Modeling of Building a Conceptual Scheme for Multimodal Freight Transportation Information System

Authors: Gia Surguladze, Nino Topuria, Lily Petriashvili, Giorgi Surguladze

Abstract:

Modeling of building processes of a multimodal freight transportation support information system is discussed based on modern CASE technologies. Functional efficiencies of ports in the eastern part of the Black Sea are analyzed taking into account their ecological, seasonal, resource usage parameters. By resources, we mean capacities of berths, cranes, automotive transport, as well as work crews and neighbouring airports. For the purpose of designing database of computer support system for Managerial (Logistics) function, using Object-Role Modeling (ORM) tool (NORMA – Natural ORM Architecture) is proposed, after which Entity Relationship Model (ERM) is generated in automated process. The software is developed based on Process-Oriented and Service-Oriented architecture, in Visual Studio.NET environment.

Keywords: seaport resources, business-processes, multimodal transportation, CASE technology, object-role model, entity relationship model, SOA

Procedia PDF Downloads 431
1174 Multi-Modality Brain Stimulation: A Treatment Protocol for Tinnitus

Authors: Prajakta Patil, Yash Huzurbazar, Abhijeet Shinde

Abstract:

Aim: To develop a treatment protocol for the management of tinnitus through multi-modality brain stimulation. Methodology: Present study included 33 adults with unilateral (31 subjects) and bilateral (2 subjects) chronic tinnitus with and/or without hearing loss independent of their etiology. The Treatment protocol included 5 consecutive sessions with follow-up of 6 months. Each session was divided into 3 parts: • Pre-treatment: a) Informed consent b) Pitch and loudness matching. • Treatment: Bimanual paper pen task with tinnitus masking for 30 minutes. • Post-treatment: a) Pitch and loudness matching b) Directive counseling and obtaining feedback. Paper-pen task is to be performed bimanually that included carrying out two different writing activities in different context. The level of difficulty of the activities was increased in successive sessions. Narrowband noise of a frequency same as that of tinnitus was presented at 10 dBSL of tinnitus for 30 minutes simultaneously in the ear with tinnitus. Result: The perception of tinnitus was no longer present in 4 subjects while in remaining subjects it reduced to an intensity that its perception no longer troubled them without causing residual facilitation. In all subjects, the intensity of tinnitus decreased by an extent of 45 dB at an average. However, in few subjects, the intensity of tinnitus also decreased by more than 45 dB. The approach resulted in statistically significant reductions in Tinnitus Functional Index and Tinnitus Handicap Inventory scores. The results correlate with pre and post treatment score of Tinnitus Handicap Inventory that dropped from 90% to 0%. Discussion: Brain mapping(qEEG) Studies report that there is multiple parallel overlapping of neural subnetworks in the non-auditory areas of the brain which exhibits abnormal, constant and spontaneous neural activity involved in the perception of tinnitus with each subnetwork and area reflecting a specific aspect of tinnitus percept. The paper pen task and directive counseling are designed and delivered respectively in a way that is assumed to induce normal, rhythmically constant and premeditated neural activity and mask the abnormal, constant and spontaneous neural activity in the above-mentioned subnetworks and the specific non-auditory area. Counseling was focused on breaking the vicious cycle causing and maintaining the presence of tinnitus. Diverting auditory attention alone is insufficient to reduce the perception of tinnitus. Conscious awareness of tinnitus can be suppressed when individuals engage in cognitively demanding tasks of non-auditory nature as the paper pen task used in the present study. To carry out this task selective, divided, sustained, simultaneous and split attention act cumulatively. Bimanual paper pen task represents a top-down activity which underlies brain’s ability to selectively attend to the bimanual written activity as a relevant stimulus and to ignore tinnitus that is the irrelevant stimuli in the present study. Conclusion: The study suggests that this novel treatment approach is cost effective, time saving and efficient to vanish the tinnitus or to reduce the intensity of tinnitus to a negligible level and thereby eliminating the negative reactions towards tinnitus.

Keywords: multi-modality brain stimulation, neural subnetworks, non-auditory areas, paper-pen task, top-down activity

Procedia PDF Downloads 147
1173 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 291
1172 The Effect of Global Solar Radiation on the Thermal and Thermohydraulic Performance of Double Flow Corrugated Absorber Solar Air Heater

Authors: Suresh Prasad Sharma, Som Nath Saha

Abstract:

This paper deals with the effect of Global Solar Radiation (GSR) on the performance of double flow solar air heater having corrugated plate as an absorber. An analytical model of a double flow solar air heater has been presented, and a computer program in C++ language has been developed to calculate the outlet air temperature, heat gain, pressure drop for estimating the thermal and thermohydraulic efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that the double flow arrangement effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results indicate that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.

Keywords: corrugated absorber, double flow, flat plate, solar air heater

Procedia PDF Downloads 285
1171 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.

Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review

Procedia PDF Downloads 279
1170 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters

Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu

Abstract:

Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.

Keywords: induction heating, LQR controller, skin depth, temperature field

Procedia PDF Downloads 41
1169 Analyze of Nanoscale Materials and Devices for Future Communication and Telecom Networks in the Gas Refinery

Authors: Mohamad Bagher Heidari, Hefzollah Mohammadian

Abstract:

New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high speed short and long range communication links, portable and power efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nonmaterials and devices. This article presents some exciting recent developments in nonmaterials that have the potential to play a critical role in the development and transformation of future intelligent communication and telecom networks in the gas refinery. The industry is benefiting from nanotechnology advances with numerous applications including those in smarter sensors, logic elements, computer chips, memory storage devices, optoelectronics.

Keywords: nonmaterial, intelligent communication, nanoscale, nanophotonic, telecom

Procedia PDF Downloads 333
1168 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation

Procedia PDF Downloads 234
1167 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition

Authors: Hamed Djalal

Abstract:

The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.

Keywords: forced convection, pressure drop, thermal hydraulic analysis, vertical heated rectangular channel

Procedia PDF Downloads 154
1166 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 434
1165 Cultivating Concentration and Flow: Evaluation of a Strategy for Mitigating Digital Distractions in University Education

Authors: Vera G. Dianova, Lori P. Montross, Charles M. Burke

Abstract:

In the digital age, the widespread and frequently excessive use of mobile phones amongst university students is recognized as a significant distractor which interferes with their ability to enter a deep state of concentration during studies and diminishes their prospects of experiencing the enjoyable and instrumental state of flow, as defined and described by psychologist M. Csikszentmihalyi. This study has targeted 50 university students with the aim of teaching them to cultivate their ability to engage in deep work and to attain the state of flow, fostering more effective and enjoyable learning experiences. Prior to the start of the intervention, all participating students completed a comprehensive survey based on a variety of validated scales assessing their inclination toward lifelong learning, frequency of flow experiences during study, frustration tolerance, sense of agency, as well as their love of learning and daily time devoted to non-academic mobile phone activities. Several days after this initial assessment, students received a 90-minute lecture on the principles of flow and deep work, accompanied by a critical discourse on the detrimental effects of excessive mobile phone usage. They were encouraged to practice deep work and strive for frequent flow states throughout the semester. Subsequently, students submitted weekly surveys, including the 10-item CORE Dispositional Flow Scale, a 3-item agency scale and furthermore disclosed their average daily hours spent on non-academic mobile phone usage. As a final step, at the end of the semester students engaged in reflective report writing, sharing their experiences and evaluating the intervention's effectiveness. They considered alterations in their love of learning, reflected on the implications of their mobile phone usage, contemplated improvements in their tolerance for boredom and perseverance in complex tasks, and pondered the concept of lifelong learning. Additionally, students assessed whether they actively took steps towards managing their recreational phone usage and towards improving their commitment to becoming lifelong learners. Employing a mixed-methods approach our study offers insights into the dynamics of concentration, flow, mobile phone usage and attitudes towards learning among undergraduate and graduate university students. The findings of this study aim to promote profound contemplation, on the part of both students and instructors, on the rapidly evolving digital-age higher education environment. In an era defined by digital and AI advancements, the ability to concentrate, to experience the state of flow, and to love learning has never been more crucial. This study underscores the significance of addressing mobile phone distractions and providing strategies for cultivating deep concentration. The insights gained can guide educators in shaping effective learning strategies for the digital age. By nurturing a love for learning and encouraging lifelong learning, educational institutions can better prepare students for a rapidly changing labor market, where adaptability and continuous learning are paramount for success in a dynamic career landscape.

Keywords: deep work, flow, higher education, lifelong learning, love of learning

Procedia PDF Downloads 68
1164 Analyzing Behaviour of the Utilization of the Online News Clipping Database: Experience in Suan Sunandha Rajabhat University

Authors: Siriporn Poolsuwan, Kanyarat Bussaban

Abstract:

This research aims to investigate and analyze user’s behaviour towards the utilization of the online news clipping database at Suan Sunandha Rajabhat University, Thailand. Data is gathered from 214 lecturers and 380 undergraduate students by using questionnaires. Findings show that most users knew the online news clipping service from their friends, library’s website and their teachers. The users learned how to use it by themselves and others learned by training of SSRU library. Most users used the online news clipping database one time per month at home and always used the service for general knowledge, up-to-date academic knowledge and assignment reference. Moreover, the results of using the online news clipping service problems include the users themselves, service management, service device- computer and tools – and the network, service provider, and publicity. This research would be benefit for librarians and teachers for planning and designing library services in their works and organization.

Keywords: online database, user behavior, news clipping, library services

Procedia PDF Downloads 314
1163 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 163