Search results for: slice thickness accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5264

Search results for: slice thickness accuracy

2744 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 148
2743 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid

Authors: Tran Ich Thinh, Nguyen Manh Cuong

Abstract:

Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.

Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell

Procedia PDF Downloads 507
2742 MXene-Based Self-Sensing of Damage in Fiber Composites

Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi

Abstract:

Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.

Keywords: damage sensing, fiber composites, MXene, self-sensing

Procedia PDF Downloads 124
2741 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 69
2740 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach

Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane

Abstract:

The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.

Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation

Procedia PDF Downloads 318
2739 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 165
2738 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 367
2737 Thermal and Mechanical Properties of Polycaprolactone-Soy Lecithin Modified Bentonite Nanocomposites

Authors: Danila Merino, Leandro N. Ludueña, Vera A. Alvarez

Abstract:

Clays are commonly used to reinforce polymeric materials. In order to modify them, long-chain quaternary-alkylammonium salts have been widely employed. However, the application of these clays in biological fields is limited by the toxicity and poor biocompatibility presented by these modifiers. Meanwhile, soy lecithin, acts as a natural biosurfactant and environment-friendly biomodifier. In this report, we analyse the effect of content of soy lecithin-modified bentonite on the properties of polycaprolactone (PCL) nanocomposites. Commercial grade PCL (CAPA FB 100) was supplied by Perstorp, with Mw = 100000 g/mol. Minarmco S.A. and Melar S.A supplied bentonite and soy lecithin, respectively. Clays with 18, 30 and 45 wt% of organic content were prepared by exchanging 4 g of Na-Bent with 1, 2 and 4 g of soy lecithin aqueous and acid solution (pH=1, with HCl) at 75ºC for 2 h. Then, they were washed and lyophilized for 72 h. Samples were labeled A, B and C. Nanocomposites with 1 and 2 wt.% of each clay were prepared by melt-intercalation followed by compression-moulding. An intensive Brabender type mixer with two counter-rotating roller rotors was used. Mixing temperature was 100 ºC; speed of rotation was 100 rpm. and mixing time was 10 min. Compression moulding was carried out in a hydraulic press under 75 Kg/mm2 for 10 minutes at 100 ºC. The thickness of the samples was about 1 mm. Thermal and mechanical properties were analysed. PCL nanocomposites with 1 and 2% of B presented the best mechanical properties. It was observed that an excessive organic content produced an increment on the rigidity of PCL, but caused a detrimental effect on the tensile strength and elongation at break of the nanocomposites. Thermogravimetrical analyses suggest that all reinforced samples have higher resistance to degradation than neat PCL.

Keywords: chemical modification, clay, nanocomposite, characterization

Procedia PDF Downloads 203
2736 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings

Procedia PDF Downloads 484
2735 Field-Free Orbital Hall Current-Induced Deterministic Switching in the MO/Co₇₁Gd₂₉/Ru Structure

Authors: Zelalem Abebe Bekele, Kun Lei, Xiukai Lan, Xiangyu Liu, Hui Wen, Kaiyou Wang

Abstract:

Spin-polarized currents offer an efficient means of manipulating the magnetization of a ferromagnetic layer for big data and neuromorphic computing. Research has shown that the orbital Hall effect (OHE) can produce orbital currents, potentially surpassing the counter spin currents induced by the spin Hall effect. However, it’s essential to note that orbital currents alone cannot exert torque directly on a ferromagnetic layer, necessitating a conversion process from orbital to spin currents. Here, we present an efficient method for achieving perpendicularly magnetized spin-orbit torque (SOT) switching by harnessing the localized orbital Hall current generated from a Mo layer within a Mo/CoGd device. Our investigation reveals a remarkable enhancement in the interface-induced planar Hall effect (PHE) within the Mo/CoGd bilayer, resulting in the generation of a z-polarized planar current for manipulating the magnetization of CoGd layer without the need for an in-plane magnetic field. Furthermore, the Mo layer induces out-of-plane orbital current, boosting the in-plane and out-of-plane spin polarization by converting the orbital current into spin current within the dual-property CoGd layer. At the optimal Mo layer thickness, a low critical magnetization switching current density of 2.51×10⁶ A cm⁻² is achieved. This breakthrough opens avenues for all-electrical control energy-efficient magnetization switching through orbital current, advancing the field of spin-orbitronics.

Keywords: spin-orbit torque, orbital hall effect, spin hall current, orbital hall current, interface-generated planar hall current, anisotropic magnetoresistance

Procedia PDF Downloads 61
2734 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: inverse problems, multi-component solutions, neural networks, Raman spectroscopy

Procedia PDF Downloads 530
2733 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: inverse method, FLUENT, k-ε model, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 465
2732 Automatic Extraction of Water Bodies Using Whole-R Method

Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao

Abstract:

Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.

Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method

Procedia PDF Downloads 392
2731 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 103
2730 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 384
2729 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application

Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim

Abstract:

One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.

Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure

Procedia PDF Downloads 177
2728 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images

Authors: Shenlun Chen, Leonard Wee

Abstract:

Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.

Keywords: colorectal cancer, differentiation, survival analysis, tumor grading

Procedia PDF Downloads 137
2727 Robust and Transparent Spread Spectrum Audio Watermarking

Authors: Ali Akbar Attari, Ali Asghar Beheshti Shirazi

Abstract:

In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.

Keywords: audio watermarking, spread spectrum, discrete wavelet transform, psychoacoustic, Savitsky-Golay filter

Procedia PDF Downloads 201
2726 Biodegradable Polymer Film Incorporated with Polyphenols for Active Packaging

Authors: Shubham Sharma, Swarna Jaiswal, Brendan Duffy, Amit Jaiswal

Abstract:

The key features of any active packaging film are its biodegradability and antimicrobial properties. Biological macromolecules such as polyphenols (ferulic acid (FA) and tannic acids (TA)) are naturally found in plants such as grapes, berries, and tea. In this study, antimicrobial activity screening of several polyphenols was carried out by using minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against two strains of gram-negative bacteria - Salmonella typhimurium, Escherichia coli, and two-gram positive strains - Staphylococcus aureus and Listeria monocytogenes. FA and TA had shown strong antibacterial activity at the low concentration against both gram-positive and gram-negative bacteria. The selected polyphenols FA and TA were incorporated at various concentrations (1%, 5%, and 10% w/w) in the poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) composite film by using the solvent casting method. The effect of TA and FA incorporation in the packaging was characterized based on morphological, optical, color, mechanical, thermal, and antimicrobial properties. The thickness of the FA composite film was increased by 1.5 – 7.2%, while for TA composite film, it increased by 0.018 – 1.6%. FA and TA (10 wt%) composite film had shown approximately 65% - 66% increase in the UV barrier property. As the FA and TA concentration increases from 1% - 10% (w/w), the TS value increases by 1.98 and 1.80 times, respectively. The water contact angle of the film was observed to decrease significantly with the increase in the FA and TA content in the composite film. FA has shown more significant increase in antimicrobial activity than TA in the composite film against Listeria monocytogenes and E. coli. The FA and TA composite film has the potential for its application as an active food packaging.

Keywords: active packaging, biodegradable film, polyphenols, UV barrier, tensile strength

Procedia PDF Downloads 157
2725 Intellectual Property in Digital Environment

Authors: Balamurugan L.

Abstract:

Artificial intelligence (AI) and its applications in Intellectual Property Rights (IPR) has been significantly growing in recent years. In last couple of years, AI tools for Patent Research and Patent Analytics have been well-stabilized in terms of accuracy of references and representation of identified patent insights. However, AI tools for Patent Prosecution and Patent Litigation are still in the nascent stage and there may be a significant potential if such market is explored further. Our research is primarily focused on identifying potential whitespaces and schematic algorithms to automate the Patent Prosecution and Patent Litigation Process of the Intellectual Property. The schematic algorithms may assist leading AI tool developers, to explore such opportunities in the field of Intellectual Property. Our research is also focused on identification of pitfalls of the AI. For example, Information Security and its impact in IPR, and Potential remediations to sustain the IPR in the digital environment.

Keywords: artificial intelligence, patent analytics, patent drafting, patent litigation, patent prosecution, patent research

Procedia PDF Downloads 70
2724 An Approach for Modeling CMOS Gates

Authors: Spyridon Nikolaidis

Abstract:

A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.

Keywords: CMOS gate modeling, inverter modeling, transistor current mode, timing model

Procedia PDF Downloads 426
2723 An Autopilot System for Static Zone Detection

Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo

Abstract:

Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.

Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement

Procedia PDF Downloads 106
2722 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing

Authors: Khaled Salah

Abstract:

Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.

Keywords: genetic algorithm, simulated annealing, model reduction, transfer function

Procedia PDF Downloads 145
2721 Experimental and Theoretical Study of Melt Viscosity in Injection Process

Authors: Chung-Chih Lin, Wen-Teng Wang, Chin-Chiuan Kuo, Chieh-Liang Wu

Abstract:

The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.

Keywords: injection molding, melt viscosity, tensile test, pressure sensor bushing (PSB)

Procedia PDF Downloads 483
2720 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 450
2719 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm

Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani

Abstract:

This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.

Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis

Procedia PDF Downloads 341
2718 The Long-Term Effects of Immediate Implantation, Early Implantation and Delayed Implantation at Aesthetics Area

Authors: Xing Wang, Lin Feng, Xuan Zou, Hongchen liu

Abstract:

Immediate Implantation after tooth extraction is considered to be the ideal way to retain the alveolar bone, but some scholars believe the aesthetic effect in the Early Implantation case are more reliable. In this study, 89 patients were added to this retrospective study up to 5 years. Assessment indicators was including the survival of the implant (peri-implant infection, implant loosening, shedding, crowns and occlusal), aesthetics (color and fullness gums, papilla height, probing depth, X-ray alveolar crest height, the patient's own aesthetic satisfaction, doctors aesthetics score), repair defects around the implant (peri-implant bone changes in height and thickness, whether the use of autologous bone graft, whether to use absorption/repair manual nonabsorbable material), treatment time, cost and the use of antibiotics.The results demonstrated that there is no significant difference in long-term success rate of immediate implantation, early implantation and delayed implantation (p> 0.05). But the results indicated immediate implantation group could get get better aesthetic results after two years (p< 0.05), but may increase the risk of complications and failures (p< 0.05). High-risk indicators include gingival recession, labial bone wall damage, thin gingival biotypes, planting position and occlusal restoration bad and so on. No matter which type of implanting methods was selected, the extraction methods and bone defect amplification techniques are observed as a significant factors on aesthetic effect (p< 0.05).

Keywords: immediate implantation, long-term effects, aesthetics area, dental implants

Procedia PDF Downloads 360
2717 Fluorescent Ph-Sensing Bandage for Point-of-Care Wound Diagnostics

Authors: Cherifi Katia, Al-Hawat Marie-Lynn, Tricou Leo-Paul, Lamontagne Stephanie, Tran Minh, Ngu Amy Ching Yie, Manrique Gabriela, Guirguis Natalie, Machuca Parra Arturo Israel, Matoori Simon

Abstract:

Diabetic foot ulcers (DFUs) are a serious and prevalent complication of diabetes. Current diagnostic options are limited to macroscopic wound analysis such as wound size, depth, and infection. Molecular diagnostics promise to improve DFU diagnosis, staging, and assessment of treatment response. Here, we developed a rapid and easy-to-use fluorescent pH-sensing bandage for wound diagnostics. In a fluorescent dye screen, we identified pyranine as the lead compound due to its suitable pH-sensing properties in the clinically relevant pH range of 6 to 9. To minimize the release of this dye into the wound bed, we screened a library of ionic microparticles and found a strong adhesion of the anionic dye to a cationic polymeric microparticle. These dye-loaded microparticles showed a strong fluorescence response in the clinically relevant pH range of 6 to 9 and a dye release below 1% after one day in biological media. The dye-loaded microparticles were subsequently encapsulated in a calcium alginate hydrogel to minimize the interaction of the microparticles with the wound tissue. This pH-sensing diagnostic wound dressing was tested on full-thickness dorsal wounds of mice, and a linear fluorescence response (R2 = 0.9909) to clinically relevant pH values was observed. These findings encourage further development of this pH-sensing system for molecular diagnostics in DFUs.

Keywords: wound ph, fluorescence, diagnostics, diabetic foot ulcer, wound healing, chronic wounds, diabetes

Procedia PDF Downloads 90
2716 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM

Procedia PDF Downloads 197
2715 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate

Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe

Abstract:

This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.

Keywords: ARIMA, error metrices, model selection, SETAR

Procedia PDF Downloads 248